
IE170: Algorithms in Systems Engineering:
Lecture 2

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

January 17, 2007

Jeff Linderoth IE170:Lecture 2

Sums

Arithmetic Series

1 + 2 + · · ·+ n =
n∑

k=1

k =
n(n + 1)

2

Sum Of Squares

n∑
k=0

k2 =
n(n + 1)(2n + 1)

6

Often, such formulae can be proved via mathematical
induction

Jeff Linderoth IE170:Lecture 2

Induction

A way to prove that every statement in a (countably) infinite
sequence of statements is true.

How to do Induction

1 Prove that the first statement in the infinite sequence of
statements is true: The base case.

2 Prove that if any one statement in the infinite sequence of
statements is true, then so is the next one: The induction .

Jeff Linderoth IE170:Lecture 2

More Sums

Geometric Series
n∑

k=0

xk =
1− xn+1

1− x

If |x| < 1, then the series converges to

∞∑
k=0

xk =
1

1− x
.

Harmonic Series

Hn = 1 +
1
2

+
1
3

+ · · ·+ 1
k

=
n∑

k=1

1
k
≈ ln(n)

Jeff Linderoth IE170:Lecture 2

Bounding Sums By Integrals

When f is a (monotonically) increasing function, then we can
approximate the sum

∑n
k=m f(k) by the integrals:∫ n

m−1
f(x)dx ≤

n∑
k=m

f(k) ≤
∫ n+1

m
f(x)dx.

and a decreasing function can be approximated by∫ n+1

m
f(x)dx ≤

n∑
k=m

f(k) ≤
∫ n

m−1

For example, the harmonic series (
∑n

k=1 k−1).∫ n+1

1
x−1dx ≤

n∑
k=1

k−1 ≤
∫ n

0
x−1dx

ln(n + 1) ≤
n∑

k=1

k−1 ≤ ln(n) + 1

Jeff Linderoth IE170:Lecture 2

The Joy of Sets

You are also responsible for knowing the definitions and
notation of sets given in Appendix B

∅: Empty Set

Z: The set of integers: {−2,−1, 0, 1, 2}
R: The set of real numbers

R+: The set of non-nonnegative real numbers:
{x ∈ R | x ≥ 0}
A ⊆ B ⇒ x ∈ A ⇒ x ∈ B

A 6⊆ B ⇒ ∃x ∈ A such that x 6∈ B

|A| denotes the cardinality, or number of elements, of the set
A.

Note that |A| is not finite for all sets

Jeff Linderoth IE170:Lecture 2

The Joy of Sets

A ∩B = {x | x ∈ A and x ∈ B}
A ∪B = {x | x ∈ A or x ∈ B}
A \B = {x | x ∈ A and x 6∈ B}
For any two sets A and B, we have the identity

|A ∪B| = |A|+ |B| − |A ∩B|.

This is a specialization of the general principle of inclusion
and exclusion

Jeff Linderoth IE170:Lecture 2

You’re On Your Own

Be sure to read and understand the sections on bounding
summations and splitting summations (Appendix A.2)

Be sure to read sections on relations, functions, graphs (B.2,
B.3, and B.4)

This course is fairly mathematical, so you need to know this
stuff. :-(

I will try and (re)-introduce the mathematics we need as we
go, but if you are ever confused by my jibberish and jargon in
class, please feel free to stop me and ask a question.

Jeff Linderoth IE170:Lecture 2

Some Notational Conventions for Today

Unless otherwise specified, we will assume all functions map N
to R+

The symbols f , g, and T will typically denote such functions

The variable n will typically be used to denote the input size
for an algorithm

We will use a, b, and c to denote constants.

In an abuse of notation, I may refer to f(n) as a function, but
in reality it is simply a value.

Correct: “f is a polynomial function.”
Incorrect: “f(n) is a polynomial function.”

Jeff Linderoth IE170:Lecture 2

Growth of Functions

Question

Why are we really interested in the theoretical running times of
algorithms?

Answers

1 To get to the other side

2 To get a reasonable grade in this course

3 To compare different algorithms for solving the same
problem.

We are interested in performance for large input sizes.

For this purpose, we need only compare the asymptotic
growth rates of the running times.

Jeff Linderoth IE170:Lecture 2

Comparing Algorithms

Consider algorithm A with running time given by f and
algorithm B with running time given by g.

We are interested in knowing

L = lim
n→∞

f(n)
g(n)

What are the four possibilities?

L = 0: g grows faster than f
L = ∞: f grows faster than g
L = c: f and g grow at the same rate.
The limit doesn’t exist.

Jeff Linderoth IE170:Lecture 2

Θ Notation

We now define the set

Θ(g) = {f : ∃ c1, c2, n0 > 0 such that
c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0} (1)

If f ∈ Θ(g), then we say that f and g grow at the same rate
or that they are of the same order.

Note that
f ∈ Θ(g) ⇔ g ∈ Θ(f)

We also know that if

lim
n→∞

f(n)
g(n)

= c

for some constant c, then f ∈ Θ(g).

Jeff Linderoth IE170:Lecture 2

Big-O Notation

We now define the set of functions

O(g) = {f : ∃c, n0 > 0 such that 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}

If f ∈ O(g), then we say that “f is big-O of” g or that g
grows at least as fast as f

Some other facts and notation:

f ∈ Ω(g) ⇔ g ∈ O(f).
f ∈ o(g) ⇔ limn→∞

f(n)
g(n) = 0.

f ∈ ω(g) ⇔ g ∈ o(f) ⇔ limn→∞
f(n)
g(n) = ∞.

Note that f ∈ o(g) ⇒ f ∈ O(g) \Θ(g).

Jeff Linderoth IE170:Lecture 2

Comparing Functions

The notation we have just defined gives us a way of ordering
functions.

We can can interpret

f ∈ O(g) as “f ≤ g,”
f ∈ Ω(g) as “f ≥ g,”
f ∈ o(g) as “f < g,”
f ∈ ω(g) as “f > g,” and
f ∈ Θ(g) as “f = g.”

This gives us a method for comparing algorithms based on
their running times.

Note that most of the relational properties of real numbers
(transitivity, reflexivity, symmetry) work here also.

Jeff Linderoth IE170:Lecture 2

Commonly Occurring Functions

Polynomials

f(n) =
∑k

i=0 ain
i is a polynomial of degree k

Polynomials f of degree k are in Θ(nk).

Exponentials

A function in which n appears as an exponent on a
constant is an exponential function, i.e., 2n.

For all positive constants a and b, limn→∞
na

bn = 0.

This means that exponential functions always grow faster
than polynomials

Jeff Linderoth IE170:Lecture 2

More Functions

Logarithms

Logarithms of different bases differ only by a constant
multiple, so they all grow at the same rate.

A polylogarithmic function is a function in O(lgk).
Polylogarithmic functions always grow more slowly than
polynomials.

Factorials

n! = n(n− 1)(n− 2) · · · (1)
n! = o(nn)
n! = ω(2n)
lg(n!) = Θ(n lg n)

Jeff Linderoth IE170:Lecture 2

Logs

anam = an+m

We use the notation

lg n = log2 n
lnn = loge n
lgk n = (lg n)k

Changing the base of a
logarithm changes its value
by a constant factor

Log Rules

a = blogb a

lg (
∏n

k=1 ak) =
∑n

k=1 lg ak

logb an = n logb a

logb a = (logc a)/(logb a)
logb a = 1/(loga b)
alogb n = nlogb a

Jeff Linderoth IE170:Lecture 2

Problem Difficulty

The difficulty of a problem can be judged by the (worst-case)
running time of the best-known algorithm.

Problems for which there is an algorithm with polynomial
running time (or better) are called polynomially solvable.

Generally, these problems are considered to be easy.

Formally, they are in the complexity class P
There are many interesting problems for which it is not known
if there is a polynomial-time algorithm.

These problems are generally considered difficult.

This is known as the complexity class NP.

Jeff Linderoth IE170:Lecture 2

A+++++++++++++++++++++++

You will get a very good grade in this class if you prove
P = NP

It is open of the great open questions in mathematics: Are
these truly difficult problems, or have we not yet discovered
the right algorithm?

If you answer this question, you can win a million dollars:
http://www.claymath.org/millennium/P vs NP/

Most important, you can get the jokes from the Simpsons:
www.mathsci.appstate.edu/∼sjg/simpsonsmath/

In this course, we will stick mostly to the easy problems, for
which a polynomial time algorithm is known.

Jeff Linderoth IE170:Lecture 2

Next Time

A short amount of time to address homework questions

Recurrences and the Master Method

Jeff Linderoth IE170:Lecture 2

