
BFS
DFS

IE170: Algorithms in Systems Engineering:
Lecture 17

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

March 2, 2007

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Taking Stock

Last Time

Depth-First Search

This Time: Uses of DFS

Topological Sort

Strongly Connected Components

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Depth-First Search

DFS

Input: Graph G = (V,E)
No source vertex here. Works for undirected and directed
graphs.
We focus on directed graphs today...

Output: Two timestamps for each node d(v), f(v),
Output: π(v), predecessor of v

not on shortest path necessarily

Jeff Linderoth IE170:Lecture 17

BFS
DFS

DFS (Initialize and Go)

dfs(V,E)
1 for each u in V
2 do color(u)← green
3 π(u)← nil
4 time← 0
5 for each u in V
6 do if color[u] = green
7 then dfs-visit(u)

Jeff Linderoth IE170:Lecture 17

BFS
DFS

DFS (Visit Node—Recursive)

dfs-visit(u)
1 color(u)← yellow
2 d[u]← time++

3 for each v in Adj[u]
4 do if color[v] = green
5 then π[v]← u
6 dfs-visit(v)
7
8 color(u)← red
9 f [u] = time++

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Parenthesis Theorem

Let’s look at the intervals: [d[v], f [v]] for each vertex v ∈ V .
(Surely, d[v] < f [v])
These tell us about the predecessor relationship in Gπ

1 If I finish exploring u before first exploring v, (d[u] < f [v])
then v is not a descendant of u. (Or versa vice)

2 If [d[u], f [u]] ⊂ [d[v], f [v]] then u is a descendent of v in the
DFS tree

3 If [d[v], f [v]] ⊂ [d[u], f [u]] then v is a descendent of u in the
DFS tree

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Analysis of DFS

Loop on lines 1-3 O(|V |)
dfs-visit is called exactly once for each vertex v (Why?)

Because the first thing you do is paint the node yellow

The Loop on lines 3-6 in calls dfs-visit |Adj[v]| times for
vertex v.

Since DFS visit is called exactly once per vertex, the total
running time to do loop on lines 3-6 is∑

v∈V

|Adj[v]| = Θ(|E|).

Therefore: running time of DFS on G = (V,E) is
Θ(|V |+ |E|): Linear in the (adjacency list) size of the graph

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Graph Review...

Think back to your thorough reading of Appendix B.4 and B.5...

A path in G is a sequence of vertices such that each vertex is
adjacent to the vertex preceding it in the sequence. Simple
paths do not repeat nodes.

A (simple) cycle is a (simple) path except that the first and
last vertices are the same.

Paths and cycles can either be directed or undirected

If I say “cycle” or “path,” I will often mean simple, undirected
cycle or path

Jeff Linderoth IE170:Lecture 17

BFS
DFS

I Can’t See the Forest Through the...

The DFS graph: Gπ = (V,Eπ) forms a forest of subtrees

New Definitions: Tree

A tree T = (V,E) is a connected graph that does not
contain a cycle

All pairs of vertices in V are connected by a simple
(undirected) path

|E| = |V | − 1
Adding any edge to E forms a cycle in T

Jeff Linderoth IE170:Lecture 17

BFS
DFS

More Definitions

A (Undirected) acyclic graph is usually called a forest

A DAG is a Directed, Acyclic Graph

A directed forest

A subtree is simply a subgraph that is a tree

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Classifying Edges in the DFS Tree

Given a DFS Tree Gπ, there are four type of edges (u, v)

1 Tree Edges: Edges in Eπ. These are found by exploring
(u, v) in the DFS procedure

2 Back Edges: Connect u to an ancestor v in a DFS tree

3 Forward Edges: Connect u to a descendent v in a DFS tree

4 Cross Edges: All other edges. They can be edges in the same
DFS tree, or can cross trees in teh DFS forest Gπ

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Modifying DFS to Classify Edges

DFS can be modified to classify edges as it encounters them...

Classify e = (u, v) based on the color of v when e is first
explored...

green: Indicates Tree Edge

yellow: Indicates Back Edge

red: Indicates Forward or Cross Edge

Jeff Linderoth IE170:Lecture 17

BFS
DFS

DFS Undirected Graphs

In an undirected graph, there may be some ambiguity, as
(u, v) and (v, u) are the same edge. The following theorem
will help clear things up

Thm

In a DFS of an undirected graph G = (V,E), every edge is a a
tree edge or a back edge.

Jeff Linderoth IE170:Lecture 17

BFS
DFS

DAG Gum it!

DAGs are good at modeling processes and structures that
have a partial order (≺)

A ≺ B and B ≺ C ⇒ A < C
May have neither A ≺ B nor B ≺ C

Think of a partial order as “the way in which you must do
tasks” to ensure successful completion

Sometimes it doesn’t matter if you do A first or B first...

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Spring Break on My Mind!

• Put ice in shaker (A)

• Pour gina in shaker (B)

• Pour vermouthb in shaker (C)

• Stirc (D)

• Strain (E)

• Put ice in glass (F)

• Remove ice from glass (G)

• Pour in glass (H)

• Add olive to glass (I)

• Enjoy! (J)

aPreferably Boodles
bVery Little
cNever shake

Task Relations

• A ≺ B

• A ≺ C

• B ≺ D

• C ≺ D

• D ≺ E

• F ≺ G

• G ≺ H

• G ≺ I

• E ≺ H

• H ≺ J

• I ≺ J

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Topological Sort

We would like to produce a valid order for making a martini

A topological sort of a directed acyclic graph (DAG) is a linear
ordering of its nodes which is compatible with the partial
order ≺ induced on the nodes.

u ≺ v if there’s a directed path from u to v in the DAG.

An equivalent definition is that each node comes before all
nodes to which it has edges.

i.e. u must be done before v

Every DAG has at least one topological sort, and may have
many.

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Topological Sort

Topological Sort: The Whole Algorithm

1 DFS search the graph

2 List vertices in order of decreasing finishing time

Why Does This Work?

Show that (u, v) ∈ E ⇒ f [v] < f [u]
When we explore (u, v), u is yellow

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Why Does This Work? (cont.)

What color is v?

Is v yellow?

No, since then DAG would have a cycle

Is v green?

Then it becomes descendant of u and (by () theorem),
d[u] < d[v] < f [v] < f [u]

Is v red?

If so, then we’re finished and f [v] < f [u] since we’re still
exploring u

Therefore if (u, v) ∈ E, f [v] < f [u]

Quite Enough Done

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Strongly Connected Components

Given a directed graph G = (V,E), a strongly connected
component of G is a maximal set of vertices C ⊆ V such that
∀u, v,∈ C there exists a directed path both from u to b and
from v to u

The algorithm uses the transpose of a directed graph
G = (V,E), where the orientations are flipped:

GT = (V,ET), where ET = {(v, u) | (u, v) ∈ E}

What is running time to create GT ?
Note: G and GT have the same Strongly Connected
Components

u and v are both reachable from each other in G if and only if
they are both reachable with the orientations flipped (GT).

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Finding Strongly Connected Components

1 Call DFS(G) to topologically sort G

2 Compute GT

3 Call DFS(GT) but consider vertices in topologically sorteded
order (from G)

4 Vertices in each tree of depth-first forest for SCC

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Component Graph

GSCC(G) = (V SCC, ESCC)

V SCC has one vertex for each strongly connected component
of G

e ∈ ESCC is there is an edge between corresponding SCC’s in
G

Lemma

GSCC is a DAG

For C ⊆ V , f(C) def= maxv∈C{f [v]}

Jeff Linderoth IE170:Lecture 17

BFS
DFS

More Lemma

Lemma

Let C and C ′ be distinct SCC in G,

if (u, v) ∈ E and u ∈ C, v ∈ C ′, then f(C) > f(C ′)
if (u, v) ∈ ET and u ∈ C, v ∈ C ′, then f(C) < f(C ′)
If f(C) > f(C ′), there is no edge from C to C ′ in GT

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Why SCC Works. (Intuition)

DFS on GT starts with SCC C such that f(C) is maximum.
Since f(C) > f(C ′), there are no edges from C to C ′ in GT

This means that the DFS will visit only vertices in C

The next root has the largest f(C ′) for all C ′ 6= C. DFS visits
all vertices in C ′, and any other edges must go to C, which
we have already visited..

Jeff Linderoth IE170:Lecture 17

BFS
DFS

Next Time

Spanning Trees

Jeff Linderoth IE170:Lecture 17

