
Capital Budgeting
Assembly Line Balancing

IE170: Algorithms in Systems Engineering:
Lecture 12

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

February 12, 2007

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Taking Stock

Last Time

Intro to Dynamic Programming: Capital Budgeting

This Time: More DP

Assembly Line Balancing

Lot Sizing

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Dynamic Programming

Not really an algorithm but a technique.

Not really “programming” like Java programming

Dynamic Programming in a Nutshell

1 Characterize the structure of an optimal solution

2 Recursively define the value of an optimal solution

3 Compute the value of an optimal solution “from the
bottum up”

4 Construct optimal solution (if required)

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

DP for Assembly Line Scheduling

You have been hired to optimize the Yugo Factory in
Prattville, AL

There are two assembly lines. Each line has n different
stations:

S11, S12, . . . , S1n and S21, S22, . . . , S2n.

Stations S1j and S2j perform the same function, put take a
different amount of time: (a1j and a2j)

Once a Yugo is processed at station Sij , it can either
1 Stay on the same line (i) with no time penalty
2 Transfer to the other line, but is then delayed by tij

Jeff Linderoth IE170:Lecture 12



Capital Budgeting
Assembly Line Balancing

Your Mission

Problem:

Given this setup, what stations should be chosen from each line
in order to minimize the time that a car is in the factory?

Note: We can’t (efficiently) just check all possibilities?

How many are there?

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

A Better Way

A better way to find an optimal solution is to think about
what properties an optimal solution must have.

Question

What is the fasest way to get through station S1j?

If j = 1 : a11

If j ≥ 2, then we have two choice for how to get through
S1j

Through S1,j−1 then to S1j

Through S2,j−1 then to S1j

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Key Obervation

Suppose fastest way through S1j is through S1,j−1

We must have taken a fastest way to get through S1,j−1 in
this fastest solution through S1j .

If there was a faster way through S1,j−1, we could have used
it instead to get through S1j faster.

Likewise, suppose the fastest way through S1j is from S2,j−1.
We must have used a fastest way through S2,j−1

Optimal Substructure

An optimal solution to the problem (The fastest way through S1j)
contains within it an optimal solution to subproblems: either the
fastest way through S1,j−1 or S2,j−1

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Optimal Substructure

Fastest way through S1j is either (fastest of)

fastest way through S1,j−1 then directly through S1j

fastest way through S2,j−1, transfer lines, then through S1j

Fastest way through S2j is either (fastest of)

fastest way through S2,j−1 then directly through S2j

fastest way through S1,j−1, transfer lines, then through S2j

Jeff Linderoth IE170:Lecture 12



Capital Budgeting
Assembly Line Balancing

A Recursive Solution

Suppose that we have entry times ei and exit times xi

Let fi(j) be the fastest time to get through
Sij ∀i = 1, 2 ∀j = 1, 2, . . . n

A DP for the Optimal Solution Value

f∗ = min(f1(n) + x1, f2(n) + x2)
f1(1) = e1 + a11

f2(1) = e2 + a21

f1(j) = min(f1(j − 1) + a1j , f2(j − 1) + t2,j−1 + a1j)
f2(j) = min(f2(j − 1) + a2j , f1(j − 1) + t1,j−1 + a2j)

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Analyze the recursion

Let’s compute how many times we reference/compute
fi(j) : ri(j)
r1(n) = r2(n) = 1
r1(j) = r2(j) = r1(j + 1) + r2(j1) for j = 1, . . . n− 1
Problem 15.1.2 – Show that ri(j) = 2n−j

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Bottom’s Up

The number of references to fi(j) is so large only because we
compute f∗ in a top down fashion

Really fi(j) only depends on times from its immediate
predecessor stations f1(j − 1) and f2(j − 1)
In this case, we should compute fi(j) in increasing order of j

It essentially amounts to “building a table” of the value
functions fi(j) for each i = 1, 2 and j = 1, 2, . . . n

This “keep track instead of recomputing” is sometimes called
memoization

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Knowing the Solution

If you want to know the optimal solution, you also need to
“keep track” as you go.

`i(j): Line number whose j − 1 station was used to find the
fastest way through i

Let’s do our example...

Jeff Linderoth IE170:Lecture 12



Capital Budgeting
Assembly Line Balancing

What Makes a Dynamic Program?

1 The problem can be divided into stages with a decision
required at each stage.

In the capital budgeting problem the stages were the
allocations to a single plant. The decision was how much to
spend.
In the assembly-line balance problem, the stages were the
stations, and the decision was which line to go to next

2 Each stage has a number of states associated with it.

The states for the capital budgeting problem corresponded to
the amount spent at that point in time. (Or equivelently, how
much money was remaining)
The state in the assembly-line balance problem was the line
the car currently was on.

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

What Makes a Dynamic Program? (cont.)

1 The decision at one stage transforms one state into a state in
the next stage.

In capital budgeting: the decision of how much to spend gave
a total amount spent for the next stage.
In Assembly line balance:The decision of where to go next
defined where you arrived in the next stage.

2 Given the current state, the optimal decision for each of the
remaining states does not depend on the previous states or
decisions.

In the budgeting problem, it is not necessary to know how the
money was spent in previous stages, only how much was spent.
In the assembly line problem, it was not necessary to know
how you got to a node, only that you did.

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

What Makes a Dynamic Program? (cont.)

1 There exists a recursive relationship that identifies the optimal
decision for stage j, given that stage j+1 has already been
solved.

These were the recursions we wrote for each problem

What’s the Hard Part!?

The big skill in dynamic programming, and the art involved, is to
take a problem and determine stages and states so that all of the
above hold. (You will be asked to think about this a bit in lab
today). If you can, then the recursive relationship makes finding
the values relatively easy.

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Uncapacitated Lot Sizing

Lot sizing is the canonical production planning problem

Given a planning horizon T = {1, 2, . . . , T}
You must meet given demands dt for t ∈ T
You can meet the demand from a combination of production
(xt) and inventory (st−1)

Production cost:

c(xt) =
{

K + cxt if xt > 0
0 if xt = 0

Inventory cost: I(st) = htst

Jeff Linderoth IE170:Lecture 12



Capital Budgeting
Assembly Line Balancing

Let’s Solve it with DP

What should our stages be?

Hint: Typically stages have type “from beginning until now”
(like Sij) or from “now until end” (like in capital budgeting)

Stage

Let ft(s): be the minimum cost of meeting demands from t, t +
1, . . . T if s units are in inventory at the beginning of period t

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Let’s Solve an Example

T = 3
d = [2, 1, 2]
h = [1, 1, 0]
K = 2, c = 1

Busy Going Backwards

f3(0) = 2 + 2(1) = 4
f3(1) = 2 + 1(1) = 3
f3(2) = 0

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

In General

A General Recursive Relationship

ft(s) = min
x∈0,1,2,...

{ct(x) + ht(s + x− dt) + ft+1(s + x− dt)}.

Let’s do a couple by hand.

This gets tedious – so let’s code it up...

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Oh Dear!

What if K = 250, d = [220, 280, 360, 140, 270], ct = 2, ht = 1
This might be a problem, as you need to consider producing
every possible amount between 0 and 1270

Instead, as is often the case in dynamic programming, we look
for structural properties of an optimal solution that will make
the algorithm more efficient.

Jeff Linderoth IE170:Lecture 12



Capital Budgeting
Assembly Line Balancing

I Love Lemmas

Lemma (Fact) 1

Let x∗ be an optimal policy (production schedule). If x∗t > 0,
then x∗t =

∑T−t
j=0 dt+j for some j ∈ {0, 1, . . . T − t}

Why? Oh Why?

If Lemma 1 was false, then there would be some period t and some
subsequent period t + j such that production x∗t only partially
satisfied the demand in t+j. Say this is a quantity 0 < p < dt+j .
If you produce p less at t, you still meet demands up to j−1, save
holding costs, and incur no additional setup cost (since production
was going to have to happen in j anyway). Thus, x∗t couldn’t
have been optimal

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Mmmmmmmmmm. More Lemmas.

Lemma (Factoid) 2

Let x∗ be an optimal policy (production schedule). If x∗t > 0
then st−1 < dt.

Why? Oh Why?

It’s a similar argument. If Lemma 2 was false, then there is some
t such that x∗t > 0 and st−1 ≥ dt. If you defer production by
one period, you will save holding costs, and incur no additional
charges, so x∗t couldn’t be optimal.

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

How Does This Help?

For simplicity, assume that s0 = 0 (we can fix this up later...)

These results really helps us cut down on the size of the state
space. In fact, we need only (recursively) compute the
minimum cost during periods t, t + 1, . . . T as

ft(0) = min
j∈{0,1,...T−t}

{(ctj + ft+k+1(0))}

Where ctj is the cost incurred for periods t, t + 1, . . . t + j if
production during t exactly meets demands for
t, t + 1, . . . t + j:

ctj = K + c

(
j∑

k=0

dt+k

)
+ h

(
j∑

k=1

kdt+k

)
.

Jeff Linderoth IE170:Lecture 12

Capital Budgeting
Assembly Line Balancing

Happy Days!

No Class on Friday 2/16 or Monday 2/19

Today’s lab and homework due on 2/26

Jeff Linderoth IE170:Lecture 12


