## Sums

## IE170: Algorithms in Systems Engineering:

 Lecture 2Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

January 17, 2007

## Induction

- A way to prove that every statement in a (countably) infinite sequence of statements is true.


## How to do Induction

(1) Prove that the first statement in the infinite sequence of statements is true: The base case.
(2) Prove that if any one statement in the infinite sequence of statements is true, then so is the next one: The induction.

Arithmetic Series

$$
1+2+\cdots+n=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

## Sum Of Squares

$$
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- Often, such formulae can be proved via mathematical induction


## More Sums

## Geometric Series

$$
\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}
$$

If $|x|<1$, then the series converges to

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
$$

## Harmonic Series

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}=\sum_{k=1}^{n} \frac{1}{k} \approx \ln (n)
$$

## Bounding Sums By Integrals

- When $f$ is a (monotonically) increasing function, then we can approximate the sum $\sum_{k=m}^{n} f(k)$ by the integrals:

$$
\int_{m-1}^{n} f(x) d x \leq \sum_{k=m}^{n} f(k) \leq \int_{m}^{n+1} f(x) d x
$$

and a decreasing function can be approximated by

$$
\int_{m}^{n+1} f(x) d x \leq \sum_{k=m}^{n} f(k) \leq \int_{m-1}^{n}
$$

- For example, the harmonic series $\left(\sum_{k=1}^{n} k^{-1}\right)$.

$$
\begin{aligned}
\int_{1}^{n+1} x^{-1} d x & \leq \sum_{k=1}^{n} k^{-1} \leq \int_{0}^{n} x^{-1} d x \\
\ln (n+1) & \leq \sum_{k=1}^{n} k^{-1} \leq \ln (n)+1
\end{aligned}
$$

The Joy of Sets

- $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$
- For any two sets $A$ and $B$, we have the identity

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

- This is a specialization of the general principle of inclusion and exclusion


## The Joy of Sets

- You are also responsible for knowing the definitions and notation of sets given in Appendix B
- $\emptyset$ : Empty Set
- $\mathbb{Z}$ : The set of integers: $\{-2,-1,0,1,2\}$
- $\mathbb{R}$ : The set of real numbers
- $\mathbb{R}_{+}$: The set of non-nonnegative real numbers: $\{x \in \mathbb{R} \mid x \geq 0\}$
- $A \subseteq B \Rightarrow x \in A \Rightarrow x \in B$
- $A \nsubseteq B \Rightarrow \exists x \in A$ such that $x \notin B$
- $|A|$ denotes the cardinality, or number of elements, of the set A.
- Note that $|A|$ is not finite for all sets


## You're On Your Own

- Be sure to read and understand the sections on bounding summations and splitting summations (Appendix A.2)
- Be sure to read sections on relations, functions, graphs (B.2, B.3, and B.4)
- This course is fairly mathematical, so you need to know this stuff. :- (
- I will try and (re)-introduce the mathematics we need as we go, but if you are ever confused by my jibberish and jargon in class, please feel free to stop me and ask a question.


## Some Notational Conventions for Today

- Unless otherwise specified, we will assume all functions map $\mathbb{N}$ to $\mathbb{R}_{+}$
- The symbols $f, g$, and $T$ will typically denote such functions
- The variable $n$ will typically be used to denote the input size for an algorithm
- We will use $a, b$, and $c$ to denote constants.
- In an abuse of notation, I may refer to $f(n)$ as a function, but in reality it is simply a value.
- Correct: " $f$ is a polynomial function."
- Incorrect: " $f(n)$ is a polynomial function."


## Comparing Algorithms

- Consider algorithm $A$ with running time given by $f$ and algorithm $B$ with running time given by $g$.
- We are interested in knowing

$$
L=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

- What are the four possibilities?
- $L=0: g$ grows faster than $f$
- $L=\infty: f$ grows faster than $g$
- $L=c: f$ and $g$ grow at the same rate.
- The limit doesn't exist.


## Growth of Functions

## Question

Why are we really interested in the theoretical running times of algorithms?

## Answers

(1) To get to the other side
(2) To get a reasonable grade in this course
(3) To compare different algorithms for solving the same problem.

- We are interested in performance for large input sizes.
- For this purpose, we need only compare the asymptotic growth rates of the running times.

Big- $O$ Notation

- We now define the set of functions
$O(g)=\left\{f: \exists c, n_{0}>0\right.$ such that $\left.0 \leq f(n) \leq c g(n) \forall n \geq n_{0}\right\}$
- If $f \in O(g)$, then we say that " $f$ is big-O of" $g$ or that $g$ grows at least as fast as $f$
- Some other facts and notation:
- $f \in \Omega(g) \Leftrightarrow g \in O(f)$.
- $f \in o(g) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
- $f \in \omega(g) \Leftrightarrow g \in o(f) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.
- Note that $f \in o(g) \Rightarrow f \in O(g) \backslash \Theta(g)$.


## Comparing Functions

- The notation we have just defined gives us a way of ordering functions.
- We can can interpret
- $f \in O(g)$ as " $f \leq g$,"
- $f \in \Omega(g)$ as " $f \geq g$,"
- $f \in o(g)$ as " $f<g$,"
- $f \in \omega(g)$ as " $f>g$," and
- $f \in \Theta(g)$ as " $f=g$."
- This gives us a method for comparing algorithms based on their running times.
- Note that most of the relational properties of real numbers (transitivity, reflexivity, symmetry) work here also.


## Commonly Occurring Functions

## Polynomials

- $f(n)=\sum_{i=0}^{k} a_{i} n^{i}$ is a polynomial of degree $k$
- Polynomials $f$ of degree $k$ are in $\Theta\left(n^{k}\right)$.


## Exponentials

- A function in which $n$ appears as an exponent on a constant is an exponential function, i.e., $2^{n}$.
- For all positive constants $a$ and $b, \lim _{n \rightarrow \infty} \frac{n^{a}}{b^{n}}=0$.
- This means that exponential functions always grow faster than polynomials


## More Functions

## Logarithms

- Logarithms of different bases differ only by a constant multiple, so they all grow at the same rate.
- A polylogarithmic function is a function in $O\left(l g^{k}\right)$.
- Polylogarithmic functions always grow more slowly than polynomials.


## Factorials

- $n!=n(n-1)(n-2) \cdots(1)$
- $n!=o\left(n^{n}\right)$
- $n!=\omega\left(2^{n}\right)$
- $\lg (n!)=\Theta(n \lg n)$
- $a^{n} a^{m}=a^{n+m}$
- We use the notation
- $\lg n=\log _{2} n$
- $\ln n=\log _{e} n$
- $\lg ^{k} n=(\lg n)^{k}$
- Changing the base of a logarithm changes its value by a constant factor


## Log Rules

- $a=b^{\log _{b} a}$
- $\lg \left(\prod_{k=1}^{n} a_{k}\right)=\sum_{k=1}^{n} \lg a_{k}$
- $\log _{b} a^{n}=n \log _{b} a$
- $\log _{b} a=\left(\log _{c} a\right) /\left(\log _{b} a\right)$
- $\log _{b} a=1 /\left(\log _{a} b\right)$
- $a^{\log _{b} n}=n^{\log _{b} a}$
- The difficulty of a problem can be judged by the (worst-case) running time of the best-known algorithm.
- Problems for which there is an algorithm with polynomial running time (or better) are called polynomially solvable.
- Generally, these problems are considered to be easy.
- Formally, they are in the complexity class $\mathcal{P}$
- There are many interesting problems for which it is not known if there is a polynomial-time algorithm.
- These problems are generally considered difficult.
- This is known as the complexity class $\mathcal{N P}$.
$A+++++++++++++++++++++++$
- You will get a very good grade in this class if you prove $\mathcal{P}=\mathcal{N} P$
- It is open of the great open questions in mathematics: Are these truly difficult problems, or have we not yet discovered the right algorithm?
- If you answer this question, you can win a million dollars: http://www.claymath.org/millennium/P_vs_NP/
- Most important, you can get the jokes from the Simpsons: www.mathsci.appstate.edu/~sjg/simpsonsmath/
- In this course, we will stick mostly to the easy problems, for which a polynomial time algorithm is known.


## Next Time

- A short amount of time to address homework questions
- Recurrences and the Master Method

