
Graph Theory
Breadth First Search

IE170: Algorithms in Systems Engineering:
Lecture 15

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

February 26, 2007

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Taking Stock

Last Time

DP for Lot Sizing

Greedy Algorithm for activity scheduling

This Time

The Wonderful World of Graph Theory

You should read Chap 22

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Graphs

A graph is an abstract object used to model such connectivity
relations.

A graph consists of a list of items, along with a set of
connections between the items.

The study of such graphs and their properties, called graph
theory, is hundreds of years old.

Graphs can be visualized easily by creating a physical
manifestation showing the connection relationships

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Graph Types

The connections in the graph may or may not have an
orientation or a direction.

We may (or may not) allow more than one connection
between a pair of items

We may (or may not) not allow an item to be connected to
itself.

For now, we consider graphs that are

undirected, i.e., the connections do not have an orientation,
and
simple, i.e., we allow only one connection between each pair of
items and no connections from an item to itself.

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

(A few) Applications of Graphs

Maps

Internet/World Wide Web

Social Networks

Circuits

Scheduling

Communication Networks

Matching and Assignment

Chemistry and Physics

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Graph Terminology and Notation

In an undirected graph, the “items” are usually called vertices
(sometimes also called nodes).

We denote the set of vertices as V and index them (in our
code) from 0 to n− 1, where n = |V |.
The connections between the vertices are (for now) unordered
pairs called edges.

Often, when the pair is ordered, people call them arcs

The set of edges is denoted E and m = |E| ≤ n(n− 1)/2.

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Graph Terminology and Notation

An undirected graph G = (V,E) is then composed of a set of
vertices V and a set of edges E ⊆ V × V .

If e = (i, j) ∈ E, then

i and j are called the endpoints of e,
e is said to be incident to i and j, and
i and j are said to be adjacent vertices.

The number of vertices adjacent to v in G is known as the
degree of v

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

More Terminology

Let G = (V,E) be an undirected graph.

A subgraph of G is a graph composed of an edge set E′ ⊆ E
along with all incident vertices.

A subset V ′ of V , along with all incident edges is called an
induced subgraph.

A path in G is a sequence of vertices such that each vertex is
adjacent to the vertex preceding it in the sequence.

A path is simple if no vertex occurs more than once in the
sequence.

A cycle is a path that is simple except that the first and last
vertices are the same.

A tour is a cycle that includes all the vertices.

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Connectivity in Graphs

An undirected graph is said to be connected if there is a path
between any two vertices in the graph.

A graph that is not connected consists of a set of connected
components that are the maximal connected subgraphs.

Given a graph, one of the most basic questions one can ask is
whether vertices i and j are in the same component.

In other words, is there a path from i to j?

If so, what is the shortest path (number of edges) from i to j.

(We’ll ask that today in lab)

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Representing Graphs on a Computer

Two Graph Representations

1 Adjacency Lists

2 Adjacency Matrix

Adjacency List

Array of |V | sets, one for each vertex

Vertex u′s list has all vertices such that (u, v) ∈ E

e.g. Java: private ArrayList<TreeSet<Integer>>
AdjList ;

Adjacency Matrix

Matrix A ∈ {0, 1}|V |×|V |

aij = 1 if and only if (i, j) ∈ E

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Comparing Graph Representations

Adjacency List

Space: O(|V |+ |E|) = O(n + m)
Time to list vertices adjacent to v: O(degree(v))
Time to tell if (u, v) ∈ E: O(degree(u))

Adjacency Matrix

Space: O(|V |2) = O(n2)
Time to list vertices adjacent to v: O(|V |)
Time to tell if (u, v) ∈ E: O(1)

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Useful Java Code

We’ll use adjacency list in our graph implementations. (Most
graphs are fairly sparse)

The following code creates a “random” graph on n verices,
with each edge occurring indepently with probability p

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Random Graph Constructor

public Graph(int n, double p)
{
numV_ = n;
AdjList_ = new ArrayList<TreeSet<Integer>>(numV_);

for (int i=0; i < numV_; i++) {
AdjList_.add(new TreeSet<Integer>());

}

for (int i=0; i < numV_; i++) {
for (int j=i+1; j < numV_; j++) {
if (Math.random() < p) {
insert(i,j);

}
}

}
}

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Adding an Edge

public void insert(int u, int v)
{

assert(u >= 0 && v >= 0 && u < numV_ && v < numV_);

AdjList_.get(u).add(v);

//XXX Here we assume undirected graph
AdjList_.get(v).add(u);
numE_++;

}

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Graph Search Algorithms

There are two “workhorse” algorithms for searching graphs
that form the basis for many more complicated algorithms.

Breadth-First Search (BFS): Search “broadly”
Depth-First Search (DFS): Search “deeply”

We’ll do BFS first.

Don’t worry – you’ll get to do DFS too!

BFS: Discovers all nodes at distance k from starting node s
before discovering any node at distance k + 1
Send a “wave” out from a starting vertex s

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Aside: Queue ’em up

BFS is conveneniently implemented with a data structure
known as a FIFO queue.

FIFO: First-In-First-Out. Just like a regular line, like you have
to stand in at Disneyworld.

Java has a Queue interface for you. Two methods are of
specific interest are poll() and add(). You can check the
docs for more.

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Queue Interface

Queue<E>

boolean add(E e): Inserts the specified element into this
queue

E poll(): Retrieves and removes the head of this queue,
or returns null if this queue is empty.

Remember queue is an interface, so you can’t really create
one. You need to specify an actual implementation, e.g.

Queue<Integer> myqueue = new
ArrayList<Integer>();

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

BFS

BFS

Input: Graph G = (V,E), source node s ∈ V

Output: d(v), distance (smallest # of edges) from s to v
∀v ∈ V

Output: π(v), predecessor of v on the shortest path from s
to v

Oh no! DP again

δ(s, v): shortest path from s to v

Lemma: If (u, v) ∈ E, then δ(s, v) ≤ δ(s, u) + 1

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

BFS

BFS(V,E, s)
1 for each u in V \ {s}
2 do d(u)←∞
3 π(u)← nil
4 d[s]← 0
5 Q← ∅
6 add(Q, s)
7 while Q 6= ∅
8 do u← poll(Q)
9 for each v in Adj[u]

10 do if d[v] =∞
11 then d[v]← d[u] + 1
12 π[v] = u
13 add(Q, v)

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Analysis

How many times is each vertex added?

Answer: Once. So |V | for add operation

How many times is adjaceny list of vertex v scanned?

Answer: Once. Since
∑

v∈V size(Adj[v]) = 2|E| (for
undirected), we have |E| here.

Running time: O(|V |+ |E|): Linear in the input size of the
graph (for adjacency list implementation)

Jeff Linderoth IE170:Lecture 15

Graph Theory
Breadth First Search

Next Time

Graphs, Graphs, and more Graphs.

Jeff Linderoth IE170:Lecture 15

