Taking Stock

_ast Time

IE170: Algorithms in Systems Engineering: Lecture 20

Shortest Paths—Definitions

- For the next few lectures, we will have a directed graph G = (V, E), and a weight function $w : \mathbb{E} \to \mathbb{R}^{|E|}$.
- The weight of a path $P = \{v_0, v_1, \dots v_k\}$ is simply the weight of the edges taken on the sequence of nodes:

$$w(P) = \sum_{i=1}^{k} w_{v_{i-1}, v_i}$$

- We are interested in finding the shortest-path weights from u to v, which we will denote $\delta(u,v).$
- $\bullet\,$ We use the convention that $\delta(u,v)=\infty$ if there is no path from u to v in G

Example

- The example (hopefully) makes it clear that shortest paths are organized as a tree
- Many algorithms work like a generalization of BFS to weighted graphs.

Shortest Path Variants

- Single-Source: Find the shortest path from $s \in V$ to every vertex $v \in V$
- Single-Destination: Find the shortest path from every vertex $v \in V$ to a given destination vertex $t \in V$
- Single-Pair: Find the shortest path from given s ∈ V to given t ∈ V. There is now way known that is better (in the worst case) that solving the single-source version.
- All-Pairs: Find the shortest path from every $u \in V$ to every vertex $v \in V$

Negative Weight Edges

- In Minimum Spanning Tree, negative weight edges posed no significant challenge to the algorithms. However, for shortest path, this is not the case
- If we have a negative weight cycle, we can just keep going around it, and $\delta(s, v) = -\infty$ for all v on the cycle.
- Some algorithms work only if there are no negative weight-edges in the graph

Jeff Linderoth	IE170:Lecture 20	Jeff Linderoth	IE170:Lecture 20
Shortest Paths The Algorithms	Shortest Path Properties	Shortest Paths The Algorithms	Shortest Path Properties
Just Like DP		Initializing	
Lemma			
Any subpath of a shortest path is a shortest path			
• Proof. (Same as DP)		Init-Single-Source (V, s)	
Lemma		1 for each v in V	
		2 do $d[w]$ \sim	

Shortest paths can't contain cycles

- (Single Source) shortest-path algorithms produce a label: $d[v] = \delta(s, v)$.
- Initially $d[v] = \infty$, reduces as the algorithm goes, so always $d[v] \ge \delta(s, v)$
- Also produce labels $\pi[v]$, predecessor of v on a shortest path from s.

Star I

- 2 do $d[v] \leftarrow \infty$
- 3 $\pi[v] \leftarrow \text{NIL}$
- $4 \quad d[s] \leftarrow 0$

Shortest Paths Shortest Path Properties

Jeff Linderoth

How To Do It!

• All algorithms call INIT-SINGLE-SOURCE and then RELAX, they differ in the order and number of times relax is called for an edge.

More Lemmas, (Lemml?)

path estimate d[v]

1 **if** $d[v] > d[u] + w_{uv}$

through u and taking (u, v)?

then $d[v] \leftarrow d[u] + w_{uv}$

 $\pi[v] \leftarrow u$

Chartast	Dath	M/aimhta	Charl	Trionala	In a museliture
Snorlest	Paun	vveignus	Ubev	Inangle	Inequality
		- 0			

• This operation is called relaxing an edge (u, v)

• Can we improve the shortest-path estimate for v by going

 $\delta(s, v) < \delta(s, u) + w_{uv} \quad \forall (u, v) \in E.$

Relax Only Lowers Path Length Estimates

 $d[v] > \delta(s, v) \ \forall v \in V$

Lemma, Lemma, Lemma

perty

Let $P = \{v_0, v_1, \dots, v_k\}$ be a shortest path from $s = v_0$ to v_k . If the edges (v_0, v_1) , (v_1, v_2) , (v_{k-1}, v_k) are relaxed in that order, (there can be other relaxations in-between), then $d[v_k] = \delta(s, v_k)$

• **Proof.** Induction. (True for i = 0, since d[s] = 0). Assume $d[v_{i-1}] = \delta(s, v_{i-1})$, by calling RELAX (v_{i-1}, v_i) , then $d[v_i] = \delta(s, v_i)$ must be a shortest path to v_i , and the label can never change.

 $\operatorname{ReLAX}(u, v, w)$

2 3

Shortest PathsBellman-FordThe AlgorithmsSingle Source Shortest Path on a DAGDijkstra	Shortest Paths The Algorithms Dijkstra Bellman-Ford Single Source Shortest Path on a DAG		
Bellman-Ford Algorithm	Analysis		
 Works with Negative-Weight Edges Returns true is there are no negative-weight cycles reachable from s, false otherwise 	• Here I'll show Example and Code		
BELLMAN-FORD (V, E, w, s) 1 INIT-SINGLE-SOURCE (V, s) 2 for $i \leftarrow 1$ to $ V - 1$ 3 do for each (u, v) in E 4 do RELAX (u, v, w) 5 for each (u, v) in E 6 do if $d[v] > d[u] + w_{uv}$	 Analysis Θ(V E) Correctness? Let v be reachable from s, and let P = {v₀, v₁, v_k} be a shortest path to v. Each iteration of the for loop relaxes all edges. The first iteration relaxes (v₀, v₁), the next (v₁, v₂), the kth iteration relaxes (v_{k-1}, v_k), by the path relaxation Lemma, d[v] = δ(s, v), 		
 7 then return False 8 return True 			

Single Source Shortest Path on a DAG

SSSP-DAG Analysis and Correctness

DAG-SHORTEST-PATHS(V, E, s, w)

- 1 INIT-SINGLE-SOURCE(V, s)
- 2 topologically sort the vertices (HOW)
- 3 for each u in topologically sorted V
- 4 do for each $v \in Adj[u]$
- 5 do $\operatorname{RELAX}(u, v, w)$

- Correctness
 - Since vertices are processed in topolgically sorted order, edges of any path are relaxed in order of appearance on the path
 - Thus, edges on any shortest path are relaxed in order
 - Thus, by the path-relaxation lemma, the algorithm is correct
- Analysis

Dijkstra's Algorithm

• Works only if the graph as no negative-weight edges

- This is essentially a weighted-version of BFS
 - Instead of a FIFO Queue (like you used for BFS in the lab), use a priority queue
 - Keys (in PQ) are the shortest-path weight estimates (d[v])
- In Disjkstra's Algorithm, we have two sets of vertices
 - S: Vertices whose final shortest path weights are determines
 - Q: Priority queue: $V \setminus S$

Dijkstra's Algorithm

- $\mathrm{Dijkstra}(V, E, w, s)$
- 1 INIT-SINGLE-SOURCE(V, s)
- 2 $S \leftarrow \emptyset$
- 3 $Q \leftarrow V$
- 4 while $Q \neq \emptyset$
- 5 do $u \leftarrow \text{Extract-Min}(Q)$
- $\mathsf{6} \qquad S \leftarrow S \cup \{u\}$
- 7 for each $v \in Adj[u]$
- 8 do $\operatorname{Relax}(u, v, w)$

Jeff Linderoth	IE170:Lecture 20	Jeff Linderoth	IE170:Lecture 20
Shortest Paths The Algorithms	Bellman-Ford Single Source Shortest Path on a DAG Dijkstra	Shortest Paths The Algorithms	Bellman-Ford Single Source Shortest Path on a DAG Dijkstra

Dijkstra's Algorithm

- Note: Looks a lot like Prim's algorithm, but computing d[v], and using the shortest path weights as keys
- Dijkstra's Algorithm is greedy, since it always chooses the "lightest" vertex in $V\setminus S$ to add to S
- Analysis: Like Prim's Algorithm, depends on the time it takes to perform priority queue operations.
- Suppose we use a binary heap.
 - How many times is whole loop called: O(|E|)
 - \bullet Inside loop, takes: $(O(\lg V))$ to $\ensuremath{\mathsf{EXTRACT-MIN}}.$
- Dijkstra's Algorithm Runs in $O(E \lg V)$, with a binary heap implementation.
- Better Heap implementations get it down to $O(V \lg V + E)$.

Next Time

- Today in Lab: A "very" related problem... Traveling Salesman.
- Next Time: More Shortest Paths

