Taking Stock

IE170: Algorithms in Systems Engineering:

Lecture 12 , . : ,
@ Intro to Dynamic Programming: Capital Budgeting

Jeff Linderoth

This Time: More DP

Department of Industrial and Systems Engineering = .
Lehigh University @ Assembly Line Balancing

e Lot Sizing
February 12, 2007

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12

Capital Budgeting

Dynamic Programming DP for Assembly Line Scheduling

) ) @ You have been hired to optimize the Yugo Factory in
@ Not really an algorithm but a technique. Prattville. AL

® Not really “"programming” like Java programming @ There are two assembly lines. Each line has n different

stations:
Dynamic Programming in a Nutshell
@ Characterize the structure of an optimal solution S11, 512, -, S1n and Sp1, 522, ..., San.
© Recursively define the value of an optimal solution e Stations S1; and Sy; perform the same function, put take a
© Compute the value of an optimal solution “from the different amount of time: (a1; and ag;)
bottum up” @ Once a Yugo is processed at station S;;, it can either
@ Construct optimal solution (if required) @ Stay on the same line (i) with no time penalty

’ @ Transfer to the other line, but is then delayed by #;;

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12




Your Mission A Better Way

Problem: @ A better way to find an optimal solution is to think about
, what properties an optimal solution must have.

Given this setup, what stations should be chosen from each line
in order to minimize the time that a car is in the factory? Question

@ What is the fasest way to get through station Sy;?

(] |f] =1: ail
o Note: We can't (efficiently) just check all possibilities? @ If j > 2, then we have two choice for how to get through
@ How many are there? S1;
e Through Sl,j—l then to Slj

o Through S> ;1 then to Sy;

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12
Capital Budgeting Capital Budgeting

Key Obervation Optimal Substructure

@ Suppose fastest way through Sy; is through S1 ;1

@ We must have taken a fastest way to get through S1 ;1 in

this fastest solution through Si;.
& 217 o Fastest way through Sy is either (fastest of)

o fastest way through Si j_; then directly through S,
o fastest way through S5 j_1, transfer lines, then through S ;

o Fastest way through Sy; is either (fastest of)

o fastest way through S5 ;j_; then directly through Ss;
o fastest way through S; j_1, transfer lines, then through Sy;

o If there was a faster way through 57 ;_1, we could have used
it instead to get through Sy; faster.

o Likewise, suppose the fastest way through S1; is from So;_1.
We must have used a fastest way through S ;_1

Optimal Substructure

An optimal solution to the problem (The fastest way through S1;)

contains within it an optimal solution to subproblems: either the
fastest way through Sy ;_1 or Sa ;1

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12



Capital Budgeting Capital Budgeting

A Recursive Solution Analyze the recursion

@ Suppose that we have entry times e; and exit times x;

o Let f;(j) be the fastest time to get through
SijVi=1,2Vj=1,2,...n
@ Let's compute how many times we reference/compute

o
A DP for the Optimal Solution Value fi)  rild)

e ri(n)=re(n)=1
e ri(j)=ro(j)=m(+1)+re(j1) forj=1,...n—1
@ Problem 15.1.2 — Show that 7;(j) = 2"~/

ff = min(fi(n) + x1, fo(n) + x2)
el + a

€2 + a2
min(fi(j — 1) + ayy, f2(j — 1) + t2j—1 + a1;)

= min(fe(j — 1) +azj, f1(§ — 1) +t1-1 + ag;)

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12

5
N N N N
. =
e’ e e N
[

Capital Budgeting Capital Budgeting

Bottom's Up Knowing the Solution

@ The number of references to f;(j) is so large only because we

compute f* in a top down fashion _ _
e If you want to know the optimal solution, you also need to

@ Really f;(j) only depends on times from its immediate “keep track’ as you go.

predecessor stations fi1(j — 1) and fo(j — 1
( ) ( ) @ /;(j): Line number whose j — 1 station was used to find the

@ In this case, we should compute f;(j) in increasing order of j fastest way through i

@ |t essentially amounts to “building a table” of the value

. . . . Let’ le...
functions f;(j) foreachi=1,2and j =1,2,...n ° Let's do our example

@ This "keep track instead of recomputing” is sometimes called
memoization

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12




Capital Budgeting Capital Budgeting

What Makes a Dynamic Program? What Makes a Dynamic Program? (cont.)
© The problem can be divided into stages with a decision © The decision at one stage transforms one state into a state in
required at each stage. the next stage.
o In the capital budgeting problem the stages were the e In capital budgeting: the decision of how much to spend gave
allocations to a single plant. The decision was how much to a total amount spent for the next stage.
spend. e In Assembly line balance: The decision of where to go next
@ In the assembly-line balance problem, the stages were the defined where you arrived in the next stage.
stations, and the decision was which line to go to next @ Given the current state, the optimal decision for each of the
© Each stage has a number of states associated with it. remaining states does not depend on the previous states or
e The states for the capital budgeting problem corresponded to decisions.
the amount spent at that point in time. (Or equivelently, how e In the budgeting problem, it is not necessary to know how the
much money was remaining) money was spent in previous stages, only how much was spent.
e The state in the assembly-line balance problem was the line @ In the assembly line problem, it was not necessary to know
the car currently was on. how you got to a node, only that you did.

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12

Capital Budgeting

Assembly Line Balancing

What Makes a Dynamic Program? (cont.) Uncapacitated Lot Sizing

© There exists a recursive relationship that identifies the optimal Lot sizing is the canonical production planning problem
decision for stage j, given that stage j+1 has already been

Given a planning horizon 7 = {1,2,...,T}
solved.

e These were the recursions we wrote for each problem You must meet given demands d; for t € 7

You can meet the demand from a combination of production
(z¢) and inventory (s;—1)

What's the Hard Part!?

The big skill in dynamic programming, and the art involved, is to
take a problem and determine stages and states so that all of the () { K+cxy ifay >0
C(T¢) =

Production cost:

above hold. (You will be asked to think about this a bit in lab 0 ifx; =0
today). If you can, then the recursive relationship makes finding
the values relatively easy.

Inventory cost: I(s;) = hisy

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12




Assembly Line Balancing Assembly Line Balancing

Let's Solve it with DP Let's Solve an Example

@ What should our stages be?

e Hint: Typically stages have type “from beginning until now" o T —3 Busy Going Backwards
(like S;i;) or from “now until end” (like in capital budgeting) o d=1[2,1,2] e f3(0)=2+2(1)=4
o h=11,1,0] ° f5(1)=2+1(1) =3

e K=2c=1 ° f3(2)=0

Let fi(s): be the minimum cost of meeting demands from ¢,t +
1,...T if s units are in inventory at the beginning of period ¢

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12

Assembly Line Balancing Assembly Line Balancing

In General Oh Dear!

A General Recursive Relationship

o What if K = 250,d = [220, 280, 360, 140, 270], ¢; = 2, hy = 1

@ This might be a problem, as you need to consider producing

= i h —d —d¢)}.
1i(s) me{)nll%{ct(x) thils+z—di)+ frpals +2 - do)} every possible amount between 0 and 1270

@ Instead, as is often the case in dynamic programming, we look
e Let's do a couple by hand. for structural properties of an optimal solution that will make

@ This gets tedious — so let’s code it up... the algorithm more efficient.

Jeff Linderoth IE170:Lecture 12 Jeff Linderoth IE170:Lecture 12




| Love Lemmas

Lemma (Fact) 1

Let 2* be an optimal policy (production schedule). If x} > 0,
then z} = Z;F;Ot dyj for some j € {0,1,...T —t}

Why? Oh Why?

If Lemma 1 was false, then there would be some period ¢ and some
subsequent period ¢ + j such that production x; only partially
satisfied the demand in t+4j. Say this is a quantity 0 < p < d4;.
If you produce p less at t, you still meet demands up to j—1, save
holding costs, and incur no additional setup cost (since production
was going to have to happen in j anyway). Thus, =} couldn't
have been optimal

o

Jeff Linderoth

IE170:Lecture 12

Assembly Line Balancing

How Does This Help?

e For simplicity, assume that so = 0 (we can fix this up later...)

@ These results really helps us cut down on the size of the state

space. In fact, we need only (recursively) compute the
minimum cost during periods t,t + 1,...7T as

ft(0) = min  {(ctj + feus1(0))}

j€{0,1,.. T—¢}

@ Where ¢ is the cost incurred for periods ¢, ¢t +1,...t+ j if
production during t exactly meets demands for
tLt+1,.. . t+ g

J J
Ctj = K +c <Z dt+k> +h <Z kdt+k> .

Jeff Linderoth IE170:Lecture 12

Mmmmmmmmmm. More Lemmas.

Lemma (Factoid) 2

Let 2* be an optimal policy (production schedule). If z} > 0
then s;_1 < d;.

It's a similar argument. If Lemma 2 was false, then there is some
t such that ;y > 0 and s;_1 > d;. If you defer production by
one period, you will save holding costs, and incur no additional
charges, so x; couldn’t be optimal.

Jeff Linderoth IE170:Lecture 12

Assembly Line Balancing

Happy Days!

@ No Class on Friday 2/16 or Monday 2/19
@ Today's lab and homework due on 2/26

Jeff Linderoth IE170:Lecture 12

Assembly Line Balancing Assembly Line Balancing




