• Intro to Dynamic Programming: Capital Budgeting

Taking Stock

.ast Time

IE170: Algorithms in Systems Engineering: Lecture 12

Jeff Linderoth	IE170:Lecture 12	Jeff Linderoth	IE170:Lecture 12
Capital Budgeting		Capital Budgeting	
Assembly Line Balancing		Assembly Line Balancing	

Dynamic Programming

- Not really an algorithm but a technique.
- Not really "programming" like Java programming

Dynamic Programming in a Nutshell

- Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Ompute the value of an optimal solution "from the bottum up"
- Construct optimal solution (if required)

DP for Assembly Line Scheduling

- You have been hired to optimize the Yugo Factory in Prattville, AL
- There are two assembly lines. Each line has *n* different stations:

 $S_{11}, S_{12}, \ldots, S_{1n}$ and $S_{21}, S_{22}, \ldots, S_{2n}$.

- Stations S_{1j} and S_{2j} perform the same function, put take a different amount of time: $(a_{1j} \text{ and } a_{2j})$
- Once a Yugo is processed at station S_{ij} , it can either
 - **①** Stay on the same line (*i*) with no time penalty
 - **2** Transfer to the other line, but is then delayed by t_{ij}

A Better Way

Problem:

Given this setup, what stations should be chosen from each line in order to minimize the time that a car is in the factory?

- Note: We can't (efficiently) just check all possibilities?
- How many are there?

• A better way to find an optimal solution is to think about what properties an optimal solution must have.

Question

- What is the fasest way to get through station S_{1j} ?
- If $j = 1 : a_{11}$
- $\bullet~$ If $j\geq 2,$ then we have two choice for how to get through S_{1j}
 - Through $S_{1,j-1}$ then to S_{1j}
 - Through $S_{2,j-1}$ then to S_{1j}

Jeff Linderoth IE170:Lecture 12 Capital Budgeting Assembly Line Balancing

Key Obervation

• Suppose fastest way through S_{1j} is through $S_{1,j-1}$

Jeff Linderoth

Capital Budgeting Assembly Line Balancing

• We must have taken a fastest way to get through $S_{1,j-1}$ in this fastest solution through S_{1j} .

IE170:Lecture 12

- If there was a faster way through $S_{1,j-1}$, we could have used it instead to get through S_{1j} faster.
- Likewise, suppose the fastest way through S_{1j} is from $S_{2,j-1}$. We must have used a fastest way through $S_{2,j-1}$

Optimal Substructure

An optimal solution to the problem (The fastest way through S_{1j}) contains within it an optimal solution to subproblems: either the fastest way through $S_{1,j-1}$ or $S_{2,j-1}$

Optimal Substructure

- Fastest way through S_{1j} is either (fastest of)
 - fastest way through $S_{1,j-1}$ then directly through S_{1j}
 - \bullet fastest way through $S_{2,j-1},$ transfer lines, then through S_{1j}
- Fastest way through S_{2j} is either (fastest of)
 - $\bullet\,$ fastest way through $S_{2,j-1}$ then directly through S_{2j}
 - fastest way through $S_{1,j-1}$, transfer lines, then through S_{2j}

Capital Budgeting

A Recursive Solution

- Suppose that we have entry times e_i and exit times x_i
- Let $f_i(j)$ be the fastest time to get through $S_{ij} \ \forall i = 1, 2 \ \forall j = 1, 2, \dots n$

A DP for the Optimal Solution Value

f^*	=	$\min(f_1(n) + x_1, f_2(n) + x_2)$
$f_1(1)$	=	$e_1 + a_{11}$
$f_2(1)$	=	$e_2 + a_{21}$
$f_1(j)$	=	$\min(f_1(j-1) + a_{1j}, f_2(j-1) + t_{2,j-1} + a_{1j})$
$f_2(j)$	=	$\min(f_2(j-1) + a_{2j}, f_1(j-1) + t_{1,j-1} + a_{2j})$

Capital Budgeting Assembly Line Balancing

Analyze the recursion

- Let's compute how many times we reference/compute $f_i(j): r_i(j)$
- $r_1(n) = r_2(n) = 1$
- $r_1(j) = r_2(j) = r_1(j+1) + r_2(j_1)$ for $j = 1, \dots n-1$
- Problem 15.1.2 Show that $r_i(j) = 2^{n-j}$

Jeff Linderoth	IE170:Lecture 12	Jeff Linderoth	IE170:Lecture 12
Capital Budgeting		Capital Budgeting	
Assembly Line Balancing		Assembly Line Balancing	

Bottom's Up

- The number of references to $f_i(j)$ is so large only because we compute f^* in a top down fashion
- Really $f_i(j)$ only depends on times from its immediate predecessor stations $f_1(j-1)$ and $f_2(j-1)$
- In this case, we should compute $f_i(j)$ in increasing order of j
- It essentially amounts to "building a table" of the value functions $f_i(j)$ for each i = 1, 2 and j = 1, 2, ... n
- This "keep track instead of recomputing" is sometimes called memoization

Knowing the Solution

- If you want to know the optimal solution, you also need to "keep track" as you go.
- $\ell_i(j)$: Line number whose j-1 station was used to find the fastest way through i
- Let's do our example...

What Makes a Dynamic Program?

- The problem can be divided into stages with a decision required at each stage.
 - In the capital budgeting problem the stages were the allocations to a single plant. The decision was how much to spend.
 - In the assembly-line balance problem, the stages were the stations, and the decision was which line to go to next
- 2 Each stage has a number of states associated with it.
 - The states for the capital budgeting problem corresponded to the amount spent at that point in time. (Or equivelently, how much money was remaining)
 - The state in the assembly-line balance problem was the line the car currently was on.

What Makes a Dynamic Program? (cont.)

- The decision at one stage transforms one state into a state in the next stage.
 - In capital budgeting: the decision of how much to spend gave a total amount spent for the next stage.
 - In Assembly line balance: The decision of where to go next defined where you arrived in the next stage.
- Given the current state, the optimal decision for each of the remaining states does not depend on the previous states or decisions.
 - In the budgeting problem, it is not necessary to know how the money was spent in previous stages, only how much was spent.
 - In the assembly line problem, it was not necessary to know how you got to a node, only that you did.

Jeff Linderoth	IE170:Lecture 12	Jeff Linderoth	IE170:Lecture 12
Capital Budgeting		Capital Budgeting	
Assembly Line Balancing		Assembly Line Balancing	

What Makes a Dynamic Program? (cont.)

- There exists a recursive relationship that identifies the optimal decision for stage j, given that stage j+1 has already been solved.
 - These were the recursions we wrote for each problem

What's the Hard Part!?

The big skill in dynamic programming, and the art involved, is to take a problem and determine stages and states so that all of the above hold. (You will be asked to think about this a bit in lab today). If you can, then the recursive relationship makes finding the values relatively easy.

Uncapacitated Lot Sizing

- Lot sizing is the canonical production planning problem
- Given a planning horizon $\mathcal{T} = \{1, 2, \dots, T\}$
- You must meet given demands d_t for $t \in \mathcal{T}$
- You can meet the demand from a combination of production (x_t) and inventory (s_{t-1})
- Production cost:

$$c(x_t) = \begin{cases} K + cx_t & \text{if } x_t > 0\\ 0 & \text{if } x_t = 0 \end{cases}$$

• Inventory cost: $I(s_t) = h_t s_t$

Capital Budgeting Assembly Line Balancing

Let's Solve an Example

- What should our stages be?
- Hint: Typically stages have type "from beginning until now" (like S_{ij}) or from "now until end" (like in capital budgeting)

Stage

Let $f_t(s)$: be the minimum cost of meeting demands from $t, t + 1, \ldots T$ if s units are in inventory at the beginning of period t

• K = 2, c = 1

Busy Going Backwards		
• $f_3(0) = 2 + 2(1) = 4$		
• $f_3(1) = 2 + 1(1) = 3$		
• $f_3(2) = 0$		

Jeff Linderoth Capital Budgeting Assembly Line Balancing	IE170:Lecture 12	Jeff Linderoth Capital Budgeting Assembly Line Balancing	IE170:Lecture 12
In General		Oh Dear!	
A General Recursive Relationship		• What if $K = 250 \ d = [220 \ d]$	280,260,140,270 $a = 2, b = 1$
$f_t(s) = \min_{x \in 0, 1, 2, \dots} \{c_t(x) + h_t(s + t_t)\}$	$(x - d_t) + f_{t+1}(s + x - d_t)\}.$	 What if K = 250, a = [220, a] This might be a problem, as every possible amount between the second seco	you need to consider producing en 0 and 1270

- Let's do a couple by hand.
- This gets tedious so let's code it up...

• Instead, as is often the case in dynamic programming, we look for structural properties of an optimal solution that will make the algorithm more efficient.

Mmmmmmmmm. More Lemmas.

I Love Lemmas

Lemma (Fact) 1

Let x^* be an optimal policy (production schedule). If $x^*_t > 0$, then $x^*_t = \sum_{j=0}^{T-t} d_{t+j}$ for some $j \in \{0, 1, \dots, T-t\}$

Why? Oh Why?

If Lemma 1 was false, then there would be some period t and some subsequent period t + j such that production x_t^* only partially satisfied the demand in t+j. Say this is a quantity 0 . If you produce <math>p less at t, you still meet demands up to j-1, save holding costs, and incur no additional setup cost (since production was going to have to happen in j anyway). Thus, x_t^* couldn't have been optimal

Lemma (Factoid) 2

Let x^* be an optimal policy (production schedule). If $x_t^* > 0$ then $s_{t-1} < d_t$.

Why? Oh Why?

It's a similar argument. If Lemma 2 was false, then there is some t such that $x_t^* > 0$ and $s_{t-1} \ge d_t$. If you defer production by one period, you will save holding costs, and incur no additional charges, so x_t^* couldn't be optimal.

Jeff LinderothIE170:Lecture 12Jeff LinderothIE170:Lecture 12Capital Budgeting
Assembly Line BalancingCapital Budgeting
Assembly Line BalancingCapital Budgeting
Balancing

How Does This Help?

- For simplicity, assume that $s_0 = 0$ (we can fix this up later...)
- These results *really* helps us cut down on the size of the state space. In fact, we need only (recursively) compute the minimum cost during periods $t, t + 1, \ldots T$ as

$$f_t(0) = \min_{j \in \{0,1,\dots,T-t\}} \{ (c_{tj} + f_{t+k+1}(0)) \}$$

 Where c_{tj} is the cost incurred for periods t, t + 1,...t + j if production during t exactly meets demands for t, t + 1,...t + j:

$$c_{tj} = K + c \left(\sum_{k=0}^{j} d_{t+k}\right) + h \left(\sum_{k=1}^{j} k d_{t+k}\right).$$

- No Class on Friday 2/16 or Monday 2/19
- Today's lab and homework due on 2/26

