Taking Stock

IE170: Algorithms in Systems Engineering: Lecture 19

Last Time

- Minimum Spanning Trees

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

March 16, 2007

This Time

- More Spanning Trees
- Strongly Connected Components

Spanning Tree

- We model the problem as a graph problem.
- $G=(V, E)$ is an undirected graph
- Weights $w: E \rightarrow \mathbb{R}^{|E|}$
- $w_{u v} \forall(u, v) \in E$
- Find $T \subset E$ such that
(1) T connects all vertices
(2) The weight

$$
w(T) \stackrel{\text { def }}{=} \sum_{(u, v) \in T} w_{u v}
$$

is minimized

Jeff Linderoth
 $\underset{\substack{\text { Algorithms }}}{\text { Spanning Trees }}$
 E170:Lecture 19

Kruskal's Algorithm

(1) Start with each vertex being its own component
(2) Merge two components into one by choosing the light edge that connects them
(3) Scans the set of edges in increasing order of weight
(1) It uses an abstract "disjoint sets" data structure to determine if an edge connects different vertices in different sets.
© We used Java Collections Classes

Kruskal's Algorithm

$\operatorname{kruskal}(V, E, w)$
$A \leftarrow \emptyset$
for each v in V
do MAKE-SET (v)
$\operatorname{sort}(E, w)$
for each (u, v) in (sorted) E
do if $\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)$
then $A \leftarrow A \cup\{(u, v)\}$
$\operatorname{Union}(u, v)$ return A

Analysis

- Let $\mathcal{T}(\mathcal{X})$ be the running time of the method \mathcal{X}

Task

Running Time

Initialize $A \quad O(1)$
First for loop $\quad|V| \mathcal{T}$ (MAKE-SET)
Sort $E \quad O(E \lg E)$
Second for loop $O(E)(\mathcal{T}$ (FIND-SET + UNION $)$)

We Skipped That Chapter!

- If we use a clever data structure for FIND-SET and UNION, the running time can go to $\alpha(m, n)$, where m is the total number of operations, and n is the number of unions.
- $\alpha(m, n)$ is the inverse of the Ackerman function, which is a slowly growing function.
- $\alpha(m, n) \leq 4$ for all practical purposes
- In this case, we have that the operations take $\alpha(|E|,|V|)$

Kruskal Analysis

- Also, you should know that $\alpha(|E|,|V|)=O(\lg |V|)$
- Finally, not that
$|E| \leq|V|^{2} \Rightarrow \lg |E|=O(2 \lg |V|)=O(\lg |V|)$
- Therefore the running time for Kruskal's Algorithm is $O(|E| \lg |V|)$.
- If the edges are already sorted, it runs in $O(|E| \alpha(|E|,|V|))$, which is essentially linear

Prim's Algorithm

- Builds one tree, so A is always a tree
- Let V_{A} be the set of vertices on which A is incident
- Start from an arbitrary root r
- At each step find a light edge crossing the cut ($V_{A}, V \backslash V_{A}$)

Main Question for Prim.

How do we find a light edge crossing the cut quickly?

Jeff Linderoth Spanning Trees Algorithms Algorithr	\|E170:Lecture 19	$\begin{aligned} & \text { Jeff Linderoth } \\ & \text { Spanning Trees } \end{aligned}$	IE170:Lecture 19

Prim's Algorithm

- Prim's Algorithm starts from an (arbitrary) vertex (the root r)
- It keeps track of the parent $\pi[v]$ of every vertex $v .(\pi[r]=$ NIL).
- As the algorithm processes $A=\{(v, \pi[v]) \mid v \in V \backslash\{r\} \backslash Q\}$
- At termination, $V_{A}=V \Rightarrow Q=\emptyset$, so MST is

$$
A=\{(v, \pi[v]) \mid v \in V \backslash\{r\}\}
$$

Pseudocode for Prim

```
\(\operatorname{Prim}(V, E, w, r)\)
    \(Q \leftarrow \emptyset\)
    for each \(u \in V\)
    do \(k e y[u] \leftarrow \infty\)
        \(\pi[u] \leftarrow \operatorname{NiLInSert}(Q, u)\)
        \(k e y[r]=0\)
    while \(Q \neq \emptyset\)
    do \(u \leftarrow \operatorname{Extract-Min}(Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
        do if \(v \in Q\) and \(w_{u v}<k e y[v]\)
        then \(\pi[v] \leftarrow u\)
            \(k e y[v]=w_{u v}\)
```


Prim's Algorithm

The Answer!

- Use a priority queue!
- We built a priority queue in Lab 4. heaps are priority queues
- Each object in the queue is a vertex in $V \backslash V_{A}$ (A vertex that might be linked to our MST)
- The key of v is the minimum weight of any edge (u, v) such that $u \in V_{A}$.
- The key of v is ∞ if v is not adjacent to any vertices in V_{A}

Demo Time!

- Udom and I wrote some code so that we can display our graphs.

Finding Strongly Connected Components

(1) Call $\operatorname{DFS}(G)$ to topologically sort G
(2) Compute G^{T}
(3) Call $\operatorname{DFS}\left(G^{T}\right)$ but consider vertices in topologically sorteded order (from G)
(9) Vertices in each tree of depth-first forest for SCC

Strongly Connected Components

- Given a directed graph $G=(V, E)$, a strongly connected component of G is a maximal set of vertices $C \subseteq V$ such that $\forall u, v, \in C$ there exists a directed path both from u to b and from v to u
- The algorithm uses the transpose of a directed graph $G=(V, E)$, where the orientations are flipped:

$$
G^{T}=\left(V, E^{T}\right), \text { where } E^{T}=\{(v, u) \mid(u, v) \in E\}
$$

- What is running time to create G^{T} ?
- Note: G and G^{T} have the same Strongly Connected Components
- u and v are both reachable from each other in G if and only if they are both reachable with the orientations flipped $\left(G^{T}\right)$.

Jeff Linderoth	IE170:Lecture 19		
Spanning Trees			
Algorithms		\quad	Kruskal
:---			
Prim			

Component Graph

- $G^{\mathrm{SCC}_{(}}(G)=\left(V^{\mathrm{SCC}}, E \mathrm{SCC}\right)$
- V^{SCC} has one vertex for each strongly connected component of G
- $e \in E^{\mathrm{SCC}}$ is there is an edge between corresponding SCC's in G

Lemma
 G^{SCC} is a DAG

- For $C \subseteq V, f(C) \stackrel{\text { def }}{=} \max _{v \in C}\{f[v]\}$

More Lemma

Lemma

Let C and C^{\prime} be distinct SCC in G,

- if $(u, v) \in E$ and $u \in C, v \in C^{\prime}$, then $f(C)>f\left(C^{\prime}\right)$
- if $(u, v) \in E^{T}$ and $u \in C, v \in C^{\prime}$, then $f(C)<f\left(C^{\prime}\right)$
- If $f(C)>f\left(C^{\prime}\right)$, there is no edge from C to C^{\prime} in G^{T}

Why SCC Works. (Intuition)

- DFS on G^{T} starts with SCC C such that $f(C)$ is maximum. Since $f(C)>f\left(C^{\prime}\right)$, there are no edges from C to C^{\prime} in G^{T}
- This means that the DFS will visit only vertices in C
- The next root has the largest $f\left(C^{\prime}\right)$ for all $C^{\prime} \neq C$. DFS visits all vertices in C^{\prime}, and any other edges must go to C, which we have already visited..

Next Time

- Shortest Paths

