Taking Stock

|[E170: Algorithms in Systems Engineering:

Lecture 11

@ Easiest Quiz Ever \
Jeff Linderoth
Department of Industrial and Systems Engineering
Lehigh Universit . .
cnigh niversity @ Intro to Dynamic Programming

February 9, 2007

Jeff Linderoth IE170:Lecture 11

Jeff Linderoth IE170:Lecture 11

Dynamic Programming Capital Budgeting

@ A company has $5 million to allocate to its three plants for
possible expansion.

" T _ @ Each plant has submitted different proposals on how it
@ Not really “programming” like Java programming intends to spend the money

@ Not really an algorithm but a technique.

_ — @ Each proposal gives the cost of the expansion ¢ and the total
Dynamic Programming in a Nutshell revenue expected 7.

© Characterize the structure of an optimal solution —
Investment Possibilities

© Recursively define the value of an optimal solution
) o Plant 1 | Plant 2 | Plant 3
© Compute the value of an optimal solution “from the
bott " Proposal C1 (a1 Co 92 C3 T3
SrtLl By 1 0 0|0 00 o0
© Construct optimal solution (if required) 9 1 512 8l1 a
3 2 6 |3 9 - -
R

Jeff Linderoth IE170:Lecture 11

Jeff Linderoth IE170:Lecture 11

More Setup Solution Methods

@ Each plant will only be permitted to enact one of its proposals.

@ The goal is to maximize the firm’s revenues resulting from the

_ -~ @ One way—Enumeration: only 2 x 3 x 4 = 24 possibilities, and
allocation of the $5 million.

many of these don't obey the budget constraint
@ Assume that any of the $5 million we don’t spend is lost

How would you solve this problem?

@ This doesn't scale well.

@ Let's think of another way:

Jeff Linderoth IE170:Lecture 11 Jeff Linderoth IE170:Lecture 11
Building a Solution States
@ Associated with each state is a revenue.
@ Note that to make a decision at stage 3, it is only necessary
@ Let's break the problem into three stages: each stage to know how much was spent on plants 1 and 2, not how it
represents the money allocated to a single plant. was spent.

@ Each stage is divided into states. A state encompasses the Also notice that we will want z3 =5
information required to go from one stage to the next. In this

Let's calculate the revenues associated with each state.
case the states for stages 1, 2, and 3 are

Q {0,1,2,3,4,5}: the amount of money spent on plant 1, o This is easy for stage 1:
represented as x; Available capital 21 | Optimal Proposal | Revenue
@ {0,1,2,3,4,5}: the amount of money spent on plants 1 and 2, 0 1 0
represented as o 1) 5
© {5}, the amount of money spent on plants 1, 2, and 3 (z3) 5 3 6
3 3 6
5 3 6

Jeff Linderoth IE170:Lecture 11 Jeff Linderoth IE170:Lecture 11

Stage 2 Stage 2—All Optimal Policies

@ In this case, we want to find the best solution for both plants Available capital 2 | Optimal Proposal | Revenue for 1 and 2
1 and 2. Just try all proposals. For example: if xo = 4, we 0 1 0
could do 1 1 5
@ Proposal 1, revenue 0, leaves 4 for stage 1, revenue 6, total 6 2 2 8
@ Proposal 2, revenue 8, leaves 2 for stage 1, revenue 6, total 14 3 2 13
© Proposal 3, revenue 9, leaves 1 for stage 1, revenue 5, total 14 4 20r3 14
© Proposal 4, revenue 12, leaves 0 for stage 1, revenue 0, total 12 5 4 17

Jeff Linderoth IE170:Lecture 11 Jeff Linderoth IE170:Lecture 11

Stage 3 Not Recursion Again!?1717!

@ All calculations are done recursively:

@ Stage 2 calculations are based on stage 1, stage 3 only on

stage 2.
@ We only care about z3 = 5.

_ o If you are at a state, all future decisions are made independent
© Proposal 1, revenue 0, leaves 5 for previous stage, revenue 17,

of how you got to the state

total 17 .]
@ Proposal 2, revenue 4, leaves 4 for previous stage, revenue 14, @ This is the principle of optimality, and all of dynamic
total 18 programming rests on this assumption.
Optimal Solution @ 7(kj),c(k;): Revenue and cost for proposal k; at stage j
Proposal 2 at plant 3, Proposal 2 or 3 at plant 2, and proposal 3 o fj(x;) : Revenue of state j in stage j
or 2 (resp.) at plant 1 @ The following two equations hold:
filzr) = max {r(ki)}

% {k1 | c(k1)<z1}
(x;) = max r(k;)+ fi_1(x; — c(k; ':2,3
fJ(]) (k| c(kj)gmj}{ (J) fJ 1(J (])>} J

Jeff Linderoth IE170:Lecture 11 Jeff Linderoth IE170:Lecture 11

Another Way DP for Assembly Line Scheduling

@ y1: amount allocated to stages 1, 2, and 3,

o yo: amount allocated to stages 2 and 3 @ You have been hired to optimize the Yugo Factory in

Prattville, AL
@ y3: amount allocated to stage 3
@ There are two assembly lines. Each line has n different
stations:
f3(y3) = (ks |r§2§)§y3}{r(k3)} 511, 5’127 R ,Sln and 521, 522, cee Son.
fily;) = (ks |T§%jx)§yj} fir1(y; — c(kj))} @ Stations S7; and Sa; perform the same function, put take a

different amount of time: (a1; and as;)

@ Once a Yugo is processed at station .5;;, it can either

@ Sometimes backwards recursion is faster © Stay on the same line (i) with no time penalty

@ Sometimes forward recursion is faster @ Transfer to the other line, but is then delayed by %;;

@ Sometimes it doesn’'t matter '

Jeff Linderoth IE170:Lecture 11 Jeff Linderoth IE170:Lecture 11

Your Mission A Better Way

@ A better way to find an optimal solution is to think about
what properties an optimal solution must have.

Problem:

Given this setup, what stations should be chosen from each line
in order to minimize the time that a car is in the factory? Question

@ What is the fasest way to get through station Sy;?

(*] |fj =1: ail
e Note: We can't (efficiently) just check all possibilities? e If j > 2, then we have two choice for how to get through
@ How many are there? S1j

e Through S; ;1 then to Sy;
e Through 52,]'—1 then to Slj

Jeff Linderoth IE170:Lecture 11 Jeff Linderoth IE170:Lecture 11

Key Obervation Optimal Substructure

@ Suppose fastest way through Sy; is through Sy ;1

@ We must have taken a fastest way to get through S1 ;1 in

this fastest solution through Si;.
&N =1y o Fastest way through Sy is either (fastest of)

o fastest way through S; ;_; then directly through Sy ;
o fastest way through S5 ;_1, transfer lines, then through Sy;

@ Likewise, suppose the fastest way through Sy; is from Sy ;_;. o Fastest way through Sy; is either (fastest of)
We must have used a fastest way through Sz ;1 o fastest way through S5 ;1 then directly through Sy;
o fastest way through S; j_1, transfer lines, then through Sy;

o If there was a faster way through S ;_1, we could have used
it instead to get through Sy; faster.

Optimal Substructure

An optimal solution to the problem (The fastest way through S1;)
contains within it an optimal solution to subproblems: either the

fastest way through Sy ;1 or Sz ;1

Jeff Linderoth IE170:Lecture 11 Jeff Linderoth IE170:Lecture 11

A Recursive Solution Analyze the recursion

@ Suppose that we have entry times e; and exit times x;

o Let fi(j) be the fastest time to get through
SijVi=1,2Vj=1,2,...n
@ Let's compute how many times we reference/compute

() s i
A DP for the Optimal Solution Value JiG) : rid)

e ri(n)=re(n) =1

. o ri(j) =r2(j) =m(j+ 1) +r2(jr) forj=1,...n—1
;7 = min(fn) + 1, fo(n) + 22) @ Problem 15.1.2 — Show that 7;(j) = 27
fil) = er+an
f2(1) = ex+an
fi(G) = min(fi(j — 1) +ayy, f2(5 — 1) +t2,5-1 + a1j)
(J)

f27) = min(fo(j —1) +az;, 17 —1) +t1-1 +az)

Jeff Linderoth IE170:Lecture 11 Jeff Linderoth IE170:Lecture 11

Bottom's Up

@ The number of references to f;(j) is so large only because we
compute f* in a top down fashion

@ Really f;(j) only depends on times from its immediate
predecessor stations f1(j — 1) and fa(j — 1)

@ In this case, we should compute f;(j) in increasing order of j

o |t essentially amounts to “building a table” of the value
functions f;(j) foreachi=1,2and j=1,2,...n

e If you want to know the optimal solution, you need to “keep
track” as you go.

@ /;(j): Line number whose j — 1 station was used to find the
fastest way through i

Jeff Linderoth IE170:Lecture 11

