
Heaps
Heap Sort

IE170: Algorithms in Systems Engineering:
Lecture 10

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

February 5, 2007

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

What We’ve Learned

1 Summation Formulae, Induction and Bounding

2 How to compare functions: o, ω, O, Ω,Θ
3 How to count the running time of algorithms

4 How to solve recurrences that occur when we do (3)
5 Data Structures:

Hash
Binary Search Trees
Heap

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

The World’s First Algorithm

Euclid’s Algorithm(m,n)
1 Divide m by n and let r be the remainder.

2 If r = 0, then gcd(m,n) = n.

3 Otherwise, gcd(m,n) = gcd(n, r)

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Summation Formulae

Arithmetic Series

1 + 2 + · · ·+ n =
n∑

k=1

k =
n(n + 1)

2

Sum Of Squares

n∑
k=0

k2 =
n(n + 1)(2n + 1)

6

Often, such formulae can be proved via mathematical
induction

Jeff Linderoth IE170:Lecture 10



Heaps
Heap Sort

Geometric Series
n∑

k=0

xk =
1− xn+1

1− x

If |x| < 1, then the series converges to

∞∑
k=0

xk =
1

1− x
.

Harmonic Series

Hn = 1 +
1
2

+
1
3

+ · · ·+ 1
k

=
n∑

k=1

1
k
≈ ln(n)

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Bounding Sums by Integrals

When f is a (monotonically) increasing function, then we can
approximate the sum

∑n
k=m f(k) by the integrals:∫ n

m−1
f(x)dx ≤

n∑
k=m

f(k) ≤
∫ n+1

m
f(x)dx.

and a decreasing function can be approximated by∫ n+1

m
f(x)dx ≤

n∑
k=m

f(k) ≤
∫ n

m−1
f(x)dx

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

O, Ω, Θ definitions

Θ(g) = {f : ∃ c1, c2, n0 > 0 such that
c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

Ω(g) = {f | ∃ constants c, n0 > 0 s.t. 0 ≤ cg(n) ≤ f(n) ∀n ≥ n0}

O(g) = {f | ∃ constants c, n0 > 0 s.t. f(n) ≤ cg(n) ∀n ≥ n0}

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

o, ω Notation

f ∈ o(g) ⇔ lim
n→∞

f(n)
g(n)

= 0

f ∈ ω(g) ⇔ g ∈ o(f) ⇔ lim
n→∞

f(n)
g(n)

= ∞

f ∈ Θ(g) ⇔ lim
n→∞

f(n)
g(n)

= c

f ∈ o(g) ⇒ f ∈ O(g) \Θ(g).
f ∈ ω(g) ⇒ f ∈ O(g) \Θ(g).
f ∈ Θ(g) ⇔ g ∈ Θ(f)

Jeff Linderoth IE170:Lecture 10



Heaps
Heap Sort

Remember This!

The Upshot!

f ∈ O(g) is like “f ≤ g,”

f ∈ Ω(g) is like “f ≥ g,”

f ∈ o(g) is like “f < g,”

f ∈ ω(g) is like “f > g,” and

f ∈ Θ(g) is like “f = g.”

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Functions

Polynomials f of degree k are in Θ(nk).
Exponential functions always grow faster than polynomials

Polylogarithmic functions always grow more slowly than
polynomials.

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Count ’em Up

You should be able to look at a short code module, and write
down how many times each line is done.

Like the InsertionSort, MergeSort, and Towers of Hanoi
examples in class.

If the algorithm is recursive, you should be able to look at the
recurrence and compute its running time

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

More Algorithm Stuff

What is the difference between in-place and out-of-place?

How do I prove correctness of an algorithm? Loop invariant
Base Case: It is true prior to the first iteration of the loop
Maintenance: If it is true before a loop iteration, it is true
after the loop iteration
Termination: Hopefully, the invariant will have a useful
property when the loop terminates. In this case, it would
“prove” that the array is sorted.

Jeff Linderoth IE170:Lecture 10



Heaps
Heap Sort

Analyzing Recurrences

Deep Thoughts

To understand recursion, we must first understand recursion

General methods for analyzing recurrences

Substitution
Master Theorem

When we analyze a recurrence, we may not get or need an
exact answer, only an asymptotic one

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

The Master Theorem

Most recurrences that we will be interested in are of the form

T (n) =

{
Θ(1) n = 1
aT (n/b) + f(n) n > 1

The Master Theorem tells us how to analyze recurrences of
this form.

If f ∈ O(nlogb a−ε), for some constant ε > 0, then
T ∈ Θ(nlogb a).
If f ∈ Θ(nlogb a), then T ∈ Θ(nlogb a lg n).
If f ∈ Ω(nlogb a+ε), for some constant ε > 0, and if
af(n/b) ≤ cf(n) for some constant c < 1 and n > n0, then
T ∈ Θ(f).

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Sorting Algorithms

Simple Sorting Algorithms:

Merge Sort:

Divide the list into smaller pieces. Sort the small pieces.
Then merge together sorted lists.

Insertion Sort:

Insert item j into A[0 . . . j − 1]
Selection Sort

Find jth smallest element and put it in A[j]
Bubble sort:

Make n passes through the list. If adjacent elements are
out of position, swap them.

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Java Collections

You need to know a little about the Java Collections

What is a Set, List, Map, SortedSet. What are the different
implementations of each?

A Set is a Collection that cannot contain duplicate elements.

Set implementations: HashSet, Treeset, LinkedHashSet

A List can contain suplicate elements

A Map is a set of (unique) keys, each key being paired with a
value.

Jeff Linderoth IE170:Lecture 10



Heaps
Heap Sort

More on Hash

In a hash table the number of keys stored is small relative to
the number of possible keys

A hash table is an array. Given a key k, we don’t use k as the
index into the array – rather, we have a hash function h, and
we use h(k) as an index into the array.

Given a “universe” of keys K.

Think of K as all the words in a dictionary, for example

h : K → {0, 1, . . . m− 1}, so that h(k) gets mapped to an
integer between 0 and m− 1 for every k ∈ K

We say that k hashes to h(k)

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

More on Data Structures

A LinkedHashSet is a HashSet that also keeps track of the
order in which elements were inserted.

(Think of laying a linked list on top of the Hash Table)

A TreeSet stores its elements in a alertred-black tree.

A red-black trees, is a balanced binary search tree

Hash table is “good” at insert(), search(), delete().
But what if you also want to support (efficiently) minimum(),
maximum()

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Storing Binary Trees

Array

The root is stored in position 0.

The children of the node in position i are stored in
positions 2i + 1 and 2i + 2.

This determines a unique storage location for every node in
the tree and makes it easy to find a node’s parent and
children.

Using an array, the basic operations can be performed very
efficiently.

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Binary Search Tree

A binary search tree is a data structrue that is conceptualized
as a binary tree, but has one additional property:

Binary Search Tree Property

If y is in the left subtree of x, then k(y) ≤ k(x)

Jeff Linderoth IE170:Lecture 10



Heaps
Heap Sort

Short Is Beautiful

search() takes O(h)
minimum(), maximum() also take O(h)
Slightly less obvious is that insert(), delete() also take
O(h)
Thus we would like to keep out binary search trees “short” (h
is small).

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Sorted

We saw in the lab that the Java Tree Set allowed you to
iterate through the list in sorted order. How long does it take
to do this?

inorder-tree-walk(x)
1 if x 6= nil
2 then inorder-tree-walk(`(x))
3 print k(x)
4 inorder-tree-walk(r(x))

What is running time of this algorithm?

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Operations

successor(x)

How would I know “next biggest” element?

If right subtree is not empty: minimum(r(x))
If right subtree is empty: Walk up tree until you make the
first “right” move

insert(x)

Just walk down the tree and put it in. It will go “at the
bottom”

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

delete()

If 0 or 1 child, deletion is fairly easy

If 2 children, deletion is made easier by the following fact:

Binary Search Tree Property

If a node has 2 children, then

its successor will not have a left child
its predecessor will not have a right child

Jeff Linderoth IE170:Lecture 10



Heaps
Heap Sort

Heaps

Heaps are a bit like binary search trees, however, they enforce
a different property

Heap Property: Children are Horrible!

In a max-heap, the key of the parent node is always at least
as big as its children:

k(p(x)) ≥ k(x) ∀x 6= root

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Heapify

heapify(x)
1 Find largest of k(x), k(`(x)), k(r(x))
2 If k(x) is largest, you are done

3 Swap x with largest node, and call heapify() on the new
subtree

⇒ heapify a node in O(lg n)
Alternatively, heapify node of height h is O(h)
Building a heap out of an array of size n takes O(n)

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Operations on a Heap

The node with the highest key is always the root.

To delete a record

Exchange its record with that of a leaf.
Delete the leaf.
Call heapify().

To add a record

Create a new leaf.
Exchange the new record with that of the parent node if it has
a higher key.
This is like insertion sort – just move it up the path...
Continue to do this until all nodes have the heap property.
Note that we can change the key of a node in a similar fashion.

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Time for Heap Operations

Create O(n)
maximum Θ(1)
heapify O(lg n), or O(h)

extract-max O(lg n)
heap-increase-key O(lg n)

insert O(lg n)

Jeff Linderoth IE170:Lecture 10



Heaps
Heap Sort

Heap Sort

Suppose the list of items to be sorted are in an array of size n

The heap sort algorithm is as follows.
1 Put the array in heap order as described above.
2 In the ith iteration, exchange the item in position 0 with the

item in position n− i and call heapify().

What is the running time? Θ(n lg n)

Jeff Linderoth IE170:Lecture 10

Heaps
Heap Sort

Misery Loves Company

I’m in a baaaaaaaaaaaaaaaaaad mood.

Quiz on Wednesday

I will be out of town Tuesday and Wednesday: I am going
to drive to Indianapolis and punch Peyton Manning in the
nose

It is closed book, closed notes.

I will give you a piece of paper with some useful formulae

Jeff Linderoth IE170:Lecture 10


