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Shortest Paths—Definitions Example

@ For the next few lectures, we will have a directed graph
G = (V, E), and a weight function w : E — RI®I,

@ The weight of a path P = {wg,v1,... v} is simply the weight
of the edges taken on the sequence of nodes:

k
w(P) = Zwvifl;vi'
=1

@ The example (hopefully) makes it clear that shortest paths are

@ We are interested in finding the shortest-path weights from u :
organized as a tree

to v, which we will denote (u, v). _ _ o
o We use the convention that 8(u, v) = oo if there is no path @ Many algorithms work like a generalization of BFS to

fromutovin G weighted graphs.
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Shortest Path Variants Negative Weight Edges

@ Single-Source: Find the shortest path from s € V' to every
vertex v € V @ In Minimum Spanning Tree, negative weight edges posed no

significant challenge to the algorithms. However, for shortest

@ Single-Destination: Find the shortest path from every vertex o
path, this is not the case

v € V to a given destination vertex t € V
e If we have a negative weight cycle, we can just keep going

@ Single-Pair: Find the shortest path from given s € V' to given
around it, and d(s,v) = —oo for all v on the cycle.

t € V. There is now way known that is better (in the worst
case) that solving the single-source version. @ Some algorithms work only if there are no negative

o All-Pairs: Find the shortest path from every u € V' to every weight-edges in the graph

vertex v € V
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Just Like DP Initializing

Any subpath of a shortest path is a shortest path

@ Proof. (Same as DP)

INIT-SINGLE-SOURCE(V, s)
1 for eachvinV

Shortest paths can’t contain cycles 2 do dfv] o0
3 m[v] < NIL
@ (Single Source) shortest-path algorithms produce a label: 4 dls] <0

d[v] = (s, v).
e Initially d[v] = oo, reduces as the algorithm goes, so always
d[v] > (s, v)

@ Also produce labels 7[v], predecessor of v on a shortest path % %
from s.
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How To Do It!
Relax!
@ The algorithms work by improving (lowering) the shortest
path estimate d[v] e All algorithms call INIT-SINGLE-SOURCE and then RELAX,
@ This operation is called relaxing an edge (u,v) they differ in the order and number of times relax is called for
@ Can we improve the shortest-path estimate for v by going an edge.

through u and taking (u,v)?

RELAX(u, v, w)
1 if d[v] > d[u] + wy

§ then i[[Z] (<: (i[u] + Wy
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More Lemmas, (Lemml?) Lemma, Lemma, Lemma

Path Relaxation Property
Shortest Path Weights Obey Triangle Inequality

Let P = {vg,v1,... v} be a shortest path from s = vy to vg. If

§(s,v) < 6(s,u) + wuy V(u,v) € E. the edges (vo,v1), (vi,v2), (vk—1,vk) are relaxed in that order,
(there can be other relaxations in-between), then d[vy| = (s, vx)

@ Proof. Induction. (True for i = 0, since d[s] = 0). Assume
d[vi_l] = 5(8, Ui—l)y by calling RELAX(Ui_l, UZ‘), then

d[v] > 6(s,v) Vv eV d[v;] = (s, v;) must be a shortest path to v;, and the label

can never change.

Relax Only Lowers Path Length Estimates
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Dijkstra Dijkstra

The Algorithms

Bellman-Ford Algorithm Analysis

@ Works with Negative-Weight Edges

@ Returns true is there are no negative-weight cycles reachable

from s. false otherwise @ Here I'll show Example and Code
' @ Analysis

BELLMAN-ForD(V, E, w, s) o O(|VI]|E])

then return False

return True
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Dijkstra Dijkstra

1 INIT-SINGLE-SOURCE(V] s) o Correctness?

2 fori—1to|V]— 1_ o Let v be reachable from s, and let P = {vg,v1,...v;} be a

3 do for each (u,v) in shortest path to v. Each iteration of the for loop relaxes all

4 do RELAX(u,v,w) edges. The first iteration relaxes (vg, v1), the next (vq,vs), the
5 for each (u,v)in E kth iteration relaxes (vg—1,v), by the path relaxation Lemma,
6 do if d[v] > d[u] + wyy d[v] = 6(s,v),

7

38

The Algorithms

Single Source Shortest Path on a DAG SSSP-DAG Analysis and Correctness

DAG-SHORTEST-PATHS(V, E, s, w)
INIT-SINGLE-SOURCE(V, s)
topologically sort the vertices (HOW)

1 o Correctness
2
3 for each u in topologically sortedV
4
5

e Since vertices are processed in topolgically sorted order, edges
of any path are relaxed in order of appearance on the path

e Thus, edges on any shortest path are relaxed in order

do for each v € Adj[u] e Thus, by the path-relaxation lemma, the algorithm is correct

do RELAX(u, v, w) o Analysis
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Dijkstra’s Algorithm Dijkstra's Algorithm

DUKSTRA(V, E, w, s)

@ Works only if the graph as no negative-weight edges 1 INIT-SINGLE-SOURCE(V] s)
@ This is essentially a weighted-version of BFS 2 S0

e Instead of a FIFO Queue (like you used for BFS in the lab), 3 Q«V

use a priority queue 4  while Q # 0

e Keys (in PQ) are the shortest-path weight estimates (d[v]) 5 do u + EXTRACT-MIN(Q)
@ In Disjkstra’s Algorithm, we have two sets of vertices 6 S — SU{u}

o S: Vertices whose final shortest path weights are determines 7 for each v € Adj[u]

e Q: Priority queue: V'\ S 8 do RELAX(u, v, w)
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Dijkstra's Algorithm Next Time

@ Note: Looks a lot like Prim's algorithm, but computing d[v],
and using the shortest path weights as keys

@ Dijkstra's Algorithm is greedy, since it always chooses the

“lightest” vertex in V'\ S to add to S . L _
@ Today in Lab: A “very” related problem... Traveling

Salesman.
@ Next Time: More Shortest Paths

@ Analysis: Like Prim’s Algorithm, depends on the time it takes
to perform priority queue operations.
@ Suppose we use a binary heap.
o How many times is whole loop called: O(|E])
e Inside loop, takes: (O(lgV')) to EXTRACT-MIN.
@ Dijkstra's Algorithm Runs in O(E'lg V'), with a binary heap
implementation.

@ Better Heap implementations get it down to O(VlgV + E).
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