i B s B
Taking Stock

@ Minimum Spanning Trees
Department of Industrial and Systems Engineering

Lehigh University @ More Spanning Trees

|[E170: Algorithms in Systems Engineering:

Lecture 19

Jeff Linderoth

@ Strongly Connected Components
March 16, 2007

Jeff Linderoth IE170:Lecture 19 Jeff Linderoth IE170:Lecture 19

Spanning Trees Spanning Trees

Spanning Tree Kruskal's Algorithm

@ We model the problem as a graph problem.

e G = (V,E) is an undirected graph @ Start with each vertex being its own component
o Weights w : E — RIZI @ Merge two components into one by choosing the light edge
o Wy, V(u,v) € E that connects them

e Find T' C E such that © Scans the set of edges in increasing order of weight

© T connects all vertices @ It uses an abstract “disjoint sets” data structure to determine

© The weight ot if an edge connects different vertices in different sets.

w(T) = Z Wuo © We used Java Collections Classes
(u,v)eT
is minimized

Jeff Linderoth IE170:Lecture 19 Jeff Linderoth IE170:Lecture 19

Spanning Trees Spanning Trees

Kruskal's Algorithm Analysis

KRUSKAL(V, E, w)

1 A1

> for each vinV @ Let 7(X) be the running time of the method X
3 do MAKE-SET(v) Task Running Time

4 SORT(E,w) Initialize A O(1)

5 for each (u,v) in (sorted) E First for loop |V|T (MAKE-SET)

6 do if FIND-SET(u) # FIND-SET(v) Sort O(FlgE)

7 then A — AU {(u,v)} Second for loop O(FE)(7 (FIND-SET + UNION))

8 UNION(u, v)return A

Jeff Linderoth IE170:Lecture 19 Jeff Linderoth IE170:Lecture 19

Spanning Trees Spanning Trees

We Skipped That Chapter! Kruskal Analysis

o If we use a clever data structure for FIND-SET and UNION, the @ Also, you should know that «(|E|,|V]) = O(Ig |V])
running time can go to a(m,n), where m is the total number o Finally, not that
of operations, and n is the number of unions. |E| < V]2 = 1g|E| = 021g|V]) = 0(g|V])

® a(m,n) is the inverse of the Ackerman function, which is a @ Therefore the running time for Kruskal's Algorithm is
slowly growing function. O(|E|1g|V]).

® a(m,n) < 4 for all practical purposes o If the edges are already sorted, it runs in O(|E|a(|E], |V])),

@ In this case, we have that the operations take a(|E], |V]) which is essentially linear

Jeff Linderoth IE170:Lecture 19 Jeff Linderoth IE170:Lecture 19

Spanning Trees Spanning Trees

Prim’s Algorithm Prim’s Algorithm

@ Builds one tree, so A is always a tree Use a priority queue!

@ Let V4 be the set of vertices on which A is incident

We built a priority queue in Lab 4. heaps are priority queues

e Start from an arbitrary root r

o At each step find a light edge crossing the cut (Va, V \ V) Each object in the queue is a vertex in V' \ V4 (A vertex that

might be linked to our MST)

The key of v is the minimum weight of any edge (u,v) such
that u € V.

The key of v is 0o if v is not adjacent to any vertices in V4

Jeff Linderoth IE170:Lecture 19 Jeff Linderoth IE170:Lecture 19

Main Question for Prim..

How do we find a light edge crossing the cut quickly?

Spanning Trees Spanning Trees

Prim's Algorithm Pseudocode for Prim

PriM(V, E, w,)
1 Q0
2 for eachucV

@ Prim’s Algorithm starts from an (arbitrary) vertex (the root)
3 do keylu] «— oo

o It keeps track of the parent 7[v] of every vertex v. (w[r] =

4 7[u] < NILINSERT(Q, u
NIL). 5 /{:Ly][r] =0)
@ As the algorithm processes A = {(v,w[v]) | v € V \ {r}\ Q} 6 while Q #
o At termination, V4 =V = Q =0, so MST is 7 do u «+— EXTRACT-MIN(Q)
8 for each v € Adj[u]
A={(v,m[v]) [veV\{r}}. 9 do if v € Q and wy, < key[v]
10 then 7[v] — u
11 keylv] = wyy

<&
<&

Jeff Linderoth IE170:Lecture 19 Jeff Linderoth IE170:Lecture 19

Spanning Trees Kruskal

Algorithms Prim

Demo Time! Strongly Connected Components

e Given a directed graph G = (V| E), a strongly connected
component of (G is a maximal set of vertices C' C V such that
Yu, v, € C there exists a directed path both from u to b and
from v to u

@ The algorithm uses the transpose of a directed graph

@ Udom and | wrote some code so that we can display our) ; .
G = (V, E), where the orientations are flipped:

graphs.
GT = (V,ET), where ET = {(v,u) | (u,v) € E}

@ What is running time to create G*?

e Note: G and GT have the same Strongly Connected
Components

e u and v are both reachable from each other in G if and only if
they are both reachable with the orientations flipped (G7).

Jeff Linderoth IE170:Lecture 19 Jeff Linderoth IE170:Lecture 19
Kruskal Kruskal

Algorithms Prim Algorithms Prim

Finding Strongly Connected Components Component Graph

° GSCC(G) _ (VSCC7ESCC)

o VSCC has one vertex for each strongly connected component
of G

o ¢ € BOCC is there is an edge between corresponding SCC's in

@ Call DFS(G) to topologically sort G
@ Compute GT

© Call DFS(GT) but consider vertices in topologically sorteded G
order (from G)
@ Vertices in each tree of depth-first forest for SCC
G5C¢C s a DAG

e ForCCV, f(C) o maxyecq{ flv]}

Jeff Linderoth IE170:Lecture 19 Jeff Linderoth IE170:Lecture 19

Kruskal Kruskal
Algorithms Prim

More Lemma Why SCC Works. (Intuition)

Algorithms Prim

o DFS on G7 starts with SCC C such that f(C) is maximum.

Let C' and C’ be distinct SCC in G, Since f(C) > f(C"), there are no edges from C to C’ in GT
o if (u,v) € Eand u e C,v e C’, then f(C) > f(C) @ This means that the DFS will visit only vertices in C
o if (u,v) € ET and u € C,v € C, then f(C) < f(C") @ The next root has the largest f(C’) for all C" # C. DFS visits

o If f(C) > f(C"), there is no edge from C to C" in GT all vertices in C’, and any other edges must go to C, which
: / we have already visited..

IE170:Lecture 19

IE170:Lecture 19 Jeff Linderoth

Kruskal
Algorithms Prim

Jeff Linderoth

Next Time

@ Shortest Paths

Jeff Linderoth IE170:Lecture 19

