Taking Stock

@ Depth-First Search

|[E170: Algorithms in Systems Engineering:

Lecture 17

Jeff Linderoth

This Time: Uses of DFS

Department of Industrial and Systems Engineering .
Lehigh University @ Topological Sort

@ Strongly Connected Components
March 2, 2007

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17
BFS BFS
Depth-First Search DFS (Initialize and Go)
DFS DFs(V, E)

for each v inV
do color(u) «—
7(u) «— NIL
time «— 0
for each v inV
do if color|u] =
then DFS-VISIT(u)

@ Input: Graph G = (V, E)
e No source vertex here. Works for undirected and directed
graphs.
o We focus on directed graphs today...
@ Output: Two timestamps for each node d(v), f(v),
@ Output: m(v), predecessor of v
e not on shortest path necessarily

~NOoO 1k~ N

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17

DFS (Visit Node—Recursive)

DFS-VISIT(u)

1
2
3
4
5
6
7
8
9

color(u) «—
d[u] « time++
for each v in Adj[u]
do if color[v] =
then 7[v] — u
DFS-VISIT(v)

color(u) < RED
flu] = time++

Jeff Linderoth IE170:Lecture 17

BFS

Analysis of DFS

Loop on lines 1-3 O(|V])
DFS-VISIT is called exactly once for each vertex v (Why?)
o Because the first thing you do is paint the node

The Loop on lines 3-6 in calls DFS-VISIT |Adj[v]| times for
vertex v.

Since DFS visit is called exactly once per vertex, the total
running time to do loop on lines 3-6 is

> 1Adj[]| = ©(|E]).

veV

Therefore: running time of DFS on G = (V, E) is

O(|V| + |E|): Linear in the (adjacency list) size of the graph

IE170:Lecture 17

Jeff Linderoth

Parenthesis Theorem

@ Let's look at the intervals: [d[v], f[v]] for each vertex v € V.
(Surely, dv] < f[v])

@ These tell us about the predecessor relationship in G

@ If | finish exploring u before first exploring v, (d[u] < f[v])
then v is not a descendant of u. (Or versa vice)

@ If [d[u], f[u]] C [d[v], f[v]] then w is a descendent of v in the
DFS tree

@ If [d[v], fv]] C [d]u], flu]] then v is a descendent of u in the
DFS tree

Jeff Linderoth
BFS

IE170:Lecture 17

Graph Review...

Think back to your thorough reading of Appendix B.4 and B.5...

@ A path in G is a sequence of vertices such that each vertex is
adjacent to the vertex preceding it in the sequence. Simple
paths do not repeat nodes.

@ A (simple) cycle is a (simple) path except that the first and
last vertices are the same.

@ Paths and cycles can either be directed or undirected

o If | say “cycle” or “path,” | will often mean simple, undirected

cycle or path

Jeff Linderoth IE170:Lecture 17

BFS BFS

| Can't See the Forest Through the... More Definitions

@ The DFS graph: G = (V, E;) forms a forest of subtrees

New Definitions: Tree @ A (Undirected) acyclic graph is usually called a forest

e Atree T = (V,E) is a connected graph that does not o A DAG is a Directed, Acyclic Graph
contain a cycle o A directed forest

@ All pairs of vertices in V' are connected by a simple @ A subtree is simply a subgraph that is a tree
(undirected) path

o |[E|=|V|—-1

@ Adding any edge to E forms a cycle in T’

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17
BFS BFS
Classifying Edges in the DFS Tree Modifying DFS to Classify Edges

Given a DFS Tree G, there are four type of edges (u,v)

DFS can be modified to classify edges as it encounters them...

© Tree Edges: Edges in E,;. These are found by exploring Classify e = (u,v) based on the color of v when e is first
(u,v) in the DFS procedure explored...

@ Back Edges: Connect u to an ancestor v in a DFS tree

© Forward Edges: Connect u to a descendent v in a DFS tree ° : Indicates Tree Edge

@ Cross Edges: All other edges. They can be edges in the same
DFS tree, or can cross trees in teh DFS forest G

: Indicates Back Edge

RED: Indicates Forward or Cross Edge

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17

BFS

DFS Undirected Graphs DAG Gum it!

@ In an undirected graph, there may be some ambiguity, as o DAGs are good at modeling processes and structures that
(u,v) and (v,u) are the same edge. The following theorem have a partial order (<)

will help clear things up e A<Band B<C =A< C
e May have neither A < B nor B < C

@ Think of a partial order as “the way in which you must do
tasks” to ensure successful completion

In a DFS of an undirected graph G = (V, E), every edge is a a @ Sometimes it doesn’'t matter if you do A first or B first...
tree edge or a back edge.

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17

DFS DFS

Spring Break on My Mind!

4
e Put ice in shaker (A) Task Relations Topologlcal Sort |
e Pour gin? in shaker (B) o« A<D <>
P th® in shaker (C
: S;Lrjcr E/Sr)mou in shaker (C) o A<C @ We would like to produce a valid order for making a martini
e Strain (E) o E=D @ A topological sort of a directed acyclic graph (DAG) is a linear
e Putice in glass (F) : g:g ordering of its nodes which is compatible with the partial
e Remove ice from glass (G) .« F=G order < induced on the nodes.
* ,IZ(O)I:r iF glass (IH) I o O <H @ u < v if there's a directed path from w to v in the DAG.
olive to glass Coe. .
: Enjoy! “(/J) glass (1) o G<I @ An equivalent definition is that each node comes before all
' e E<H nodes to which it has edges.
ZPrefera.ny Boodles i @ i.e. u must be done before v
Very Little o [J .
“Never shake ’ @ Every DAG has at least one topological sort, and may have

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17

DFS DFS

Topological Sort Why Does This Work? (cont.)
Topological Sort: The Whole Algorithm @ Iswv ?
@ DFS search the graph e No, since then DAG would have a cycle
o lsv 7

@ List vertices in order of decreasing finishing time

e Then it becomes descendant of u and (by () theorem),
du] < dv] < f[v] < flu]
@ |s v RED?

o If so, then we're finished and f[v] < f[u] since we're still
@ Show that (u,v) € E = f[v] < f[u] exploring u

Why Does This Work?

@ When we explore (u,v),u is

@ Therefore if (u,v) € E, flv] < f[u]

QUITE ENOUGH DONE

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17

Strongly Connected Components Finding Strongly Connected Components

e Given a directed graph G = (V| E), a strongly connected
component of G is a maximal set of vertices C' C V such that
Yu, v, € C there exists a directed path both from u to b and

from v to u @ Call DFS(G) to topologically sort G

@ The algorithm uses the transpose of a directed graph @ Compute GT

G = (V, E), where the orientations are flipped: © Call DFS(GT) but consider vertices in topologically sorteded

GT = (v, ET), where ET = {(v,u) | (u,v) € E} order (from &)
@ Vertices in each tree of depth-first forest for SCC
@ What is running time to create G1?

e Note: G and GT have the same Strongly Connected
Components

e u and v are both reachable from each other in G if and only if
they are both reachable with the orientations flipped (G7).

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17

Component Graph More Lemma

° GSCC(G) _ (VSCC’ESCC)

o V5CC has one vertex for each strongly connected component

of G Let C' and C’ be distinct SCC in G,
o ¢ € FOCC is there is an edge between corresponding SCC's in o if (u,v) € E and u € C,v € C', then f(C) > f(C")
G o if (u,v) € ET and u € C,v € C’, then f(C) < f(C")

_ - 1 B > D), e s 1o el Fam © o O i @
GSCC is a DAG .

e ForC CV, f(C) aef max,ec{f[v]}

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17

Why SCC Works. (Intuition)

e DFS on G7 starts with SCC C such that f(C) is maximum.
Since f(C) > f(C"), there are no edges from C to ¢’ in GT

@ This means that the DFS will visit only vertices in C'

@ The next root has the largest f(C") for all C" # C. DFS visits
all vertices in C’, and any other edges must go to C, which
we have already visited..

Next Time

@ Spanning Trees

Jeff Linderoth IE170:Lecture 17 Jeff Linderoth IE170:Lecture 17

