wox D o
What We've Learned

IE170: Algorithms in Systems Engineering:

© Summation Formulae, Induction and Bounding

Lecture 10

© How to compare functions: o,w, 0,2, 0

© How to count the running time of algorithms

Jeff Linderoth @ How to solve recurrences that occur when we do (3)

Department of Industrial and Systems Engineering © Data Structures:
Lehigh University e Hash

e Binary Search Trees
February 5, 2007 e Heap

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

The World's First Algorithm Summation Formulae

Arithmetic Series

1+2+ - +n

- _n(n+1)
NELCL
k=1

Euclid's Algorithm(m, n)

@ Divide m by n and let r be the remainder.
@ If r =0, then ged(m,n) = n. Sl (O el

@ Otherwise, ged(m,n) = ged(n,r) Z 2 n(n+1)2n+1)

\

@ Often, such formulae can be proved via mathematical

induction

Jeff Linderoth |IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

Bounding Sums by Integrals

n 1
0 -z @ When f is a (monotonically) increasing function, then we can
approximate the sum > f(k) by the integrals:

If |x| < 1, then the series converges to
n n n+1
JRNCLEED S ICEY Mt
m—1 k—m m

o
>t -

k=0

and a decreasing function can be approximated by

xr
[t < Z 7k / e

1 1 1

m

Jeff Linderoth IE170:Lecture 10

Jeff Linderoth IE170:Lecture 10

O, 1, © definitions 0, w Notation
lim £ _ g
O©(g) ={f : 3 c1,c2,m09 > 0 such that foe olg) & et 9(n)
n n n) v
c1g(n) < f(n) < cag(n) Vn 2 no} ;e W(Q)@’geo(f)ﬁnlijgo%z
f(n)
€ @(9)@7}1_{{.10m—

Q(g) = {f | 3 constants ¢,ng > 0s.t. 0 <cg(n) < f(n)¥n > np}

O(g) = {f | 3 constants ¢,ng > 0 s.t. f(n) <cg(n) Vn > np}

°f€@(g)<:>g€@if)

Jeff Linderoth IE170:Lecture 10

Jeff Linderoth IE170:Lecture 10

Remember This! Functions

o fe€O0(g)islike “f <g, @ Polynomials f of degree k are in ©(n").

o feQ(g)islike “f > g @ Exponential functions always grow faster than polynomials
o f€o(g)islike “f <g @ Polylogarithmic functions always grow more slowly than

o fecw(g)islike “f >g,” and polynomials.

e f€O(g)islike "f =g."

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

More Algorithm Stuff

Count 'em Up
@ What is the difference between in-place and out-of-place?
@ How do | prove correctness of an algorithm? Loop invariant
e Base Case: It is true prior to the first iteration of the loop
e Maintenance: If it is true before a loop iteration, it is true
_ _ _ after the loop iteration
o Like the InsertionSort, MergeSort, and Towers of Hanoi e Termination: Hopefully, the invariant will have a useful
examples in class. property when the loop terminates. In this case, it would
“prove” that the array is sorted.

@ You should be able to look at a short code module, and write
down how many times each line is done.

o If the algorithm is recursive, you should be able to look at the
recurrence and compute its running time

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

Analyzing Recurrences The Master Theorem

Most recurrences that we will be interested in are of the form

Deep Thoughts T(n) = {@(1) n=1

To understand recursion, we must first understand recursion al'(n/b) + f(n) n>1

@ The Master Theorem tells us how to analyze recurrences of
this form.

If fe O(nlogb @=¢€), for some constant € > 0, then
T € ©(nlo#v).

If f € O(n'°e®), then T € O(n'°8*1gn).
If fe Q(nlogb ate), for some constant € > 0, and if

af(n/b) < cf(n) for some constant ¢ < 1 and n > ng, then
r el

@ General methods for analyzing recurrences

e Substitution
o Master Theorem

@ When we analyze a recurrence, we may not get or need an
exact answer, only an asymptotic one

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

Sorting Algorithms Java Collections

Simple Sorting Algorithms:

You need to know a little about the Java Collections

@ Merge Sort:

e Divide the list into smaller pieces. Sort the small pieces.
Then merge together sorted lists.

What is a Set, List, Map, SortedSet. What are the different
implementations of each?

@ Insertion Sort:

o Insert item j into A[0...j — 1] @ A Set is a Collection that cannot contain duplicate elements.

- Saleetan Cort @ Set implementations: HashSet, Treeset, LinkedHashSet
e Find jth smallest element and put it in A[j] @ A List can contain suplicate elements

@ Bubble sort: @ A Map is a set of (unique) keys, each key being paired with a
o Make n passes through the list. If adjacent elements are value.

out of position, swap them.

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

More on Data Structures

CORNED BEEF

“ﬁ.,sm"'

More on Hash

@ A LinkedHashSet is a HashSet that also keeps track of the

In a hash table the number of keys stored is small relative to order in which elements were inserted.
the number of possible keys (Think of laying a linked list on top of the Hash Table)

A TreeSet stores its elements in a alertred-black tree.

@ A hash table is an array. Given a key k, we don't use k as the
index into the array — rather, we have a hash function h, and
we use h(k) as an index into the array.

A red-black trees, is a balanced binary search tree

Hash table is “good” at INSERT(), SEARCH(), DELETE().

But what if you also want to support (efficiently) MINIMUM(),
e Think of K as all the words in a dictionary, for example MAXIMUM()

e h: K —{0,1,...m — 1}, so that h(k) gets mapped to an

integer between 0 and m — 1 for every k € K
We say that k£ hashes to h(k)

@ Given a “universe” of keys K.

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

Storing Binary Trees Binary Search Tree

e Th i red in ition 0. . : . .
& root [siferesl [[posiion @ A binary search tree is a data structrue that is conceptualized

@ The children of the node in position 7 are stored in as a binary tree, but has one additional property:

positions 2¢ + 1 and 27 + 2.

@ This determines a unique storage location for every node in
the tree and makes it easy to find a node's parent and

Binary Search Tree Property
children.

If y is in the left subtree of x, then k(y) < k(z)

@ Using an array, the basic operations can be performed very
efficiently.

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

Sorted

@ We saw in the lab that the Java Tree Set allowed you to
iterate through the list in sorted order. How long does it take

Short |s Beautiful

to do this?
o sEARCH() takes O(h) INORDER-TREE-WALK ()
1 if z #£ NIL
@ MINIMUM(), MAXIMUM() also take O(h) 5 then INORDER-TREE-WALK(((z))
o Slightly less obvious is that INSERT(), DELETE() also take 3 print k(z)
O(h) 4 INORDER-TREE-WALK (7 (z))
@ Thus we would like to keep out binary search trees “short” (h
is small).

@ What is running time of this algorithm?

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

Operations DELETE()

SUCCESSOR ()

@ How would | know “next biggest” element? o If 0 or 1 child, deletion is fairly easy

o If right subtree is not empty: MINIMUM(r(z)) e If 2 children, deletion is made easier by the following fact:

o If right subtree is empty: Walk up tree until you make the
first “right” move

Binary Search Tree Property

@ If a node has 2 children, then

e its successor will not have a left child
e its predecessor will not have a right child

@ Just walk down the tree and put it in. It will go “at the
bottom”

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

Heaps Heapify

@ Heaps are a bit like binary search trees, however, they enforce @ Find largest of k(x), k({(z)), k(r(z))
a different property v v

@ If k(x) is largest, you are done

© Swap x with largest node, and call HEAPIFY() on the new
subtree

Heap Property: Children are Horrible!

@ In a max-heap, the key of the parent node is always at least
as big as its children: @ = HEAPIFY a node in O(lgn)

e Alternatively, HEAPIFY node of height h is O(h)
k(p(x)) > k(x) Vx # root o _
@ Building a heap out of an array of size n takes O(n)

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

Operations on a Heap Time for Heap Operations

@ The node with the highest key is always the root.
@ To delete a record

e Exchange its record with that of a leaf. CREATE O(n)
o Delete the leaf. MAXIMUM O(1)
o Call heapify(). HEAPIFY O(lgn), or O(h)
@ To add a record EXTRACT-MAX O(lgn)
o Create a new leaf. HEAP-INCREASE-KEY O(lgn)
o Exchange the new record with that of the parent node if it has INSERT O(lgn)
a higher key.

e This is like insertion sort — just move it up the path...
e Continue to do this until all nodes have the heap property.

o Note that we can change the key of a node in a similar fashion.

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

Heap Sort Misery Loves Company

I'm in a baaaaaaaaaaaaaaaaaad mood.

@ Suppose the list of items to be sorted are in an array of size n o Quiz on Wednesday
@ The heap sort algorithm is as follows.

© Put the array in heap order as described above.
@ In the it" iteration, exchange the item in position 0 with the
item in position n — ¢ and call heapify().

@ | will be out of town Tuesday and Wednesday: | am going
to drive to Indianapolis and punch Peyton Manning in the
nose

: . . : It is cl k, cl :
@ What is the running time? O(nlgn) ® Itiis closed book, closed notes

@ | will give you a piece of paper with some useful formulae

v

Jeff Linderoth IE170:Lecture 10 Jeff Linderoth IE170:Lecture 10

