
Shortest Paths
The Algorithms

IE170: Algorithms in Systems Engineering:
Lecture 21

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

March 21, 2007

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Taking Stock

Last Time

Shortest Paths

TSP in Lab

This Time

Shortest Paths

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Shortest Path Properties

Shortest Paths—Definitions

For the next few lectures, we will have a directed graph
G = (V,E), and a weight function w : E→ R|E|.

We are interested in finding the shortest-path weights from u
to v, which we will denote δ(u, v).
δ(u, v) =∞ if there is no path from u to v in G

(Single Source) shortest-path algorithms produce a label:
d[v] = δ(s, v).
Initially d[v] =∞, reduces as the algorithm goes, so always
d[v] ≥ δ(s, v)
Also produce labels π[v], predecessor of v on a shortest path
from s.

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Shortest Path Properties

Initializing and Relaxing

Init-Single-Source(V, s)
1 for each v in V
2 do d[v]←∞
3 π[v]← nil
4 d[s]← 0

Relax(u, v, w)
1 if d[v] > d[u] + wuv

2 then d[v]← d[u] + wuv

3 π[v]← u

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Shortest Path Properties

Lemmas

Lemma

Any subpath of a shortest path is a shortest path

Lemma

Shortest paths can’t contain cycles

Path Relaxation Property

Let P = {v0, v1, . . . vk} be a shortest path from s = v0 to vk. If
the edges (v0, v1), (v1, v2), (vk−1, vk) are relaxed in that order,
(there can be other relaxations in-between), then d[vk] = δ(s, vk)

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Shortest Path Properties

Bellman-Ford Algorithm

Works with Negative-Weight Edges

Returns true is there are no negative-weight cycles reachable
from s, false otherwise

Bellman-Ford(V,E, w, s)
1 Init-Single-Source(V, s)
2 for i← 1 to |V | − 1
3 do for each (u, v) in E
4 do Relax(u, v, w)
5 for each (u, v) in E
6 do if d[v] > d[u] + wuv

7 then return False
8 return True

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Bellman-Ford
Single Source Shortest Path on a DAG
Dijkstra

Single Source Shortest Path on a DAG

DAG-Shortest-Paths(V,E, s, w)
1 Init-Single-Source(V, s)
2 topologically sort the vertices (HOW)
3 for each u in topologically sortedV
4 do for each v ∈ Adj[u]
5 do RELAX(u, v, w)

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Bellman-Ford
Single Source Shortest Path on a DAG
Dijkstra

SSSP-DAG Analysis and Correctness

Correctness

Since vertices are processed in topolgically sorted order, edges
of any path are relaxed in order of appearance on the path
Thus, edges on any shortest path are relaxed in order
Thus, by the path-relaxation lemma, the algorithm is correct

Analysis

Can You Do It!?!?!

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Dijkstra’s Algorithm

Works only if the graph as no negative-weight edges

This is essentially a weighted-version of BFS

Instead of a FIFO Queue (like you used for BFS in the lab),
use a priority queue
Keys (in PQ) are the shortest-path weight estimates (d[v])

In Disjkstra’s Algorithm, we have two sets of vertices

S: Vertices whose final shortest path weights are determines
Q: Priority queue: V \ S

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Dijkstra’s Algorithm

Dijkstra(V,E, w, s)
1 Init-Single-Source(V, s)
2 S ← ∅
3 Q← V
4 while Q 6= ∅
5 do u← Extract-Min(Q)
6 S ← S ∪ {u}
7 for each v ∈ Adj[u]
8 do Relax(u, v, w)

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Dijkstra’s Algorithm

Note: Looks a lot like Prim’s algorithm, but computing d[v],
and using the shortest path weights as keys

Dijkstra’s Algorithm is greedy, since it always chooses the
“lightest” vertex in V \ S to add to S

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Dijkstra Analysis

Analysis: Like Prim’s Algorithm, depends on the time it takes
to perform priority queue operations.

Suppose we use a binary heap.

extract-min: Called O(|V |) times
Relax: Called O(|E|) times
How long does each of these operations take?

Dijkstra’s Algorithm Runs in O(E lg V), with a binary heap
implementation.

Better Heap implementations get it down to O(V lg V + E).
Our “List/Container ” implementation took O(V 2)

Jeff Linderoth IE170:Lecture 21

Shortest Paths
The Algorithms

Dijkstra Correctness.

Loop Invariant

At the start of each iteration of the while loop
δ(s, v) = d[v] ∀v ∈ S

Initially: S = ∅, so this is trivially true

At end: S = V , so we have the shortest path weights

Maintenance: Must show that d[u] = δ(s, u) when u is
added to S

We’ll Give Proof (If Time)

Jeff Linderoth IE170:Lecture 21

