Taking Stock

Last Time

IE170: Algorithms in Systems Engineering: Lecture 21

Jeff Linderoth	IE170:Lecture 21	Jeff Linderoth	IE170:Lecture 21
Shortest Paths The Algorithms	Shortest Path Properties	Shortest Paths The Algorithms	Shortest Path Properties

Shortest Paths—Definitions

- For the next few lectures, we will have a directed graph G = (V, E), and a weight function $w : \mathbb{E} \to \mathbb{R}^{|E|}$.
- We are interested in finding the shortest-path weights from u to v, which we will denote $\delta(u,v).$
- $\delta(u,v)=\infty$ if there is no path from u to v in G
- (Single Source) shortest-path algorithms produce a label: $d[v] = \delta(s, v).$
- $\bullet~\mbox{Initially}~d[v]=\infty,$ reduces as the algorithm goes, so always $d[v]\geq \delta(s,v)$
- Also produce labels $\pi[v]$, predecessor of v on a shortest path from s.

Initializing and Relaxing

INIT-SINGLE-SOURCE(V, s)

- 1 for each v in V2 do $d[v] \leftarrow \infty$
- 3 $\pi[v] \leftarrow \text{NIL}$
- $4 \quad d[s] \leftarrow 0$

3

Relax(u, v, w)1 if $d[v] > d[u] + w_{uv}$

- 2 **then** $d[v] \leftarrow d[u] + w_{uv}$
 - $\pi[v] \leftarrow u$

Lemmas

Lemma

Any subpath of a shortest path is a shortest path

Lemma

Shortest paths can't contain cycles

Path Relaxation Property

Let $P = \{v_0, v_1, \dots, v_k\}$ be a shortest path from $s = v_0$ to v_k . If the edges (v_0, v_1) , (v_1, v_2) , (v_{k-1}, v_k) are relaxed in that order, (there can be other relaxations in-between), then $d[v_k] = \delta(s, v_k)$

Bellman-Ford Algorithm

- Works with Negative-Weight Edges
- Returns true is there are no negative-weight cycles reachable from *s*, false otherwise

BELLMAN-FORD(V, E, w, s)

- 1 INIT-SINGLE-SOURCE(V, s)
- 2 for $i \leftarrow 1$ to |V| 1
- 3 do for each (u, v) in E
- 4 do $\operatorname{Relax}(u, v, w)$
- 5 for each (u, v) in E
- 6 **do if** $d[v] > d[u] + w_{uv}$

7 then return *False*

8 return *True*

Jeff Linderoth	IE170:Lecture 21	Jeff Linderoth	IE170:Lecture 21
Shortest Paths The Algorithms	Bellman-Ford Single Source Shortest Path on a DAG Dijkstra	Shortest Paths The Algorithms	Bellman-Ford Single Source Shortest Path on a DAG Dijkstra

Single Source Shortest Path on a DAG

SSSP-DAG Analysis and Correctness

- DAG-SHORTEST-PATHS(V, E, s, w)
- 1 INIT-SINGLE-SOURCE(V, s)
- 2 topologically sort the vertices (HOW)
- 3 for each u in topologically sorted V
- 4 do for each $v \in Adj[u]$
- 5 do $\operatorname{RELAX}(u, v, w)$

- Correctness
 - Since vertices are processed in topolgically sorted order, edges of any path are relaxed in order of appearance on the path
 - Thus, edges on any shortest path are relaxed in order
 - Thus, by the path-relaxation lemma, the algorithm is correct
- Analysis
 - Can You Do It!?!?!

Dijkstra's Algorithm

- Works only if the graph as no negative-weight edges
- This is essentially a weighted-version of BFS
 - Instead of a FIFO Queue (like you used for BFS in the lab), use a priority queue
 - Keys (in PQ) are the shortest-path weight estimates (d[v])
- In Disjkstra's Algorithm, we have two sets of vertices
 - S: Vertices whose final shortest path weights are determines
 - Q: Priority queue: $V \setminus S$

Dijkstra's Algorithm

- $\operatorname{Dijkstra}(V, E, w, s)$
- 1 INIT-SINGLE-SOURCE(V, s)
- $2 \quad S \leftarrow \emptyset$
- 3 $Q \leftarrow V$
- 4 while $Q \neq \emptyset$
- 5 do $u \leftarrow \text{Extract-Min}(Q)$
- $\mathsf{6} \qquad S \leftarrow S \cup \{u\}$
- 7 for each $v \in Adj[u]$
- 8 do $\operatorname{Relax}(u, v, w)$

Jeff Linderoth	IE170:Lecture 21	Jeff Linderoth	IE170:Lecture 21
Shortest Paths The Algorithms		Shortest Paths The Algorithms	

Dijkstra's Algorithm

Dijkstra Analysis

- Analysis: Like Prim's Algorithm, depends on the time it takes to perform priority queue operations.
- Suppose we use a binary heap.
 - EXTRACT-MIN: Called O(|V|) times
 - RELAX: Called O(|E|) times
 - How long does each of these operations take?
- Dijkstra's Algorithm Runs in $O(E \lg V)$, with a binary heap implementation.
- Better Heap implementations get it down to $O(V \lg V + E)$.
- $\bullet~{\rm Our}~{\rm ``List/Container''}$ implementation took ${\cal O}(V^2)$

• Note: Looks a lot like Prim's algorithm, but computing d[v],

• Dijkstra's Algorithm is greedy, since it always chooses the

and using the shortest path weights as keys

"lightest" vertex in $V \setminus S$ to add to S

Dijkstra Correctness.

Loop Invariant

- At the start of each iteration of the while loop $\delta(s,v) = d[v] \; \forall v \in S$
- \bullet Initially: $S=\emptyset,$ so this is trivially true
- At end: S = V, so we have the shortest path weights
- \bullet Maintenance: Must show that $d[u]=\delta(s,u)$ when u is added to S

We'll Give Proof (If Time)

Jeff Linderoth IE170:Lecture 21