Taking Stock

IE170: Algorithms in Systems Engineering:

Lecture 21

@ Shortest Paths

@ TSP in Lab

Jeff Linderoth

Department of Industrial and Systems Engineering

Lehigh University
@ Shortest Paths

March 21, 2007

Jeff Linderoth IE170:Lecture 21 Jeff Linderoth IE170:Lecture 21

Shortest Paths Shortest Path Properties Shortest Paths Shortest Path Properties

Shortest Paths—Definitions Initializing and Relaxing
@ For the next few lectures, we will have a directed graph INIT-SINGLE-SOURCE(V $)
G = (V, E), and a weight function w : E — RI®I, 1 for each vinV
@ We are interested in finding the shortest-path weights from u 2 do dv] < o0
to v, which we will denote §(u, v). 3 m[v] NIL
. . . . 4 d[s] —0
@ O(u,v) = oo if there is no path from u to v in G
@ (Single Source) shortest-path algorithms produce a label:
d[v] = 4(s,v). RELAX (u, v, w)
e Initially d[v] = oo, reduces as the algorithm goes, so always 1 if d[v] > d[u] + wyy
d[v] > (s, v) 2 then d[v] — d[u] 4+ wy,
@ Also produce labels 7[v], predecessor of v on a shortest path 3 m[v] «u

from .

Jeff Linderoth |IE170:Lecture 21 Jeff Linderoth IE170:Lecture 21

Shortest Paths Shortest Path Properties

Lemmas

Any subpath of a shortest path is a shortest path

Shortest paths can’t contain cycles

Path Relaxation Property

Let P = {vg,v1,... v} be a shortest path from s = vy to vg. If
the edges (vg,v1), (v1,v2), (vg—1,vk) are relaxed in that order,
(there can be other relaxations in-between), then d[v| = (s, vx)

Jeff Linderoth IE170:Lecture 21

Bellman-Ford
Single Source Shortest Path on a DAG
Dijkstra

The Algorithms

Shortest Paths Shortest Path Properties

Bellman-Ford Algorithm

@ Works with Negative-Weight Edges

@ Returns true is there are no negative-weight cycles reachable
from s, false otherwise

BELLMAN-FORD(V, E, w, s)

INIT-SINGLE-SOURCE(V $)

fori —1to|V]|—1

do for each (u,v) in E
do RELAX(u, v, w)

for each (u,v) in £

do if d[v] > d[u] + wyy

then return False

return True

Jeff Linderoth

O NO Ol WDN -

IE170:Lecture 21
Bellman-Ford
Single Source Shortest Path on a DAG

The Algorithms DijKstra

Single Source Shortest Path on a DAG

DAG-SHORTEST-PATHS(V, E, s, w)

1 INIT-SINGLE-SOURCE(V, s)

2 topologically sort the vertices (HOW)
3 for each u in topologically sortedV
4 do for each v € Adj[u]

5 do RELAX (u,v,w)

Jeff Linderoth

IE170:Lecture 21

SSSP-DAG Analysis and Correctness

@ Correctness

e Since vertices are processed in topolgically sorted order, edges
of any path are relaxed in order of appearance on the path

e Thus, edges on any shortest path are relaxed in order

e Thus, by the path-relaxation lemma, the algorithm is correct

@ Analysis

Jeff Linderoth IE170:Lecture 21

Dijkstra’s Algorithm Dijkstra's Algorithm

DUKSTRA(V, E, w, s)
INIT-SINGLE-SOURCE(V s)
S — 0

@ Works only if the graph as no negative-weight edges 1
@ This is essentially a weighted-version of BFS 2
e Instead of a FIFO Queue (like you used for BFS in the lab), 3 Q«V
use a priority queue 4 while Q # 0
e Keys (in PQ) are the shortest-path weight estimates (d[v]) 5 do u + EXTRACT-MIN(Q)
e In Disjkstra's Algorithm, we have two sets of vertices 6 S — SuU{u}
7 for each v € Adj[u]
8 do RELAX(u, v, w)

e S: Vertices whose final shortest path weights are determines
e Q: Priority queue: V'\ S

Jeff Linderoth IE170:Lecture 21 Jeff Linderoth IE170:Lecture 21

Dijkstra's Algorithm Dijkstra Analysis

Analysis: Like Prim’s Algorithm, depends on the time it takes
to perform priority queue operations.
@ Suppose we use a binary heap.

e EXTRACT-MIN: Called O(|V]) times
o RELAX: Called O(|E|) times
@ Dijkstra’'s Algorithm is greedy, since it always chooses the o How long does each of these operations take?

“lightest” vertex in V' \ S to add to S

@ Note: Looks a lot like Prim's algorithm, but computing d[v],
and using the shortest path weights as keys

Dijkstra's Algorithm Runs in O(E'lg V'), with a binary heap
implementation.

Better Heap implementations get it down to O(VigV + E).
Our “List/Container " implementation took O(V?)

Jeff Linderoth IE170:Lecture 21 Jeff Linderoth IE170:Lecture 21

Dijkstra Correctness.

Loop Invariant

@ At the start of each iteration of the while loop
d(s,v) =dv] Vv e S

@ Initially: S = (), so this is trivially true

@ At end: S =1V, so we have the shortest path weights

e Maintenance: Must show that d[u] = §(s,u) when w is
added to S

We'll Give Proof (If Time)

Jeff Linderoth IE170:Lecture 21

