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Spanning Tree

We model the problem as a graph problem.

G = (V,E) is an undirected graph

Weights w : E → R|E|

wuv ∀(u, v) ∈ E

Find T ⊂ E such that
1 T connects all vertices
2 The weight

w(T ) def=
∑

(u,v)∈T

wuv

is minimized
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Kruskal’s Algorithm

1 Start with each vertex being its own component

2 Merge two components into one by choosing the light edge
that connects them

3 Scans the set of edges in increasing order of weight

4 It uses an abstract “disjoint sets” data structure to determine
if an edge connects different vertices in different sets.

5 We used Java Collections Classes
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Kruskal’s Algorithm

kruskal(V,E, w)
1 A← ∅
2 for each v in V
3 do make-set(v)
4 sort(E,w)
5 for each (u, v) in (sorted) E
6 do if Find-Set(u) 6= Find-Set(v)
7 then A← A ∪ {(u, v)}
8 Union(u, v)return A
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Analysis

Let T (X ) be the running time of the method X

Task Running Time
Initialize A O(1)
First for loop |V |T (make-set)
Sort E O(E lg E)
Second for loop O(E)(T (find-set + union))
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We Skipped That Chapter!

If we use a clever data structure for find-set and union, the
running time can go to α(m,n), where m is the total number
of operations, and n is the number of unions.

α(m,n) is the inverse of the Ackerman function, which is a
slowly growing function.

α(m,n) ≤ 4 for all practical purposes

In this case, we have that the operations take α(|E|, |V |)
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Kruskal Analysis

Also, you should know that α(|E|, |V |) = O(lg |V |)
Finally, not that
|E| ≤ |V |2 ⇒ lg |E| = O(2 lg |V |) = O(lg |V |)
Therefore the running time for Kruskal’s Algorithm is
O(|E| lg |V |).
If the edges are already sorted, it runs in O(|E|α(|E|, |V |)),
which is essentially linear
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Prim’s Algorithm

Builds one tree, so A is always a tree

Let VA be the set of vertices on which A is incident

Start from an arbitrary root r

At each step find a light edge crossing the cut (VA, V \ VA)

Main Question for Prim..

How do we find a light edge crossing the cut quickly?
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Prim’s Algorithm

The Answer!

Use a priority queue!

We built a priority queue in Lab 4. heaps are priority queues

Each object in the queue is a vertex in V \ VA (A vertex that
might be linked to our MST)

The key of v is the minimum weight of any edge (u, v) such
that u ∈ VA.

The key of v is ∞ if v is not adjacent to any vertices in VA
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Prim’s Algorithm

Prim’s Algorithm starts from an (arbitrary) vertex (the root r)

It keeps track of the parent π[v] of every vertex v. (π[r] =
nil).

As the algorithm processes A = {(v, π[v]) | v ∈ V \ {r} \Q}
At termination, VA = V ⇒ Q = ∅, so MST is

A = {(v, π[v]) | v ∈ V \ {r}}.
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Pseudocode for Prim

Prim(V,E, w, r)
1 Q← ∅
2 for each u ∈ V
3 do key[u]←∞
4 π[u]← nilInsert(Q, u)
5 key[r] = 0
6 while Q 6= ∅
7 do u← Extract-Min(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and wuv < key[v]

10 then π[v]← u
11 key[v] = wuv
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Demo Time!

Udom and I wrote some code so that we can display our
graphs.
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Strongly Connected Components

Given a directed graph G = (V,E), a strongly connected
component of G is a maximal set of vertices C ⊆ V such that
∀u, v,∈ C there exists a directed path both from u to b and
from v to u

The algorithm uses the transpose of a directed graph
G = (V,E), where the orientations are flipped:

GT = (V,ET ), where ET = {(v, u) | (u, v) ∈ E}

What is running time to create GT ?
Note: G and GT have the same Strongly Connected
Components

u and v are both reachable from each other in G if and only if
they are both reachable with the orientations flipped (GT ).
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Finding Strongly Connected Components

1 Call DFS(G) to topologically sort G

2 Compute GT

3 Call DFS(GT ) but consider vertices in topologically sorteded
order (from G)

4 Vertices in each tree of depth-first forest for SCC
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Component Graph

GSCC(G) = (V SCC, ESCC)

V SCC has one vertex for each strongly connected component
of G

e ∈ ESCC is there is an edge between corresponding SCC’s in
G

Lemma

GSCC is a DAG

For C ⊆ V , f(C) def= maxv∈C{f [v]}
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More Lemma

Lemma

Let C and C ′ be distinct SCC in G,

if (u, v) ∈ E and u ∈ C, v ∈ C ′, then f(C) > f(C ′)
if (u, v) ∈ ET and u ∈ C, v ∈ C ′, then f(C) < f(C ′)
If f(C) > f(C ′), there is no edge from C to C ′ in GT
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Why SCC Works. (Intuition)

DFS on GT starts with SCC C such that f(C) is maximum.
Since f(C) > f(C ′), there are no edges from C to C ′ in GT

This means that the DFS will visit only vertices in C

The next root has the largest f(C ′) for all C ′ 6= C. DFS visits
all vertices in C ′, and any other edges must go to C, which
we have already visited..
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Next Time

Shortest Paths
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