IE170: Algorithms in Systems Engineering: Lecture 11

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

February 9, 2007

_ast Time

• Easiest Quiz Ever

This Time

• Intro to Dynamic Programming

Jeff Linderoth IE170:Lecture 11

Dynamic Programming

- Not really an algorithm but a technique.
- Not really "programming" like Java programming

Dynamic Programming in a Nutshell

- Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Occupie the value of an optimal solution "from the bottum up"
- Construct optimal solution (if required)

Jeff Linderoth IE170:Lecture 11

Capital Budgeting

- A company has \$5 million to allocate to its three plants for possible expansion.
- Each plant has submitted different proposals on how it intends to spend the money.
- Each proposal gives the cost of the expansion c and the total revenue expected r.

Investment Possibilities

	Plant 1		Plant 2		Plant 3	
Proposal	c_1	r_1	c_2	r_2	c_3	r_3
1	0	0	0	0	0	0
2	1	5	2	8	1	4
3	2	6	3	9	-	-
4	-	-	4	12	-	-

More Setup

Solution Methods

- Each plant will only be permitted to enact one of its proposals.
- The goal is to maximize the firm's revenues resulting from the allocation of the \$5 million.
- Assume that any of the \$5 million we don't spend is lost

Solve It! How would you solve this problem?

• One way—Enumeration: only $2 \times 3 \times 4 = 24$ possibilities, and many of these don't obey the budget constraint

- This doesn't scale well.
- Let's think of another way:

Jeff Linderoth IE170:Lecture 11

Building a Solution

- Let's break the problem into three stages: each stage represents the money allocated to a single plant.
- Each stage is divided into states. A state encompasses the information required to go from one stage to the next. In this case the states for stages 1, 2, and 3 are
 - (0, 1, 2, 3, 4, 5}: the amount of money spent on plant 1, represented as x_1
 - 2 $\{0, 1, 2, 3, 4, 5\}$: the amount of money spent on plants 1 and 2, represented as x_2
 - ${f 0}$ {5}, the amount of money spent on plants 1, 2, and 3 (x_3)

Jeff Linderoth IE170:Lecture 11

States

- Associated with each state is a revenue.
- Note that to make a decision at stage 3, it is only necessary to know how much was spent on plants 1 and 2, not how it was spent.
- Also notice that we will want $x_3 = 5$
- Let's calculate the revenues associated with each state.
- This is easy for stage 1:

Available capital x_1	Optimal Proposal	Revenue	
0	1	0	
1	2	5	
2	3	6	
3	3	6	
4	3	6	
5	3	6	

Stage 2

Stage 2—All Optimal Policies

- In this case, we want to find the best solution for both plants 1 and 2. Just try all proposals. For example: if $x_2 = 4$, we could do
 - Proposal 1, revenue 0, leaves 4 for stage 1, revenue 6, total 6
 - Proposal 2, revenue 8, leaves 2 for stage 1, revenue 6, total 14
 - Solution Proposal 3, revenue 9, leaves 1 for stage 1, revenue 5, total 14
 - Proposal 4, revenue 12, leaves 0 for stage 1, revenue 0, total 12

IE170:Lecture 11

Available capital x_2	Optimal Proposal	Revenue for 1 and 2
0	1	0
1	1	5
2	2	8
3	2	13
4	2 or 3	14
5	4	17

Stage 3

- We only care about $x_3 = 5$.
 - Proposal 1, revenue 0, leaves 5 for previous stage, revenue 17, total 17
 - Proposal 2, revenue 4, leaves 4 for previous stage, revenue 14, total 18

Optimal Solution

Proposal 2 at plant 3, Proposal 2 or 3 at plant 2, and proposal 3 or 2 (resp.) at plant 1

Jeff Linderoth

Jeff Linderoth IE170:Lecture 11

Not Recursion Again !?!?!?!

- All calculations are done recursively:
- Stage 2 calculations are based on stage 1, stage 3 only on stage 2.
- If you are at a state, all future decisions are made independent of how you got to the state
- This is the principle of optimality, and all of dynamic programming rests on this assumption.
- $r(k_j), c(k_j)$: Revenue and cost for proposal k_j at stage j
- $f_j(x_j)$: Revenue of state j in stage j
- The following two equations hold:

 $f_1(x_1) = \max_{\{k_1 \mid c(k_1) \le x_1\}} \{r(k_1)\}$ $f_j(x_j) = \max_{\{k_j \mid c(k_j) \le x_j\}} \{r(k_j) + f_{j-1}(x_j - c(k_j))\} \ j = 2,3$

Another Way

- y_1 : amount allocated to stages 1, 2, and 3,
- y_2 : amount allocated to stages 2 and 3,
- y_3 : amount allocated to stage 3

$$\begin{array}{lcl} f_3(y_3) & = & \max_{\{k_3 \mid c(k_3) \le y_3\}} \{r(k_3)\} \\ f_j(y_j) & = & \max_{\{k_3 \mid c(k_j) \le y_j\}} f_{j+1}(y_j - c(k_j))\} \end{array}$$

• Sometimes backwards recursion is faster

Jeff Linderoth

IE170:Lecture 11

- Sometimes forward recursion is faster
- Sometimes it doesn't matter

DP for Assembly Line Scheduling

- You have been hired to optimize the Yugo Factory in Prattville, AL
- There are two assembly lines. Each line has *n* different stations:

 $S_{11}, S_{12}, \ldots, S_{1n}$ and $S_{21}, S_{22}, \ldots, S_{2n}$.

- Stations S_{1j} and S_{2j} perform the same function, put take a different amount of time: $(a_{1j} \text{ and } a_{2j})$
- Once a Yugo is processed at station S_{ij} , it can either
 - Stay on the same line (i) with no time penalty
 - **2** Transfer to the other line, but is then delayed by t_{ij}

Jeff Linderoth IE170:Lecture 11

A Better Way

• A better way to find an optimal solution is to think about what properties an optimal solution must have.

Question

- What is the fasest way to get through station S_{1j} ?
- If $j = 1 : a_{11}$
- If $j\geq 2,$ then we have two choice for how to get through S_{1j}
 - Through $S_{1,j-1}$ then to S_{1j}
 - Through $S_{2,j-1}$ then to S_{1j}

Your Mission

Given this setup, what stations should be chosen from each line in order to minimize the time that a car is in the factory?

- Note: We can't (efficiently) just check all possibilities?
- How many are there?

Key Obervation

- Suppose fastest way through S_{1j} is through $S_{1,j-1}$
- We must have taken a fastest way to get through $S_{1,j-1}$ in this fastest solution through S_{1j} .
- If there was a faster way through $S_{1,j-1}$, we could have used it instead to get through S_{1j} faster.
- Likewise, suppose the fastest way through S_{1j} is from $S_{2,j-1}$. We must have used a fastest way through $S_{2,j-1}$

Optimal Substructure

An optimal solution to the problem (The fastest way through S_{1j}) contains within it an optimal solution to subproblems: either the fastest way through $S_{1,j-1}$ or $S_{2,j-1}$

IE170:Lecture 11

Optimal Substructure

- Fastest way through S_{1j} is either (fastest of)
 - fastest way through $S_{1,j-1}$ then directly through S_{1j}
 - ullet fastest way through $S_{2,j-1},$ transfer lines, then through S_{1j}
- Fastest way through S_{2j} is either (fastest of)
 - fastest way through $S_{2,j-1}$ then directly through S_{2j}
 - fastest way through $S_{1,j-1}$, transfer lines, then through S_{2j}

Jeff Linderoth IE170:Lecture 11

A Recursive Solution

- Suppose that we have entry times e_i and exit times x_i
- Let $f_i(j)$ be the fastest time to get through $S_{ij} \ \forall i = 1, 2 \ \forall j = 1, 2, \dots n$

Jeff Linderoth

A DP for the Optimal Solution Value

$$f^* = \min(f_1(n) + x_1, f_2(n) + x_2)$$

$$f_1(1) = e_1 + a_{11}$$

$$f_2(1) = e_2 + a_{21}$$

$$f_1(j) = \min(f_1(j-1) + a_{1j}, f_2(j-1) + t_{2,j-1} + a_{1j})$$

$$f_2(j) = \min(f_2(j-1) + a_{2j}, f_1(j-1) + t_{1,j-1} + a_{2j})$$

Analyze the recursion

- Let's compute how many times we reference/compute $f_i(j):r_i(j)$
- $r_1(n) = r_2(n) = 1$
- $r_1(j) = r_2(j) = r_1(j+1) + r_2(j_1)$ for $j = 1, \dots n-1$
- Problem 15.1.2 Show that $r_i(j) = 2^{n-j}$

Bottom's Up

- The number of references to $f_i(j)$ is so large only because we compute f^* in a top down fashion
- Really $f_i(j)$ only depends on times from its immediate predecessor stations $f_1(j-1)$ and $f_2(j-1)$
- $\bullet\,$ In this case, we should compute $f_i(j)$ in increasing order of j
- It essentially amounts to "building a table" of the value functions $f_i(j)$ for each i = 1, 2 and j = 1, 2, ... n
- If you want to know the optimal solution, you need to "keep track" as you go.
- $\ell_i(j)$: Line number whose j-1 station was used to find the fastest way through i

Jeff Linderoth IE170:Lecture 11