Taking Stock

IE170: Algorithms in Systems Engineering: Lecture 19

Department of Industrial and Systems Engineering Lehigh University

March 16, 2007

_ast Time

• Minimum Spanning Trees

This Time

- More Spanning Trees
- Strongly Connected Components

Spanning Tree

- We model the problem as a graph problem.
- G = (V, E) is an undirected graph
- Weights $w: E \to \mathbb{R}^{|E|}$
 - $w_{uv} \ \forall (u,v) \in E$
- $\bullet~\mbox{Find}~T\subset E$ such that
 - T connects all vertices
 - 2 The weight

$$w(T) \stackrel{\text{def}}{=} \sum_{(u,v)\in T} w_{uv}$$

is minimized

Kruskal's Algorithm

- Start with each vertex being its own component
- Merge two components into one by choosing the light edge that connects them
- Scans the set of edges in increasing order of weight
- It uses an abstract "disjoint sets" data structure to determine if an edge connects different vertices in different sets.
- We used Java Collections Classes

Spanning Trees Algorithms

Kruskal's Algorithm

Analysis

KRUSKAL(V, E, w) $A \leftarrow \emptyset$ 1 for each v in V2 **do** MAKE-SET(v)3 SORT(E, w)4 for each (u, v) in (sorted) E5 do if FIND-SET $(u) \neq$ FIND-SET(v)6 then $A \leftarrow A \cup \{(u, v)\}$ 7 8 UNION(u, v)return A

$\bullet \ \mbox{Let} \ {\cal T}({\cal X})$ be the running time of the method ${\cal X}$

Spanning Trees Algorithms

Task	Running Time
Initialize A	O(1)
First for loop	$ V \mathcal{T}(ext{make-set})$
Sort E	$O(E \lg E)$
Second for loop	$O(E)(\mathcal{T}(\text{FIND-SET} + \text{UNION}))$

Jeff Linderoth	IE170:Lecture 19	Jeff Linderoth	IE170:Lecture 19
Spanning Trees Algorithms		Spanning Trees Algorithms	

We Skipped That Chapter!

- If we use a clever data structure for FIND-SET and UNION, the running time can go to $\alpha(m, n)$, where m is the total number of operations, and n is the number of unions.
- $\alpha(m,n)$ is the inverse of the Ackerman function, which is a slowly growing function.
- $\alpha(m,n) \leq 4$ for all practical purposes
- $\bullet\,$ In this case, we have that the operations take $\alpha(|E|,|V|)$

Kruskal Analysis

- Also, you should know that $\alpha(|E|,|V|) = O(\lg |V|)$
- Finally, not that $|E| \le |V|^2 \Rightarrow \lg |E| = O(2\lg |V|) = O(\lg |V|)$
- Therefore the running time for Kruskal's Algorithm is $O(|E| \lg |V|).$
- If the edges are already sorted, it runs in $O(|E|\alpha(|E|,|V|)),$ which is essentially linear

Prim's Algorithm

- Builds one tree, so A is always a tree
- Let V_A be the set of vertices on which A is incident
- Start from an arbitrary root r
- At each step find a light edge crossing the cut $(V_A, V \setminus V_A)$

Main Question for Prim..

How do we find a light edge crossing the cut quickly?

Prim's Algorithm

The Answer!

- Use a priority queue!
- We built a priority queue in Lab 4. heaps are priority queues

Spanning Trees

- Each object in the queue is a vertex in $V \setminus V_A$ (A vertex that might be linked to our MST)
- The key of v is the minimum weight of any edge (u, v) such that $u \in V_A$.
- The key of v is ∞ if v is not adjacent to any vertices in V_A

Jeff Linderoth	IE170:Lecture 19	Jeff Linderoth	IE170:Lecture 19
Spanning Trees		Spanning Trees	
Algorithms		Algorithms	

Prim's Algorithm

- Prim's Algorithm starts from an (arbitrary) vertex (the root r)
- It keeps track of the parent $\pi[v]$ of every vertex v. $(\pi[r] =$ NIL).
- As the algorithm processes $A = \{(v, \pi[v]) \mid v \in V \setminus \{r\} \setminus Q\}$
- At termination, $V_A = V \Rightarrow Q = \emptyset$, so MST is

$$A = \{ (v, \pi[v]) \mid v \in V \setminus \{r\} \}.$$

Pseudocode for Prim

Demo Time!

• Udom and I wrote some code so that we can display our graphs.

Strongly Connected Components

- Given a directed graph G = (V, E), a strongly connected component of G is a maximal set of vertices $C \subseteq V$ such that $\forall u, v, \in C$ there exists a directed path both from u to b and from v to u
- The algorithm uses the transpose of a directed graph G = (V, E), where the orientations are flipped:

 $G^T = (V, E^T), \text{ where } E^T = \{(v, u) \mid (u, v) \in E\}$

- What is running time to create G^T ?
- $\bullet~{\rm Note:}~G~{\rm and}~G^T$ have the same Strongly Connected Components

• u and v are both reachable from each other in G if and only if they are both reachable with the orientations flipped (G^T) .

Jeff Linderoth	IE170:Lecture 19	Jeff Linderoth	IE170:Lecture 19
Spanning Trees Algorithms	Kruskal Prim	Spanning Trees Algorithms	Kruskal Prim

Finding Strongly Connected Components

Overtices in each tree of depth-first forest for SCC

• Call DFS(G) to topologically sort G

2 Compute G^T

order (from G)

Component Graph

- $G^{\mathsf{SCC}}(G) = (V^{\mathsf{SCC}}, E^{\mathsf{SCC}})$
- V^{SCC} has one vertex for each strongly connected component of *G*
- $e \in E^{\mathsf{SCC}}$ is there is an edge between corresponding SCC's in G

Lemma

G^{SCC} is a DAG

• For $C \subseteq V$, $f(C) \stackrel{\text{def}}{=} \max_{v \in C} \{f[v]\}$

3 Call $DFS(G^T)$ but consider vertices in topologically sorteded

annıng	l rees	Kruska
Algori	thms	

More Lemma

Why SCC Works. (Intuition)

Lemma

Let C and C' be distinct SCC in G,

- if $(u,v) \in E$ and $u \in C, v \in C'$, then f(C) > f(C')
- if $(u, v) \in E^T$ and $u \in C, v \in C'$, then f(C) < f(C')
- If f(C) > f(C'), there is no edge from C to C' in G^T

- DFS on G^T starts with SCC C such that f(C) is maximum. Since f(C) > f(C'), there are no edges from C to C' in G^T
- $\bullet\,$ This means that the DFS will visit only vertices in C
- The next root has the largest f(C') for all C' ≠ C. DFS visits all vertices in C', and any other edges must go to C, which we have already visited..

Jeff LinderothIE170:Lecture 19Jeff LinderothIE170:Lecture 19Spanning TreesKruskalAlgorithmsPrim

Next Time

• Shortest Paths

