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Taking Stock

Last Time

Topological Sort: Making the Perfect Martini

Strongly Connected Components

This Time: Uses of DFS

Turn in Homework Now, please!

Minimum Spanning Trees
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A Canonical Problem

A town as a set of houses and a set of potential roads

Each each connects two and only two houses

Constructing road from house u to house w costs wuv

The Objective: Construct roads such that

1 Everyone is Connected

2 The total repair cost is minimum
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Spanning Tree

We model the problem as a graph problem.

G = (V,E) is an undirected graph

Weights w : E → R|E|

wuv ∀(u, v) ∈ E

Find T ⊂ E such that
1 T connects all vertices
2 The weight

w(T ) def=
∑

(u,v)∈T

wuv

is minimized
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Spanning TREE

The notation T is not a coincidence.

The set of edges T will form a tree. (Why?)

This subset is known as a minimum spanning tree (MST) of G
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How to Build It!?

Let A be a set of edges (initially empty)

Add to A keeping the following loop invariant:

A is always a subset of some MST

Call edge (u, v) ∈ E safe for A if A ∪ {(u, v)} is also a subset
of a MST.

The goal for the algorithms is to quickly detect and add safe
edges.

Generic-MST(V,E, w)
1 A← ∅
2 while A is not a spanning tree
3 do find (u, v) ∈ E that is safe for A
4 A← A ∪ {(u, v)}
5 return A
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Finding Safe Edges

How do I know if (u, v) is safe? (Intuition)

Let S ⊂ V be any set of vertices that includes u but not v

In any MST there must be at least one edge that connects
S to V \ S, so let’s make the greedy choice of choosing the
one with the minimum weight
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Some Definitions for graph G = (V, E)

A cut (S, V \ S) is a partition of the vertices into disjoint sets
S and V \ S

An edge (u, v) ∈ E crosses cut (S, V \ S) is one endpoint is in
S and the other is in V \ S

A cut respects a set of edges A ⊆ E if and only if no edge in
A crosses the cut

MST Theorem

Let A be a subset of some MST, let (S, V \ S) be a cut that
respects A, and let (u, v) be the minimum weight edge crossing
(S, V \ S). Then (u, v) is safe for A

Proof?
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Kruskal’s Algorithm

1 Start with each vertex being its own component

2 Merge two components into one by choosing the light edge
that connects them

3 Scans the set of edges in increasing order of weight

4 It uses an abstract “disjoint sets” data structure to determine
if an edge connects different vertices in different sets.

5 We will use Java Collections Classes

Less efficient
Easier to Code!
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kruskal(V,E, w)
1 A← ∅
2 for each v in V
3 do make-set(v)
4 sort(E,w)
5 for each (u, v) in (sorted) E
6 do if Find-Set(u) 6= Find-Set(v)
7 then A← A ∪ {(u, v)}
8 Union(u, v)return A
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Analysis

Let T (X ) be the running time of the method X

Task Running Time
Initialize A O(1)
First for loop |V |T (make-set)
Sort E O(E lg E)
Second for loop O(E)(T (find-set + union)
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We Skipped That Chapter!

If we use a clever data structure for find-set and union, the
running time can go to α(m,n), where m is the total number
of operations, and n is the number of unions.

α(m,n) is the inverse of the Ackerman function, which is a
slowly growing function.

α(m,n) ≤ 4 for all practical purposes

In this case, we have that the operations take α(|E|, |V |)
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Also, you should know that α(|E|, |V |) = O(lg |V |)
Finally, not that
|E| ≤ |V |2 ⇒ lg |E| = O(2 lg |V |) = O(lg |V |)
Therefore the running time for Kruskal’s Algorithm is
O(|E| lg |V |).
If the edges are already sorted, it runs in O(|E|α(|E|, |V |)),
which is essentially linear

Jeff Linderoth IE170:Lecture 18

DFS Review
Topological Sort

Strongly Connected Components

Prim’s Algorithm

Builds one tree, so A is always a tree

Let VA be the set of vertices on which A is incident

Start from an arbitrary root r

At each step find a light edge crossing the cut (VA, V \ VA)

Main Question for Prim..

How do we find a light edge crossing the cut quickly?
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The Answer!

Use a priority queue!

We built a priority queue in Lab 4. heaps are priority queues

Each object in the queue is a vertex in V \ VA (A vertex that
might be linked to our MST)

The key of v is the minimum weight of any edge (u, v) such
that u ∈ VA.

The key of v is ∞ if v is not adjacent to any vertices in VA
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Prim’s Algorithm

Prim’s Algorithm starts from an (arbitrary) vertex (the root r)

It keeps track of the parent π[v] of every vertex v. (π[r] =
nil).

As the algorithm processes A = {(v, π[v]) | v ∈ V \ {r} \Q}
At termination, VA = V ⇒ Q = ∅, so MST is

A = {(v, π[v]) | v ∈ V \ {r}}.
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Pseudocode for Prim

Prim(V,E, w, r)
1 Q← ∅
2 for each u ∈ V
3 do key[u]←∞
4 π[u]← nilInsert(Q, u)
5 key[r] = 0
6 while Q 6= ∅
7 do u← Extract-Min(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and wuv < key[v]

10 then π[v]← u
11 key[v] = wuv
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Next Time: Happy Dats

I have to go to Pittsburgh

Substitute Lecturer on Wednesday

Also no Office Hours on Wednesday
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