
Shortest Paths
The Algorithms

IE170: Algorithms in Systems Engineering:
Lecture 20

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

March 19, 2007

Jeff Linderoth IE170:Lecture 20

Shortest Paths
The Algorithms

Taking Stock

Last Time

Minimum Spanning Trees

Strongly Connected Components

This Time

Shortest Paths

Jeff Linderoth IE170:Lecture 20

Shortest Paths
The Algorithms

Shortest Path Properties

Shortest Paths—Definitions

For the next few lectures, we will have a directed graph
G = (V,E), and a weight function w : E→ R|E|.

The weight of a path P = {v0, v1, . . . vk} is simply the weight
of the edges taken on the sequence of nodes:

w(P ) =
k∑

i=1

wvi−1,vi .

We are interested in finding the shortest-path weights from u
to v, which we will denote δ(u, v).
We use the convention that δ(u, v) =∞ if there is no path
from u to v in G
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Example

The example (hopefully) makes it clear that shortest paths are
organized as a tree

Many algorithms work like a generalization of BFS to
weighted graphs.
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Shortest Path Variants

Single-Source: Find the shortest path from s ∈ V to every
vertex v ∈ V

Single-Destination: Find the shortest path from every vertex
v ∈ V to a given destination vertex t ∈ V

Single-Pair: Find the shortest path from given s ∈ V to given
t ∈ V . There is now way known that is better (in the worst
case) that solving the single-source version.

All-Pairs: Find the shortest path from every u ∈ V to every
vertex v ∈ V
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Negative Weight Edges

In Minimum Spanning Tree, negative weight edges posed no
significant challenge to the algorithms. However, for shortest
path, this is not the case

If we have a negative weight cycle, we can just keep going
around it, and δ(s, v) = −∞ for all v on the cycle.

Some algorithms work only if there are no negative
weight-edges in the graph
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Just Like DP

Lemma

Any subpath of a shortest path is a shortest path

Proof. (Same as DP)

Lemma

Shortest paths can’t contain cycles

(Single Source) shortest-path algorithms produce a label:
d[v] = δ(s, v).
Initially d[v] =∞, reduces as the algorithm goes, so always
d[v] ≥ δ(s, v)
Also produce labels π[v], predecessor of v on a shortest path
from s.
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Initializing

Init-Single-Source(V, s)
1 for each v in V
2 do d[v]←∞
3 π[v]← nil
4 d[s]← 0
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Relax!

The algorithms work by improving (lowering) the shortest
path estimate d[v]
This operation is called relaxing an edge (u, v)
Can we improve the shortest-path estimate for v by going
through u and taking (u, v)?

Relax(u, v, w)
1 if d[v] > d[u] + wuv

2 then d[v]← d[u] + wuv

3 π[v]← u
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How To Do It!

All algorithms call Init-Single-Source and then Relax,
they differ in the order and number of times relax is called for
an edge.
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More Lemmas, (LemmI?)

Shortest Path Weights Obey Triangle Inequality

δ(s, v) ≤ δ(s, u) + wuv ∀(u, v) ∈ E.

Relax Only Lowers Path Length Estimates

d[v] ≥ δ(s, v) ∀v ∈ V
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Lemma, Lemma, Lemma

Path Relaxation Property

Let P = {v0, v1, . . . vk} be a shortest path from s = v0 to vk. If
the edges (v0, v1), (v1, v2), (vk−1, vk) are relaxed in that order,
(there can be other relaxations in-between), then d[vk] = δ(s, vk)

Proof. Induction. (True for i = 0, since d[s] = 0). Assume
d[vi−1] = δ(s, vi−1), by calling Relax(vi−1, vi), then
d[vi] = δ(s, vi) must be a shortest path to vi, and the label
can never change.
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Bellman-Ford Algorithm

Works with Negative-Weight Edges

Returns true is there are no negative-weight cycles reachable
from s, false otherwise

Bellman-Ford(V,E, w, s)
1 Init-Single-Source(V, s)
2 for i← 1 to |V | − 1
3 do for each (u, v) in E
4 do Relax(u, v, w)
5 for each (u, v) in E
6 do if d[v] > d[u] + wuv

7 then return False
8 return True
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Analysis

Here I’ll show Example and Code

Analysis

Θ(|V ||E|)
Correctness?

Let v be reachable from s, and let P = {v0, v1, . . . vk} be a
shortest path to v. Each iteration of the for loop relaxes all
edges. The first iteration relaxes (v0, v1), the next (v1, v2), the
kth iteration relaxes (vk−1, vk), by the path relaxation Lemma,
d[v] = δ(s, v),
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Single Source Shortest Path on a DAG

DAG-Shortest-Paths(V,E, s, w)
1 Init-Single-Source(V, s)
2 topologically sort the vertices (HOW)
3 for each u in topologically sortedV
4 do for each v ∈ Adj[u]
5 do RELAX(u, v, w)
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SSSP-DAG Analysis and Correctness

Correctness

Since vertices are processed in topolgically sorted order, edges
of any path are relaxed in order of appearance on the path
Thus, edges on any shortest path are relaxed in order
Thus, by the path-relaxation lemma, the algorithm is correct

Analysis
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Dijkstra’s Algorithm

Works only if the graph as no negative-weight edges

This is essentially a weighted-version of BFS

Instead of a FIFO Queue (like you used for BFS in the lab),
use a priority queue
Keys (in PQ) are the shortest-path weight estimates (d[v])

In Disjkstra’s Algorithm, we have two sets of vertices

S: Vertices whose final shortest path weights are determines
Q: Priority queue: V \ S
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Dijkstra’s Algorithm

Dijkstra(V,E, w, s)
1 Init-Single-Source(V, s)
2 S ← ∅
3 Q← V
4 while Q 6= ∅
5 do u← Extract-Min(Q)
6 S ← S ∪ {u}
7 for each v ∈ Adj[u]
8 do Relax(u, v, w)
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Dijkstra’s Algorithm

Note: Looks a lot like Prim’s algorithm, but computing d[v],
and using the shortest path weights as keys

Dijkstra’s Algorithm is greedy, since it always chooses the
“lightest” vertex in V \ S to add to S

Analysis: Like Prim’s Algorithm, depends on the time it takes
to perform priority queue operations.

Suppose we use a binary heap.

How many times is whole loop called: O(|E|)
Inside loop, takes: (O(lg V )) to extract-min.

Dijkstra’s Algorithm Runs in O(E lg V ), with a binary heap
implementation.

Better Heap implementations get it down to O(V lg V + E).
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Next Time

Today in Lab: A “very” related problem... Traveling
Salesman.

Next Time: More Shortest Paths

Jeff Linderoth IE170:Lecture 20


