Taking Stock

IE170: Algorithms in Systems Engineering:
Lecture 16

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

February 28, 2007

Last Time

- The Wonderful World of Graph Theory

Breadth First Search

This Time

- Finish Breadth-First Search
- Depth-First Search

Graph Search Algorithms

Recall—BFS

BFS

- Input: Graph $G=(V, E)$, source node $s \in V$
- Output: $d(v)$, distance (smallest \# of edges) from s to v $\forall v \in V$
- Output: $\pi(v)$, predecessor of v on the shortest path from s to v

```
Oh no! DP again
    - }\delta(s,v): shortest path from s to 
    - Lemma: If }(u,v)\inE\mathrm{ , then }\delta(s,v)\leq\delta(s,u)+
```


BFS

```
\(\operatorname{BFS}(V, E, s)\)
    for each \(u\) in \(V \backslash\{s\}\)
    do \(d(u) \leftarrow \infty\)
        \(\pi(u) \leftarrow \mathrm{NIL}\)
    \(d[s] \leftarrow 0\)
    \(Q \leftarrow \emptyset\)
    \(\operatorname{ADD}(Q, s)\)
    while \(Q \neq \emptyset\)
    do \(u \leftarrow \operatorname{POLL}(Q)\)
        for each \(v\) in \(\operatorname{Adj}[u]\)
        do if \(d[v]=\infty\)
            then \(d[v] \leftarrow d[u]+1\)
                \(\pi[v]=u\)
                \(\operatorname{ADD}(Q, v)\)
```


Analysis

- How many times is each vertex added?
- Answer: Once. So $|V|$ for add operation
- How many times is adjaceny list of vertex v scanned?
- Answer: Once. Since $\sum_{v \in V} \operatorname{size}(\operatorname{Adj}[v])=2|E|$ (for undirected), we have $|E|$ here.
- Running time: $O(|V|+|E|)$: Linear in the input size of the graph (for adjacency list implementation)
- BFS: Discovers all nodes at distance k from starting node s before discovering any node at distance $k+1$
- DFS: As soon as we discover a vertex, we explore from it.
- Here we are after creating a different predecessor subgraph

$$
G_{\pi}=\left(V, E_{\pi}\right) \text { with } E_{\pi}=\{(\pi[v], v) \mid v \in V, \pi[v] \leq \mathrm{NIL}\}
$$

- Not shortest edge-path lengths

Compare and Contrast

DFS

- Input: Graph $G=(V, E)$
- No source vertex here. Works for undirected and directed graphs.
- We focus on directed graphs today...
- Output: Two timestamps for each node $d(v), f(v)$,
- Output: $\pi(v)$, predecessor of v
- not on shortest path necessarily

这

Depth-First Search

DFS Colors

DFS (Initialize and Go)

In this implementation, we will use colors:

- GREEN: vertex is undiscovered
- Yeliow: vertex is discovered, but not finished
- RED: vertex is finished.
- (i.e., we have completely explored everything from this node)

Discovery and Finish Times

- Unique integers from 1 to $2|V|$ denoting when you first discover a vertex and when you are done with it
- $d[v]<f[v] \forall v \in V$

```
DFS-VISIT (u)
```

 color \((u) \leftarrow\)
 \(d[u] \leftarrow\) time \({ }^{++}\)
 for each \(v\) in \(A d j[u]\)
 do if color \([v]=\) GREEN
 then \(\pi[v] \leftarrow u\)
 \(\operatorname{DFS}-\operatorname{VISIT}(v)\)
 \(\operatorname{color}(u) \leftarrow\) RED
 \(f[u]=\) time \({ }^{++}\)
    ```
\(\operatorname{DFS}(V, E)\)
1 for each \(u\) in \(V\)
    do color \((u) \leftarrow\) GREEN
        \(\pi(u) \leftarrow\) NIL
    time \(\leftarrow 0\)
    for each \(u\) in \(V\)
    do if color \([u]=\) GREEN
        then \(\operatorname{DFS}-\operatorname{VISIT}(u)\)
```


Analysis of DFS

- Loop on lines 1-3 $O(|V|)$
- DFS-VISIT is called exactly once for each vertex v (Why?)
- Because the first thing you do is paint the node
- The Loop on lines 3-6 in calls DFS-VISIT $|A d j[v]|$ times for vertex v.
- Since DFS visit is called exactly once per vertex, the total running time to do loop on lines $3-6$ is

$$
\sum_{v \in V}|A d j[v]|=\Theta(|E|)
$$

- Therefore: running time of DFS on $G=(V, E)$ is $\Theta(|V|+|E|)$: Linear in the (adjacency list) size of the graph

Graph Review...

Think back to your thorough reading of Appendix B. 4 and B.5...

- A path in G is a sequence of vertices such that each vertex is adjacent to the vertex preceding it in the sequence. Simple paths do not repeat nodes.
- A (simple) cycle is a (simple) path except that the first and last vertices are the same.
- Paths and cycles can either be directed or undirected
- If I say "cycle" or "path," I will often mean simple, undirected cycle or path

Jeff Linderoth

 Graph TheoryBreadth First Search

I Can't See the Forest Through the...

- The DFS graph: $G_{\pi}=\left(V, E_{\pi}\right)$ forms a forest of subtrees

New Definitions

- A tree $T=(V, E)$ is a connected graph that does not contain a cycle
- All pairs of vertices in V are connected by a simple (undirected) path
- $|E|=|V|-1$
- Adding any edge to E forms a cycle in T
- A (Undirected) acyclic graph is usually called a forest
- A DAG is a Directed, Acyclic Graph (A directed forest...)
- A subtree is simply a subgraph that is a tree

Parenthesis Theorem

- Let's look at the intervals: $[d[v], f[v]]$ for each vertex $v \in V$. (Surely, $d[v]<f[v]$)
- These tell us about the predecessor relationship in G_{π}
(1) If I finish exploring u before first exploring $v,(d[u]<f[v])$ then v is not a descendant of u. (Or versa vice)
(2) If $[d[u], f[u]] \subset[d[v], f[v]]$ then u is a descendent of v in the DFS tree
(3) If $[d[v], f[v]] \subset[d[u], f[u]]$ then v is a descendent of u in the DFS tree

Classifying Edges in the DFS Tree

Given a DFS Tree G_{π}, there are four type of edges (u, v)
(1) Tree Edges: Edges in E_{π}. These are found by exploring (u, v) in the DFS procedure
(2) Back Edges: Connect u to an ancestor v in a DFS tree
(3) Forward Edges: Connect u to a descendent v in a DFS tree
(1. Cross Edges: All other edges. They can be edges in the same DFS tree, or can cross trees in teh DFS forest G_{π}

Modifying DFS to Classify Edges

- DFS can be modified to classify edges as it encounters them...
- Classify $e=(u, v)$ based on the color of v when e is first explored...
- Green: Indicates Tree Edge
- yellow: Indicates Back Edge
- Red: Indicates Forward or Cross Edge

DFS Undirected Graphs

- In an undirected graph, there may be some ambiguity, as (u, v) and (v, u) are the same edge. The following theorem will help clear things up

Thm

In a DFS of an undirected graph $G=(V, E)$, every edge is a a tree edge or a back edge.

Next Time

- Graphs, Graphs, and more Graphs.
- Additional Hmwk: Problems: 22.2-5, 22.2-6, 22.3-8, 22.4-3

