What We've Learned

IE170: Algorithms in Systems Engineering: Lecture 10

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

February 5, 2007

- Summation Formulae, Induction and Bounding
- **2** How to compare functions: $o, \omega, O, \Omega, \Theta$
- I How to count the running time of algorithms
- How to solve recurrences that occur when we do (3)
- Oata Structures:
 - Hash
 - Binary Search Trees
 - Heap

Jeff Linderoth	IE170:Lecture 10	Jeff Linderoth	IE170:Lecture 10
Heaps		Heaps	
Heap Sort		Heap Sort	

The World's First Algorithm

2 If r = 0, then gcd(m, n) = n.

Otherwise, gcd(m, n) = gcd(n, r)

① Divide m by n and let r be the remainder.

Euclid's Algorithm(m, n)

Summation Formulae

Arithmetic Series $1+2+\dots+n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$

Sum Of Squares

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

• Often, such formulae can be proved via *mathematical induction*

Geometric Series $\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}$ If |x| < 1, then the series converges to $\sum_{k=0}^{\infty} x^{k} = \frac{1}{1 - x}.$ Harmonic Series

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} = \sum_{k=1}^n \frac{1}{k} \approx \ln(n)$$

Bounding Sums by Integrals

• When f is a (monotonically) increasing function, then we can approximate the sum $\sum_{k=m}^{n} f(k)$ by the integrals:

$$\int_{m-1}^n f(x)dx \le \sum_{k=m}^n f(k) \le \int_m^{n+1} f(x)dx.$$

and a decreasing function can be approximated by

$$\int_{m}^{n+1} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m-1}^{n} f(x)dx$$

Jeff Linderoth	IE170:Lecture 10	Jeff Linderoth	IE170:Lecture 10
Heaps Heap Sort		Heaps Heap Sort	

O, Ω, Θ definitions

o,ω Notation

$$\Theta(g) = \{ f : \exists c_1, c_2, n_0 > 0 \text{ such that} \\ c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$$

$$\Omega(g) = \{ f \mid \exists \text{ constants } c, n_0 > 0 \text{ s.t. } 0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$$

 $O(g) = \{ f \mid \exists \text{ constants } c, n_0 > 0 \text{ s.t. } f(n) \le cg(n) \ \forall n \ge n_0 \}$

 $f \in o(g) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ $f \in \omega(g) \Leftrightarrow g \in o(f) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$ $f \in \Theta(g) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = c$

f ∈ o(g) ⇒ f ∈ O(g) \ Θ(g).
f ∈ ω(g) ⇒ f ∈ O(g) \ Θ(g).
f ∈ Θ(g) ⇔ g ∈ Θ(f)

Heap	Sort	

Remember This!

Functions

- The Upshot!
 - $f \in O(g)$ is like " $f \leq g$,"
 - $f \in \Omega(g)$ is like " $f \ge g$,"
 - $f \in o(g)$ is like "f < g,"
 - $f \in \omega(g)$ is like "f > g," and
 - $f \in \Theta(g)$ is like "f = g."

- Polynomials f of degree k are in $\Theta(n^k)$.
- Exponential functions always grow faster than polynomials
- Polylogarithmic functions always grow more slowly than polynomials.

Jeff Linderoth	IE170:Lecture 10	Jeff Linderoth	IE170:Lecture 10
Heaps		Heaps	
Heap Sort		Heap Sort	

More Algorithm Stuff

Count 'em Up

- You should be able to look at a short code module, and write down how many times each line is done.
- Like the InsertionSort, MergeSort, and Towers of Hanoi examples in class.
- If the algorithm is recursive, you should be able to look at the recurrence and compute its running time

- What is the difference between in-place and out-of-place?
- How do I prove correctness of an algorithm? Loop invariant
 - Base Case: It is true prior to the first iteration of the loop
 - **Maintenance:** If it is true before a loop iteration, it is true after the loop iteration
 - **Termination:** Hopefully, the invariant will have a useful property when the loop terminates. In this case, it would "prove" that the array is sorted.

Analyzing Recurrences

Deep Thoughts

To understand recursion, we must first understand recursion

- General methods for analyzing recurrences
 - Substitution
 - Master Theorem
- When we analyze a recurrence, we may not get or need an exact answer, only an asymptotic one

The Master Theorem

• Most recurrences that we will be interested in are of the form

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ aT(n/b) + f(n) & n > 1 \end{cases}$$

- The Master Theorem tells us how to analyze recurrences of this form.
- If $f \in O(n^{\log_b a \epsilon})$, for some constant $\epsilon > 0$, then $T \in \Theta(n^{\log_b a})$.
- If $f \in \Theta(n^{\log_b a})$, then $T \in \Theta(n^{\log_b a} \lg n)$.
- If $f \in \Omega(n^{\log_b a + \epsilon})$, for some constant $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant c < 1 and $n > n_0$, then $T \in \Theta(f)$.

Starter 1

Jeff Linderoth	IE170:Lecture 10	Jeff Linderoth	IE170:Lecture 10
Heaps		Heaps	
Heap Sort		Heap Sort	

Sorting Algorithms

Simple Sorting Algorithms:

- Merge Sort:
 - Divide the list into smaller pieces. Sort the small pieces. Then merge together sorted lists.
- Insertion Sort:
 - Insert item j into $A[0 \dots j-1]$
- Selection Sort
 - Find j^{th} smallest element and put it in A[j]
- Bubble sort:
 - Make *n* passes through the list. If adjacent elements are out of position, swap them.

Java Collections

You need to know a little about the Java Collections

What is a Set, List, Map, SortedSet. What are the different implementations of each?

- A Set is a Collection that cannot contain duplicate elements.
- Set implementations: HashSet, Treeset, LinkedHashSet
- A List can contain suplicate elements
- A Map is a set of (unique) keys, each key being paired with a value.

More on Hash

- In a hash table the number of keys stored is small relative to the number of possible keys
- A hash table is an array. Given a key k, we don't use k as the index into the array rather, we have a hash function h, and we use h(k) as an index into the array.
- Given a "universe" of keys K.
 - Think of K as all the words in a dictionary, for example
- $h: K \to \{0, 1, \dots m-1\}$, so that h(k) gets mapped to an integer between 0 and m-1 for every $k \in K$
- We say that k hashes to h(k)

More on Data Structures

- A LinkedHashSet is a HashSet that also keeps track of the order in which elements were inserted.
- (Think of laying a linked list on top of the Hash Table)
- A TreeSet stores its elements in a alertred-black tree.
- A red-black trees, is a balanced binary search tree

Heap So

 Hash table is "good" at INSERT(), SEARCH(), DELETE().
 But what if you also want to support (efficiently) MINIMUM(), MAXIMUM()

Jeff LinderothIE170:Lecture 10Jeff LinderothIE170:Lecture 10HeapsHeapsHeap SortHeap Sort

Storing Binary Trees

Array

- The root is stored in position 0.
- The children of the node in position i are stored in positions 2i + 1 and 2i + 2.
- This determines a unique storage location for every node in the tree and makes it easy to find a node's parent and children.
- Using an array, the basic operations can be performed very efficiently.

Binary Search Tree

• A binary search tree is a data structrue that is conceptualized as a binary tree, but has one additional property:

Binary Search Tree Property

If y is in the left subtree of x, then $k(y) \leq k(x)$

Heap Sor

Sorted

Short Is Beautiful

- SEARCH() takes O(h)
- MINIMUM(), MAXIMUM() also take O(h)
- Slightly less obvious is that INSERT(), DELETE() also take O(h)
- Thus we would like to keep out binary search trees "short" (h is small).

• We saw in the lab that the Java Tree Set allowed you to iterate through the list in sorted order. How long does it take to do this?

INORDER-TREE-WALK(x)

- if $x \neq \text{NIL}$ 1
- 2 then INORDER-TREE-WALK $(\ell(x))$
- 3 print k(x)
- 4 INORDER-TREE-WALK(r(x))
 - What is running time of this algorithm?

Jeff Linderoth	IE170:Lecture 10	Jeff Linderoth	IE170:Lecture 10
Heaps		Heaps	
Heap Sort		Heap Sort	
Operations		DELETE	

SUCCESSOR(x)

- How would I know "next biggest" element?
- If right subtree is not empty: MINIMUM(r(x))
- If right subtree is empty: Walk up tree until you make the first "right" move

INSERT(x)

• Just walk down the tree and put it in. It will go "at the bottom"

- If 0 or 1 child, deletion is fairly easy
- If 2 children, deletion is made easier by the following fact:

Binary Search Tree Property

- If a node has 2 children, then
 - its successor will not have a left child
 - its predecessor will not have a right child

Heaps

• Heaps are a bit like binary search trees, however, they enforce a different property

Heap Property: Children are Horrible!

• In a max-heap, the key of the parent node is always at least as big as its children:

 $k(p(x)) \ge k(x) \quad \forall x \neq root$

HEAPIFY(x)

Heapify

- **1** Find largest of k(x), $k(\ell(x))$, k(r(x))
- **2** If k(x) is largest, you are done
- Swap x with largest node, and call HEAPIFY() on the new subtree
- \Rightarrow HEAPIFY a node in $O(\lg n)$

Time for Heap Operations

- Alternatively, HEAPIFY node of height h is O(h)
- Building a heap out of an array of size n takes O(n)

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10 Heaps Heaps Heap Sort Heap Sort

Operations on a Heap

- The node with the highest key is always the root.
- To delete a record
 - Exchange its record with that of a leaf.
 - Delete the leaf.
 - Call heapify().
- To add a record
 - Create a new leaf.
 - Exchange the new record with that of the parent node if it has a higher key.
 - This is like insertion sort just move it up the path...
 - Continue to do this until all nodes have the heap property.
 - Note that we can change the key of a node in a similar fashion.

1	6
the	
00	
÷.	/
~	
\checkmark	

CREATE	O(n)
MAXIMUM	$\Theta(1)$
HEAPIFY	$O(\lg n)$, or $O(h)$
EXTRACT-MAX	$O(\lg n)$
HEAP-INCREASE-KEY	$O(\lg n)$
INSERT	$O(\lg n)$

Heap Sort

Misery Loves Company

- Suppose the list of items to be sorted are in an array of size n
- The heap sort algorithm is as follows.
 - **1** Put the array in heap order as described above.
 - 2 In the i^{th} iteration, exchange the item in position 0 with the item in position n i and call heapify().
- What is the running time? $\Theta(n \lg n)$

'm in a baaaaaaaaaaaaaaaaa mood.

- Quiz on Wednesday
- I will be out of town Tuesday and Wednesday: I am going to drive to Indianapolis and punch Peyton Manning in the nose
- It is closed book, closed notes.
- I will give you a piece of paper with some useful formulae

Jeff Linderoth IE170:Lecture 10

