
Graph Theory
Breadth First Search

IE170: Algorithms in Systems Engineering:
Lecture 16

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

February 28, 2007

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Taking Stock

Last Time

The Wonderful World of Graph Theory

Breadth First Search

This Time

Finish Breadth-First Search

Depth-First Search

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Graph Search Algorithms

There are two “workhorse” algorithms for searching graphs
that form the basis for many more complicated algorithms.

Breadth-First Search (BFS): Search “broadly”
Depth-First Search (DFS): Search “deeply”

BFS: Last Time

DFS: Today

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Recall—BFS

BFS

Input: Graph G = (V,E), source node s ∈ V

Output: d(v), distance (smallest # of edges) from s to v
∀v ∈ V

Output: π(v), predecessor of v on the shortest path from s
to v

Oh no! DP again

δ(s, v): shortest path from s to v

Lemma: If (u, v) ∈ E, then δ(s, v) ≤ δ(s, u) + 1

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

BFS

BFS(V,E, s)
1 for each u in V \ {s}
2 do d(u)←∞
3 π(u)← nil
4 d[s]← 0
5 Q← ∅
6 add(Q, s)
7 while Q 6= ∅
8 do u← poll(Q)
9 for each v in Adj[u]

10 do if d[v] =∞
11 then d[v]← d[u] + 1
12 π[v] = u
13 add(Q, v)

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Analysis

How many times is each vertex added?

Answer: Once. So |V | for add operation

How many times is adjaceny list of vertex v scanned?

Answer: Once. Since
∑

v∈V size(Adj[v]) = 2|E| (for
undirected), we have |E| here.

Running time: O(|V |+ |E|): Linear in the input size of the
graph (for adjacency list implementation)

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Depth-First Search

DFS

Input: Graph G = (V,E)
No source vertex here. Works for undirected and directed
graphs.
We focus on directed graphs today...

Output: Two timestamps for each node d(v), f(v),
Output: π(v), predecessor of v

not on shortest path necessarily

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Compare and Contrast

BFS: Discovers all nodes at distance k from starting node s
before discovering any node at distance k + 1
DFS: As soon as we discover a vertex, we explore from it.

Here we are after creating a different predecessor subgraph

Gπ = (V,Eπ) with Eπ = {(π[v], v) | v ∈ V, π[v] ≤ nil}

Not shortest edge-path lengths

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

DFS Colors

In this implementation, we will use colors:

green: vertex is undiscovered

yellow: vertex is discovered, but not finished

red: vertex is finished.

(i.e., we have completely explored everything from this node)

Discovery and Finish Times

Unique integers from 1 to 2|V | denoting when you first
discover a vertex and when you are done with it

d[v] < f [v] ∀v ∈ V

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

DFS (Initialize and Go)

dfs(V,E)
1 for each u in V
2 do color(u)← green
3 π(u)← nil
4 time← 0
5 for each u in V
6 do if color[u] = green
7 then dfs-visit(u)

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

DFS (Visit Node—Recursive)

dfs-visit(u)
1 color(u)← yellow
2 d[u]← time++

3 for each v in Adj[u]
4 do if color[v] = green
5 then π[v]← u
6 dfs-visit(v)
7
8 color(u)← red
9 f [u] = time++

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Example

Here I will show Java code and an example

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Analysis of DFS

Loop on lines 1-3 O(|V |)
dfs-visit is called exactly once for each vertex v (Why?)

Because the first thing you do is paint the node yellow

The Loop on lines 3-6 in calls dfs-visit |Adj[v]| times for
vertex v.

Since DFS visit is called exactly once per vertex, the total
running time to do loop on lines 3-6 is∑

v∈V

|Adj[v]| = Θ(|E|).

Therefore: running time of DFS on G = (V,E) is
Θ(|V |+ |E|): Linear in the (adjacency list) size of the graph

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Graph Review...

Think back to your thorough reading of Appendix B.4 and B.5...

A path in G is a sequence of vertices such that each vertex is
adjacent to the vertex preceding it in the sequence. Simple
paths do not repeat nodes.

A (simple) cycle is a (simple) path except that the first and
last vertices are the same.

Paths and cycles can either be directed or undirected

If I say “cycle” or “path,” I will often mean simple, undirected
cycle or path

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

I Can’t See the Forest Through the...

The DFS graph: Gπ = (V,Eπ) forms a forest of subtrees

New Definitions

A tree T = (V,E) is a connected graph that does not
contain a cycle

All pairs of vertices in V are connected by a simple
(undirected) path

|E| = |V | − 1
Adding any edge to E forms a cycle in T

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

More Definitions

A (Undirected) acyclic graph is usually called a forest

A DAG is a Directed, Acyclic Graph (A directed forest...)

A subtree is simply a subgraph that is a tree

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Parenthesis Theorem

Let’s look at the intervals: [d[v], f [v]] for each vertex v ∈ V .
(Surely, d[v] < f [v])
These tell us about the predecessor relationship in Gπ

1 If I finish exploring u before first exploring v, (d[u] < f [v])
then v is not a descendant of u. (Or versa vice)

2 If [d[u], f [u]] ⊂ [d[v], f [v]] then u is a descendent of v in the
DFS tree

3 If [d[v], f [v]] ⊂ [d[u], f [u]] then v is a descendent of u in the
DFS tree

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Classifying Edges in the DFS Tree

Given a DFS Tree Gπ, there are four type of edges (u, v)

1 Tree Edges: Edges in Eπ. These are found by exploring
(u, v) in the DFS procedure

2 Back Edges: Connect u to an ancestor v in a DFS tree

3 Forward Edges: Connect u to a descendent v in a DFS tree

4 Cross Edges: All other edges. They can be edges in the same
DFS tree, or can cross trees in teh DFS forest Gπ

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Modifying DFS to Classify Edges

DFS can be modified to classify edges as it encounters them...

Classify e = (u, v) based on the color of v when e is first
explored...

green: Indicates Tree Edge

yellow: Indicates Back Edge

red: Indicates Forward or Cross Edge

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

DFS Undirected Graphs

In an undirected graph, there may be some ambiguity, as
(u, v) and (v, u) are the same edge. The following theorem
will help clear things up

Thm

In a DFS of an undirected graph G = (V,E), every edge is a a
tree edge or a back edge.

Jeff Linderoth IE170:Lecture 16

Graph Theory
Breadth First Search

Next Time

Graphs, Graphs, and more Graphs.

Additional Hmwk: Problems: 22.2-5, 22.2-6, 22.3-8, 22.4-3

Jeff Linderoth IE170:Lecture 16

