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Taking Stock

Last Time

Lot Sizing and Java Code

This Time

Lot Sizing—Wagner-Whitin

Greedy Algorithm
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Uncapacitated Lot Sizing

Lot sizing is the canonical production planning problem

Given a planning horizon T = {1, 2, . . . , T}
You must meet given demands dt for t ∈ T
You can meet the demand from a combination of production
(xt) and inventory (st−1)

Production cost:

c(xt) =
{

K + cxt if xt > 0
0 if xt = 0

Inventory cost: I(st) = htst
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In General

A General Recursive Relationship

ft(s) = min
x∈0,1,2,...

{ct(x) + ht(s + x− dt) + ft+1(s + x− dt)}.

What if K = 250, d = [220, 280, 360, 140, 270], ct = 2, ht = 1
This might be a problem, as you need to consider producing
every possible amount between 0 and 1270

Instead, as is often the case in dynamic programming, we look
for structural properties of an optimal solution that will make
the algorithm more efficient.

Jeff Linderoth IE170:Lecture 14



Uncapacitated Lot Sizing
Activity Selection

I Love Lemmas

Lemma (Fact) 1

Let x∗ be an optimal policy (production schedule). If x∗t > 0,
then x∗t =

∑T−t
j=0 dt+j for some j ∈ {0, 1, . . . T − t}

Why? Oh Why?

If Lemma 1 was false, then there would be some period t and some
subsequent period t + j such that production x∗t only partially
satisfied the demand in t+j. Say this is a quantity 0 < p < dt+j .
If you produce p less at t, you still meet demands up to j−1, save
holding costs, and incur no additional setup cost (since production
was going to have to happen in j anyway). Thus, x∗t couldn’t
have been optimal

Jeff Linderoth IE170:Lecture 14

Uncapacitated Lot Sizing
Activity Selection

Mmmmmmmmmm. More Lemmas.

Lemma (Factoid) 2

Let x∗ be an optimal policy (production schedule). If x∗t > 0
then st−1 < dt.

Why? Oh Why?

It’s a similar argument. If Lemma 2 was false, then there is some
t such that x∗t > 0 and st−1 ≥ dt. If you defer production by
one period, you will save holding costs, and incur no additional
charges, so x∗t couldn’t be optimal.
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How Does This Help?

For simplicity, assume that s0 = 0
These results really helps us cut down on the size of the state
space. In fact, we need only (recursively) compute the
minimum cost during periods t, t + 1, . . . T as

ft(0) = min
j∈{0,1,...T−t}

{(ctj + ft+k+1(0))}

Where ctj is the cost incurred for periods t, t + 1, . . . t + j if
production during t exactly meets demands for
t, t + 1, . . . t + j:

ctj = K + c

(
j∑

k=0

dt+k

)
+ h

(
j∑

k=1

kdt+k

)
.

Jeff Linderoth IE170:Lecture 14

Uncapacitated Lot Sizing
Activity Selection

Another OR Application

We have a set A = {1, 2, . . . , n} of activities thet require
exclusive use of a common resource.

Could be a machine or a classroom, for example

Activity i ∈ A has “start time” si and finish time fi

Activity Selection Problem

Select the largest set of nonoverlapping (mutually compatible)
activities
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More on Activity Selection

Let Sij ⊆ A be the set of activities that start after activity i
needs to finish and before activity j needs to start:

Sij
def= {k ∈ S | fi ≤ sk, fk ≤ sj}

Let’s assume that we have sorted the activities such that

f1 ≤ f2 ≤ · · · ≤ fn

Then: i ≥ j ⇒ Sij = ∅
Proof:

Our goal is to optimally schedule all jobs in Sij

Then, if we add two “dummy activities”
(s0 = −∞, f0 = 0), (sn+1 = ∞, fn+1 = ∞), we need to
optimally schedule jobs in S0,n+1
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Building up a Solution

What does an optimal solution to problem on activities Sij

look like?

Let Aij ⊆ Sij be an optimal set of activities for Sij

We know that |Aij | ≥ 1 as long as Sij 6= ∅
Suppose k ∈ Aij . That is, suppose job k is in an optimal
solution to Sij . This decomposes the problem into an optimal
solution before k and an optimal solution after k.

Specifically, we have

Aij = Aik ∪ {k} ∪Akj
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Building a Recursion

From this, we can write a recursive solution. Let cij be the
size of a maximum-sized subset of mutually compatible jobs in
Sij .

If Sij = ∅, then cij = 0
If Sij 6= ∅, then cij = cik + 1 + ckj for some k ∈ Sij . We pick
the k ∈ Sij that maximizes the number of jobs:

cij =
{

0 if Sij = ∅
maxk∈Sij

cik + ckj + 1 if Sij 6= ∅

Note we need only check i < k < j
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We Can Make It Easy

Solution Theorem

Let Sij 6= ∅ and let m be the activity with the earliest finish time
in Sij :

m ∈ arg min
k∈Sij

{fk},

then

1 Activity m is used in some optimal solution (maximum size
compatible subset) of Sij

2 Sim = ∅

Proof:
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Theorems Are Great!

Characterizing the optimal solution in this manner makes our
algorithmic lives much, much easier.

Before Theorem After Theorem

# subproblems in recursion 2 1
# choices in recursion j − i− 1 1

To Solve Sij

1 Choose m ∈ Sij with the earliest finish time. The Greedy
Choice

2 Then solve problem on jobs Smj
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When Greedy?

How did we show that greedy works?

1 Determine optimal substructure of problem

2 Develop a recursive solution

3 Prove that at every stage of recursion, one of the optimal
choices is a greedy choice.

4 Show that all but one of the subproblems induced by the
greedy choice are empty
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Properties of Greedy

Optimal Substructure

This is just the same as dynamic programing. An optimal solution
contains within it optimal solutions to smaller problems.

Greedy Choice Property

When we are considering which choice to make, we make the so-
lution that looks best to us now—without considering the impact
on subsequent problems
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Dynamic Versus Greedy

DP and Greedy: Make a choice at each stage.

DP: The choice depends on knowing the optimal solution to
smaller problems. Thus, we have to solve from the “bottom
up”. Get the solution to all smaller problems first in order to
arrive at the solution to the bigger problem.

Greedy: The choice can be made before solving the
subproblems.
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Next Time

Intro to Graphs

Easy, Easy Lab
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