Taking Stock

IE170: Algorithms in Systems Engineering: Lecture 18

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

March 12, 2007

Last Time

- Topological Sort: Making the Perfect Martini
- Strongly Connected Components

This Time: Uses of DFS

- Turn in Homework Now, please!
- Minimum Spanning Trees

A Canonical Problem

- A town as a set of houses and a set of potential roads
- Each each connects two and only two houses
- Constructing road from house u to house w costs w_{uv}

The Objective: Construct roads such that

- Everyone is Connected
- Provide the second s

Spanning Tree

- We model the problem as a graph problem.
- G = (V, E) is an undirected graph
- Weights $w: E \to \mathbb{R}^{|E|}$
 - $w_{uv} \ \forall (u,v) \in E$
- $\bullet~\mbox{Find}~T\subset E$ such that
 - T connects all vertices
 - 2 The weight

$$w(T) \stackrel{\text{def}}{=} \sum_{(u,v)\in T} w_{uv}$$

is minimized

- The notation T is not a coincidence.
- The set of edges T will form a tree. (Why?)
- This subset is known as a minimum spanning tree (MST) of G

- Let A be a set of edges (initially empty)
- Add to A keeping the following loop invariant:
- A is always a subset of some MST
- Call edge $(u, v) \in E$ safe for A if $A \cup \{(u, v)\}$ is also a subset of a MST.
- The goal for the algorithms is to quickly detect and add safe edges.

GENERIC-MST(V, E, w)

- 1 $A \leftarrow \emptyset$
- 2 while A is not a spanning tree
- 3 do find $(u, v) \in E$ that is safe for A
- 4 $A \leftarrow A \cup \{(u, v)\}$
- 5 return A

Finding Safe Edges

Some Definitions for graph G = (V, E)

- A cut $(S, V \setminus S)$ is a partition of the vertices into disjoint sets S and $V \setminus S$
- An edge $(u,v)\in E$ crosses cut $(S,V\setminus S)$ is one endpoint is in S and the other is in $V\setminus S$
- A cut respects a set of edges $A \subseteq E$ if and only if no edge in A crosses the cut

MST Theorem

Let A be a subset of some MST, let $(S, V \setminus S)$ be a cut that respects A, and let (u, v) be the minimum weight edge crossing $(S, V \setminus S)$. Then (u, v) is safe for A

Proof?

- $\bullet \ \mbox{Let} \ S \subset V$ be any set of vertices that includes u but not v
- In any MST there must be at least one edge that connects S to $V\setminus S$, so let's make the greedy choice of choosing the one with the minimum weight

Kruskal's Algorithm

- Start with each vertex being its own component
- Over the set of the
- Scans the set of edges in increasing order of weight
- It uses an abstract "disjoint sets" data structure to determine if an edge connects different vertices in different sets.
- We will use Java Collections Classes
 - Less efficient
 - Easier to Code!

Kruskal's Algorithm

- $\begin{array}{l} \text{KRUSKAL}(V, E, w) \\ 1 \quad A \leftarrow \emptyset \end{array}$
- 2 for each v in V
- 3 **do** Make-set(v)
- 4 SORT(E, w)
- 5 for each (u, v) in (sorted) E
- 6 do if Find-Set $(u) \neq$ Find-Set(v)
- 7 **then** $A \leftarrow A \cup \{(u, v)\}$
- 8 UNION(u, v)return A

Analysis

We Skipped That Chapter!

 \bullet Let $\mathcal{T}(\mathcal{X})$ be the running time of the method \mathcal{X}

Task	Running Time
Initialize A	O(1)
First for loop	$ V \mathcal{T}(ext{make-set})$
Sort E	$O(E \lg E)$
Second for loop	$O(E)(\mathcal{T}(\text{FIND-SET} + \text{UNION}))$

- If we use a clever data structure for FIND-SET and UNION, the running time can go to $\alpha(m, n)$, where m is the total number of operations, and n is the number of unions.
- $\alpha(m,n)$ is the inverse of the Ackerman function, which is a slowly growing function.
- $\alpha(m,n) \leq 4$ for all practical purposes
- $\bullet\,$ In this case, we have that the operations take $\alpha(|E|,|V|)$

- \bullet Also, you should know that $\alpha(|E|,|V|) = O(\lg |V|)$
- Finally, not that $|E| \le |V|^2 \Rightarrow \lg |E| = O(2 \lg |V|) = O(\lg |V|)$
- Therefore the running time for Kruskal's Algorithm is $O(|E| \lg |V|).$
- If the edges are already sorted, it runs in $O(|E|\alpha(|E|,|V|)),$ which is essentially linear

Prim's Algorithm

- $\bullet\,$ Builds one tree, so A is always a tree
- Let V_A be the set of vertices on which A is incident
- Start from an arbitrary root r

Strongly Connected

• At each step find a light edge crossing the cut $(V_A, V \setminus V_A)$

Main Question for Prim..

How do we find a light edge crossing the cut quickly?

Jeff Linderoth	IE170:Lecture 18	Jeff Linderoth	IE170:Lecture 18
DFS Review		DFS Review	
Topological Sort		Topological Sort	
Strongly Connected Components		Strongly Connected Components	

Prim's Algorithm

The Answer!

- Use a priority queue!
- We built a priority queue in Lab 4. heaps are priority queues
- Each object in the queue is a vertex in $V \setminus V_A$ (A vertex that might be linked to our MST)
- The key of v is the minimum weight of any edge (u, v) such that $u \in V_A$.
- The key of v is ∞ if v is not adjacent to any vertices in V_A

Jeff Linderoth

Prim's Algorithm

- Prim's Algorithm starts from an (arbitrary) vertex (the root r)
- It keeps track of the parent $\pi[v]$ of every vertex v. ($\pi[r] = _{\rm NIL}$).
- As the algorithm processes $A = \{(v, \pi[v]) \mid v \in V \setminus \{r\} \setminus Q\}$
- At termination, $V_A = V \Rightarrow Q = \emptyset$, so MST is

 $A = \{(v,\pi[v]) \mid v \in V \setminus \{r\}\}.$

Pseudocode for Prim

PRIM(V, E, w, r)1 $Q \leftarrow \emptyset$ 2 for each $u \in V$ 3 **do** $key[u] \leftarrow \infty$ $\pi[u] \leftarrow \text{NILINSERT}(Q, u)$ 4 5 key[r] = 06 while $Q \neq \emptyset$ **do** $u \leftarrow \text{Extract-Min}(Q)$ 7 for each $v \in Adj[u]$ 8 do if $v \in Q$ and $w_{uv} < key[v]$ 9 then $\pi[v] \leftarrow u$ 10 $key[v] = w_{uv}$ 11

Jeff Linderoth IE170:Lecture 18

Next Time: Happy Dats

- I have to go to Pittsburgh
- Substitute Lecturer on Wednesday
- Also no Office Hours on Wednesday

Jeff Linderoth IE170:Lecture 18

