Taking Stock

IE170: Algorithms in Systems Engineering: Lecture 16

February 28, 2007

Last Time

- The Wonderful World of Graph Theory
- Breadth First Search

This Time

- Finish Breadth-First Search
- Depth-First Search

Jeff Linderoth	IE170:Lecture 16	Jeff Linderoth	IE170:Lecture 16
Graph Theory		Graph Theory	
Breadth First Search		Breadth First Search	

Graph Search Algorithms

Recall—BFS

- There are two "workhorse" algorithms for searching graphs that form the basis for many more complicated algorithms.
 - Breadth-First Search (BFS): Search "broadly"
 - Depth-First Search (DFS): Search "deeply"
- BFS: Last Time
- DFS: Today

BFS

- Input: Graph G = (V, E), source node $s \in V$
- Output: d(v), distance (smallest # of edges) from s to v $\forall v \in V$
- Output: $\pi(v)$, predecessor of v on the shortest path from s to v

Oh no! DP again

- $\delta(s,v):$ shortest path from s to v
- Lemma: If $(u, v) \in E$, then $\delta(s, v) \le \delta(s, u) + 1$

BFS

$\mathrm{BFS}(V, E, s)$			
1	for each u in $V \setminus \{s\}$		
2	do $d(u) \leftarrow \infty$		
3	$\pi(u) \leftarrow ext{NIL}$		
4	$d[s] \leftarrow 0$		
5	$Q \leftarrow \emptyset$		
6	$\operatorname{ADD}(Q,s)$		
7	while $Q eq \emptyset$		
8	do $u \leftarrow \operatorname{POLL}(Q)$		
9	for each v in $Adj[u]$		
10	do if $d[v] = \infty$		
11	then $d[v] \leftarrow d[u] + 1$		
12	$\pi[v] = u$		
13	$\operatorname{ADD}(Q,v)$		

- How many times is each vertex added?
 - $\bullet\,$ Answer: Once. So |V| for add operation

Graph Theory

Breadth First Sea

- How many times is adjaceny list of vertex v scanned?
 - Answer: Once. Since $\sum_{v \in V} \text{size}(Adj[v]) = 2|E|$ (for undirected), we have |E| here.
- Running time: O(|V| + |E|): Linear in the input size of the graph (for adjacency list implementation)

Jeff Linderoth	IE170:Lecture 16	Jeff Linderoth	IE170:Lecture 16
Graph Theory Breadth First Search		Graph Theory Breadth First Search	

Depth-First Search

DFS

- Input: Graph G = (V, E)
 - No source vertex here. Works for undirected and directed graphs.
 - We focus on directed graphs today...
- Output: Two timestamps for each node d(v), f(v),
- Output: $\pi(v)$, predecessor of v
 - not on shortest path necessarily

Compare and Contrast

- BFS: Discovers all nodes at distance k from starting node s before discovering any node at distance k + 1
- DFS: As soon as we discover a vertex, we explore from it.
- Here we are after creating a different predecessor subgraph

 $G_{\pi} = (V, E_{\pi})$ with $E_{\pi} = \{(\pi[v], v) \mid v \in V, \pi[v] \le \text{NIL}\}$

• Not shortest edge-path lengths

DFS Colors

In this implementation, we will use colors:

- GREEN: vertex is undiscovered
- **YELLOW**: vertex is discovered, but not finished
- **RED**: vertex is finished.
 - \bullet (i.e., we have completely explored everything from this node)

Discovery and Finish Times

- Unique integers from 1 to 2|V| denoting when you first discover a vertex and when you are done with it
- $\bullet \ d[v] < f[v] \ \forall v \in V$

DFS(V, E)

- 1 for each u in V
- 2 do $color(u) \leftarrow GREEN$

DFS (Initialize and Go)

- 3 $\pi(u) \leftarrow \text{NIL}$
- $\textbf{4} \quad time \leftarrow 0$
- 5 for each u in V
- 6 do if color[u] = GREEN
- 7 **then** DFS-VISIT(u)

Jeff Linderoth	IE170:Lecture 16	Jeff Linderoth	IE170:Lecture 16
Graph Theory Breadth First Search		Graph Theory Breadth First Search	

DFS (Visit Node—Recursive)

DFS-VISIT(u)

- 1 $color(u) \leftarrow \text{YELLOW}$
- 2 $d[u] \leftarrow time + +$
- 3 for each v in Adj[u]
- 4 do if color[v] = GREEN

5 then
$$\pi[v] \leftarrow u$$

```
6 DFS-VISIT(v)
```

- 7
- 8 $color(u) \leftarrow \text{RED}$
- 9 $f[u] = time^{++}$

Example

• Here I will show Java code and an example

Analysis of DFS

- Loop on lines 1-3 O(|V|)
- DFS-VISIT is called exactly once for each vertex v (Why?)
 - Because the first thing you do is paint the node <u>YELLOW</u>
- The Loop on lines 3-6 in calls DFS-VISIT |Adj[v]| times for vertex v.
- Since DFS visit is called exactly once per vertex, the total running time to do loop on lines 3-6 is

$$\sum_{v \in V} |Adj[v]| = \Theta(|E|).$$

• Therefore: running time of DFS on G = (V, E) is $\Theta(|V| + |E|)$: Linear in the (adjacency list) size of the graph

Graph Review...

Think back to your thorough reading of Appendix B.4 and B.5...

Breadth First Searc

- A path in G is a sequence of vertices such that each vertex is adjacent to the vertex preceding it in the sequence. Simple paths do not repeat nodes.
- A (simple) cycle is a (simple) path except that the first and last vertices are the same.
- Paths and cycles can either be directed or undirected
- If I say "cycle" or "path," I will often mean simple, undirected cycle or path

Jeff Linderoth	IE170:Lecture 16	Jeff Linderoth	IE170:Lecture 16
Graph Theory		Graph Theory	
Breadth First Search		Breadth First Search	

I Can't See the Forest Through the ...

• The DFS graph: $G_{\pi} = (V, E_{\pi})$ forms a forest of subtrees

New Definitions

- A tree T = (V, E) is a connected graph that does not contain a cycle
- All pairs of vertices in V are connected by a simple (undirected) path
- |E| = |V| 1
- $\bullet\,$ Adding any edge to E forms a cycle in T

More Definitions

- A (Undirected) acyclic graph is usually called a forest
- A DAG is a Directed, Acyclic Graph (A directed forest...)
- A subtree is simply a subgraph that is a tree

Graph Theory Breadth First Search

Parenthesis Theorem

- Let's look at the intervals: [d[v], f[v]] for each vertex $v \in V$. (Surely, d[v] < f[v])
- $\bullet\,$ These tell us about the predecessor relationship in G_{π}
- If I finish exploring u before first exploring v, (d[u] < f[v]) then v is not a descendant of u. (Or versa vice)
- ${\ensuremath{ @ one of }}$ If $[d[u],f[u]] \subset [d[v],f[v]]$ then u is a descendent of v in the DFS tree
- ❸ If [d[v], f[v]] ⊂ [d[u], f[u]] then v is a descendent of u in the DFS tree

Classifying Edges in the DFS Tree

Given a DFS Tree G_{π} , there are four type of edges (u, v)

- **Tree Edges**: Edges in E_{π} . These are found by exploring (u, v) in the DFS procedure
- **2** Back Edges: Connect u to an ancestor v in a DFS tree
- **§** Forward Edges: Connect u to a descendent v in a DFS tree
- Cross Edges: All other edges. They can be edges in the same DFS tree, or can cross trees in teh DFS forest G_π

Jeff Linderoth Graph Theory Breadth First Search		Jeff Linderoth Graph Theory Breadth First Search	IE170:Lecture 16

Modifying DFS to Classify Edges

DFS Undirected Graphs

- DFS can be modified to classify edges as it encounters them...
- Classify e = (u, v) based on the color of v when e is first explored...
- GREEN: Indicates Tree Edge
- **YELLOW:** Indicates Back Edge
- RED: Indicates Forward or Cross Edge

• In an undirected graph, there may be some ambiguity, as (u,v) and (v,u) are the same edge. The following theorem will help clear things up

Thm

In a DFS of an undirected graph G = (V, E), every edge is a a tree edge or a back edge.

Graph Theory Breadth First Search

Next Time

• Graphs, Graphs, and more Graphs.

• Additional Hmwk: Problems: 22.2-5, 22.2-6, 22.3-8, 22.4-3

Jeff Linderoth IE170:Lecture 16