
IE170: Algorithms in Systems Engineering:
Lecture 11

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

February 9, 2007

Jeff Linderoth IE170:Lecture 11

Taking Stock

Last Time

Easiest Quiz Ever

This Time

Intro to Dynamic Programming

Jeff Linderoth IE170:Lecture 11

Dynamic Programming

Not really an algorithm but a technique.

Not really “programming” like Java programming

Dynamic Programming in a Nutshell

1 Characterize the structure of an optimal solution

2 Recursively define the value of an optimal solution

3 Compute the value of an optimal solution “from the
bottum up”

4 Construct optimal solution (if required)

Jeff Linderoth IE170:Lecture 11

Capital Budgeting

A company has $5 million to allocate to its three plants for
possible expansion.

Each plant has submitted different proposals on how it
intends to spend the money.

Each proposal gives the cost of the expansion c and the total
revenue expected r.

Investment Possibilities

Plant 1 Plant 2 Plant 3
Proposal c1 r1 c2 r2 c3 r3

1 0 0 0 0 0 0
2 1 5 2 8 1 4
3 2 6 3 9 - -
4 - - 4 12 - -

Jeff Linderoth IE170:Lecture 11

More Setup

Each plant will only be permitted to enact one of its proposals.

The goal is to maximize the firm’s revenues resulting from the
allocation of the $5 million.

Assume that any of the $5 million we don’t spend is lost

Solve It!

How would you solve this problem?

Jeff Linderoth IE170:Lecture 11

Solution Methods

One way—Enumeration: only 2× 3× 4 = 24 possibilities, and
many of these don’t obey the budget constraint

This doesn’t scale well.

Let’s think of another way:

Jeff Linderoth IE170:Lecture 11

Building a Solution

Let’s break the problem into three stages: each stage
represents the money allocated to a single plant.

Each stage is divided into states. A state encompasses the
information required to go from one stage to the next. In this
case the states for stages 1, 2, and 3 are

1 {0, 1, 2, 3, 4, 5}: the amount of money spent on plant 1,
represented as x1

2 {0, 1, 2, 3, 4, 5}: the amount of money spent on plants 1 and 2,
represented as x2

3 {5}, the amount of money spent on plants 1, 2, and 3 (x3)

Jeff Linderoth IE170:Lecture 11

States

Associated with each state is a revenue.

Note that to make a decision at stage 3, it is only necessary
to know how much was spent on plants 1 and 2, not how it
was spent.

Also notice that we will want x3 = 5
Let’s calculate the revenues associated with each state.

This is easy for stage 1:

Available capital x1 Optimal Proposal Revenue

0 1 0
1 2 5
2 3 6
3 3 6
4 3 6
5 3 6

Jeff Linderoth IE170:Lecture 11

Stage 2

In this case, we want to find the best solution for both plants
1 and 2. Just try all proposals. For example: if x2 = 4, we
could do

1 Proposal 1, revenue 0, leaves 4 for stage 1, revenue 6, total 6
2 Proposal 2, revenue 8, leaves 2 for stage 1, revenue 6, total 14
3 Proposal 3, revenue 9, leaves 1 for stage 1, revenue 5, total 14
4 Proposal 4, revenue 12, leaves 0 for stage 1, revenue 0, total 12

Jeff Linderoth IE170:Lecture 11

Stage 2—All Optimal Policies

Available capital x2 Optimal Proposal Revenue for 1 and 2

0 1 0
1 1 5
2 2 8
3 2 13
4 2 or 3 14
5 4 17

Jeff Linderoth IE170:Lecture 11

Stage 3

We only care about x3 = 5.
1 Proposal 1, revenue 0, leaves 5 for previous stage, revenue 17,

total 17
2 Proposal 2, revenue 4, leaves 4 for previous stage, revenue 14,

total 18

Optimal Solution

Proposal 2 at plant 3, Proposal 2 or 3 at plant 2, and proposal 3
or 2 (resp.) at plant 1

Jeff Linderoth IE170:Lecture 11

Not Recursion Again!?!?!?!

All calculations are done recursively:

Stage 2 calculations are based on stage 1, stage 3 only on
stage 2.

If you are at a state, all future decisions are made independent
of how you got to the state

This is the principle of optimality, and all of dynamic
programming rests on this assumption.

r(kj), c(kj): Revenue and cost for proposal kj at stage j

fj(xj) : Revenue of state j in stage j

The following two equations hold:

f1(x1) = max
{k1 | c(k1)≤x1}

{r(k1)}

fj(xj) = max
{kj | c(kj)≤xj}

{r(kj) + fj−1(xj − c(kj))} j = 2, 3

Jeff Linderoth IE170:Lecture 11

Another Way

y1: amount allocated to stages 1, 2, and 3,

y2: amount allocated to stages 2 and 3,

y3: amount allocated to stage 3

f3(y3) = max
{k3 | c(k3)≤y3}

{r(k3)}

fj(yj) = max
{k3 | c(kj)≤yj}

fj+1(yj − c(kj))}

Sometimes backwards recursion is faster

Sometimes forward recursion is faster

Sometimes it doesn’t matter

Jeff Linderoth IE170:Lecture 11

DP for Assembly Line Scheduling

You have been hired to optimize the Yugo Factory in
Prattville, AL

There are two assembly lines. Each line has n different
stations:

S11, S12, . . . , S1n and S21, S22, . . . , S2n.

Stations S1j and S2j perform the same function, put take a
different amount of time: (a1j and a2j)

Once a Yugo is processed at station Sij , it can either
1 Stay on the same line (i) with no time penalty
2 Transfer to the other line, but is then delayed by tij

Jeff Linderoth IE170:Lecture 11

Your Mission

Problem:

Given this setup, what stations should be chosen from each line
in order to minimize the time that a car is in the factory?

Note: We can’t (efficiently) just check all possibilities?

How many are there?

Jeff Linderoth IE170:Lecture 11

A Better Way

A better way to find an optimal solution is to think about
what properties an optimal solution must have.

Question

What is the fasest way to get through station S1j?

If j = 1 : a11

If j ≥ 2, then we have two choice for how to get through
S1j

Through S1,j−1 then to S1j

Through S2,j−1 then to S1j

Jeff Linderoth IE170:Lecture 11

Key Obervation

Suppose fastest way through S1j is through S1,j−1

We must have taken a fastest way to get through S1,j−1 in
this fastest solution through S1j .

If there was a faster way through S1,j−1, we could have used
it instead to get through S1j faster.

Likewise, suppose the fastest way through S1j is from S2,j−1.
We must have used a fastest way through S2,j−1

Optimal Substructure

An optimal solution to the problem (The fastest way through S1j)
contains within it an optimal solution to subproblems: either the
fastest way through S1,j−1 or S2,j−1

Jeff Linderoth IE170:Lecture 11

Optimal Substructure

Fastest way through S1j is either (fastest of)

fastest way through S1,j−1 then directly through S1j

fastest way through S2,j−1, transfer lines, then through S1j

Fastest way through S2j is either (fastest of)

fastest way through S2,j−1 then directly through S2j

fastest way through S1,j−1, transfer lines, then through S2j

Jeff Linderoth IE170:Lecture 11

A Recursive Solution

Suppose that we have entry times ei and exit times xi

Let fi(j) be the fastest time to get through
Sij ∀i = 1, 2 ∀j = 1, 2, . . . n

A DP for the Optimal Solution Value

f∗ = min(f1(n) + x1, f2(n) + x2)
f1(1) = e1 + a11

f2(1) = e2 + a21

f1(j) = min(f1(j − 1) + a1j , f2(j − 1) + t2,j−1 + a1j)
f2(j) = min(f2(j − 1) + a2j , f1(j − 1) + t1,j−1 + a2j)

Jeff Linderoth IE170:Lecture 11

Analyze the recursion

Let’s compute how many times we reference/compute
fi(j) : ri(j)
r1(n) = r2(n) = 1
r1(j) = r2(j) = r1(j + 1) + r2(j1) for j = 1, . . . n− 1
Problem 15.1.2 – Show that ri(j) = 2n−j

Jeff Linderoth IE170:Lecture 11

Bottom’s Up

The number of references to fi(j) is so large only because we
compute f∗ in a top down fashion

Really fi(j) only depends on times from its immediate
predecessor stations f1(j − 1) and f2(j − 1)
In this case, we should compute fi(j) in increasing order of j

It essentially amounts to “building a table” of the value
functions fi(j) for each i = 1, 2 and j = 1, 2, . . . n

If you want to know the optimal solution, you need to “keep
track” as you go.

`i(j): Line number whose j − 1 station was used to find the
fastest way through i

Jeff Linderoth IE170:Lecture 11

