IE170: Algorithms in Systems Engineering:

Lecture 18

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

March 12, 2007

Jeff Linderoth IE170:Lecture 18

DFS Review The Algorithm
Theorems and Analysis
Edge Classification

A Canonical Problem

@ A town as a set of houses and a set of potential roads
@ Each each connects two and only two houses

e Constructing road from house u to house w costs w,,

The Objective: Construct roads such that

© Everyone is Connected

@ The total repair cost is minimum

Jeff Linderoth IE170:Lecture 18

Taking Stock

@ Topological Sort: Making the Perfect Martini

@ Strongly Connected Components

This Time: Uses of DFS
@ Turn in Homework Now, please!

@ Minimum Spanning Trees

Jeff Linderoth IE170:Lecture 18
DFS Review The Algorithm

Theorems and Analysis

Edge Classification

Spanning Tree

@ We model the problem as a graph problem.
e G = (V,E) is an undirected graph
o Weights w : E — RIZI
® Wyy Y(u,v) € E
e Find T' C E such that

@ 7T connects all vertices
@ The weight

is minimized

Jeff Linderoth IE170:Lecture 18

DFS Review The Algorithm DFS Review The Algorithm
Theorems and Analysis Theorems and Analysis

Edge Classification Edge Classification

Spanning TREE How to Build It!?

Let A be a set of edges (initially empty)

Add to A keeping the following loop invariant:

A is always a subset of some MST

Call edge (u,v) € F safe for A if AU {(u,v)} is also a subset
of a MST.

The goal for the algorithms is to quickly detect and add safe
edges.

GENERIC-MST(V, E, w)
A—10

while A is not a spanning tree
do find (u,v) € E that is safe for A

e AU

Jeff Linderoth IE170:Lecture 18 Jeff Linderoth IE170:Lecture 18
DFS Review The Algorithm DFS Review The Algorithm

@ The notation T' is not a coincidence.
@ The set of edges T will form a tree. (Why?)

@ This subset is known as a minimum spanning tree (MST) of G

G~ N

Theorems and Analysis Theorems and Analysis
Edge Classification Edge Classification

Finding Safe Edges Some Definitions for graph G = (V, F)

@ A cut (S,V\S) is a partition of the vertices into disjoint sets
Sand V\ S

@ An edge (u,v) € E crosses cut (S, V'\ S) is one endpoint is in
S and the otherisin V'\ S

@ A cut respects a set of edges A C E' if and only if no edge in
A crosses the cut

How do | know if (u,v) is safe? (Intuition)

@ Let S C V be any set of vertices that includes u but not v

@ In any MST there must be at least one edge that connects
S to V'\ S, so let's make the greedy choice of choosing the
one with the minimum weight

Let A be a subset of some MST, let (S,V \ S) be a cut that
respects A, and let (u,v) be the minimum weight edge crossing

% (S,V'\'S). Then (u,v) is safe for A %
Proof?

Jeff Linderoth IE170:Lecture 18 Jeff Linderoth IE170:Lecture 18

Topological Sort Topological Sort

Kruskal's Algorithm Kruskal's Algorithm

KRUSKAL(V, E, w)

A0

for each v in V

do MAKE-SET(v)

SORT(FE, w)

for each (u,v) in (sorted) E

do if FIND-SET(u) # FIND-SET(v)
then A — AU {(u,v)}

UNION(u, v)return A

Jeff Linderoth IE170:Lecture 18 Jeff Linderoth IE170:Lecture 18

© Start with each vertex being its own component

© Merge two components into one by choosing the light edge
that connects them

© Scans the set of edges in increasing order of weight
© It uses an abstract “disjoint sets” data structure to determine
if an edge connects different vertices in different sets.

@ We will use Java Collections Classes

o Less efficient
e Easier to Code!

O NO Ol A~ WDN B

Topological Sort Topological Sort

Analysis We Skipped That Chapter!

@ If we use a clever data structure for FIND-SET and UNION, the

@ Let 7(X) be the running time of the method X’ running time can go to a(m,n), where m is the total number

Task Running Time of operations, and n is the number of unions.

Initialize A O(1) @ a(m,n) is the inverse of the Ackerman function, which is a
First for loop |V |T (MAKE-SET) slowly growing function.

Sort £ O(ElgFE)

@ a(m,n) < 4 for all practical purposes
Second for loop O(FE)(7 (FIND-SET + UNION) () < P purp

@ In this case, we have that the operations take «(|E|, |V])

Jeff Linderoth IE170:Lecture 18 Jeff Linderoth IE170:Lecture 18

Topological Sort Topological Sort

Kruskal Analysis Prim's Algorithm

@ Also, you should know that «(|E|,|V]) = O(Ilg |V]) Builds one tree, so A is always a tree

e Finally, not that @ Let V4 be the set of vertices on which A is incident
|E| < |V]?=1g|E| = 0(21g|V]) = O(g|V]) e Start from an arbitrary root r

@ Therefore the running time for Kruskal's Algorithm is @ At each step find a light edge crossing the cut (V4,V \ Vy4)
O(IE|1g[V]).

o If the edges are already sorted, it runs in O(|E|a(|E|,|V])), Main Question for Prim..

which is essentially linear

How do we find a light edge crossing the cut quickly?

Jeff Linderoth IE170:Lecture 18 Jeff Linderoth IE170:Lecture 18

Topological Sort Topological Sort

Prim's Algorithm Prim's Algorithm

Use a priority queue! @ Prim’s Algorithm starts from an (arbitrary) vertex (the root)
@ We built a priority queue in Lab 4. heaps are priority queues o It keeps track of the parent m[v] of every vertex v. (m[r] =
NIL).
° Ez?ch objec.t in the queue is a vertex in V'\ V4 (A vertex that o As the algorithm processes A = {(v,7[v]) | v e V' \ {r}\ Q}
might be linked to our MST) @ At termination, V4=V = Q =0, so MST is
@ The key of v is the minimum weight of any edge (u,v) such
that u € V. A={(v,m[v]) [veV\{r}}.
@ The key of v is 0o if v is not adjacent to any vertices in V4

Jeff Linderoth IE170:Lecture 18 Jeff Linderoth IE170:Lecture 18

Topological Sort Topological Sort

Pseudocode for Prim

PriM(V, E,w,r)
1 Q0
2 for eachuecV
do keylu] « oo
7[u] «— NILINSERT(Q, u)
key[r] =0

3 Next Time: Happy Dats
4
5
6 while Q # 0 e | have to go to Pittsburgh
-
3
9

do u < EXTRACT-MIN(Q) @ Substitute Lecturer on Wednesday
for each v € Adj[u]

do if v € Q and wy, < key|v]
10 then 7[v] — u
11 key[v] = wayy

@ Also no Office Hours on Wednesday

Jeff Linderoth IE170:Lecture 18 Jeff Linderoth IE170:Lecture 18

