
Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

IE170: Algorithms in Systems Engineering:
Lecture 22

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

March 23, 2007

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Taking Stock

Last Time

Single-Source Shortest Paths

This Time

All-Pairs Shortest Paths

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Review
The Algorithm

All-Pairs Shortest Paths

Given directed graph G = (V,E), w : E→ R|E|. (To ease
notation, we let V = {1, 2, . . . , n}.)
Goal: Create an n× n matrix of shortest path distances δ(i, j)
We could run Bellman-Ford if negative weights edges

Running Time: O(|V |2|E|).
We could run Dijkstra if no negative weight edges

Running Time: (|V |3 lg |V |) (with binary heap
implementation)

We’ll see how to do slightly better, by exploiting an analogy
to matrix multiplication

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Review
The Algorithm

New Graph Data Structure

This is maybe the one and only time we are going to use an
adjacency matrix graph representation.

Given G = (V,E) and weight function w : E → R|E|, create
|V | × |V | matrix W as

wij =

0 i = j
w(i, j) (i, j) ∈ E
∞ (i, j) 6∈ E

In this case it is useful to consider having 0 weight “loops” on
the nodes (wii = 0)

The output of an all pairs shortest path algorithm is a matrix
D = (d)ij , where dij = δ(i, j)

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Review
The Algorithm

Dynamic Programming: Attempt #1

Subpaths of shortest paths are shortest paths

Let `
(m)
ij be the shortest path from i ∈ V to j ∈ V that uses

≤ m edges

To initialize

`
(0)
ij =

{
0 i = j
∞ i 6= j

What is the recursion we are looking for?

`
(m)
ij = min

(
`
(n−1)
ij , min

1≤k≤n
(`(m−1)

ik + wkj)
)

= min
1≤k≤n

(`(m−1)
ik + wkj)

(Since wjj = 0)

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Review
The Algorithm

More Facts Abour Our DP

Note that m = 1⇒ `
(1)
ij = wij

All simple shortest paths contain ≤ n− 1 edges, so simply
compute `n−1

ij = δ(i, j)

We will keep a “label-matrix” L(m) which in the end will be
L(n−1) = D

Initialize with L(1) = W by definition

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Review
The Algorithm

Incrementing m

Extend(L,W)
1 create (n× n) matrix L′

2 for i← 1 to n
3 do for j ← 1 to n
4 do `′ij ←∞
5 for k ← 1 to n
6 do `′ij ← min(`′ij , `ik + wkj)

APSP1(W)
1 L(1) = W
2 for m← 2 to n− 1
3 do L(m) = Extend(Lm−1,W)
4 return L(n−1)

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Review
The Algorithm

Let’s Compare

Analysis?

Extend(L,W)
1 create (n× n) matrix L′

2 for i← 1 to n
3 do for j ← 1 to n
4 do `′

ij ←∞
5 for k ← 1 to n
6 do `′

ij ← min(`′
ij , `ik + wkj)

7

MatrixMultiply(A,B)
1 create (n× n) matrix C
2 for i← 1 to n
3 do for j ← 1 to n
4 do cij ← 0
5 for k ← 1 to n
6 do cij ← cij + aikbkj

7

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Review
The Algorithm

Observation!

Extend MatrixMultiply
L → A
W → B
L′ → C

min → +
+ → ×
∞ → 0

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Review
The Algorithm

Who Cares!?!?

So what if Extend looks like Matrix Multiply?

Key Insight

We Only Care about computing L(n−1)

Suppose we wanted to compute the matrix
AAAAAAAA = A8

Long way: 7 matrix multiplies

Short Way: 3 matrix multiplies

A, A2, A4 = A2A2, A8 = A4A4

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

Review
The Algorithm

Faster All-Pairs-Shortest-Paths

APSP2(W)
1 L(1) = W
2 m← 1
3 while m ≤ n− 1
4 do L(2m) = Extend(Lm, Lm)
5 m← 2m
6 return L(m)

OK to “overshoot” n− 1, since shortest path labels don’t
change after m = n− 1 (since no negative cycles)

“Repeated squaring” is a technique used to improve the
efficiency of lots of other algorithms

Analysis:

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

The Algorithm
Correctness and Analysis

Floyd-Warshall Algorithm

Again, a DP approach, but uses a different label definition.

Def: For a path (v1, v2, . . . , vk), an intermediate vertex is any
vertex of p other than v1 and vk.

Floyd-Warshall Labels: Let d
(k)
ij be the shortest path from i to

j such that all intermediate vertices are in the set
{1, 2, . . . , k}.

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

The Algorithm
Correctness and Analysis

Another DP Recursion

Consider a shortest path P from i to j such that all
intermediate vertices are in {1, 2, . . . , k}.

There are two cases

1 k is not an intermediate vertex. Then all intermediate
vertices of P are in {1, 2, . . . , k − 1}

2 k is an intermediate vertex. Then for the paths Pik and
Pkj , all interediate vertices are in {1, 2, . . . , k − 1}

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

The Algorithm
Correctness and Analysis

Building the Algorithm

This simple obervation, immediately suggests a DP recursion

d
(k)
ij =

{
wij k = 0
min(dk−1

ij , dk−1
ik + dk−1

kj) k ≥ 1

We look for D(n) = (d)(n)
ij

Floyd-Warshall(W)
1 D(0) = W
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n

5 do d
(k)
ij ← min(dk−1

ij , d
(k−1)
ik + d

(k−1)
kj)

6 return D(n)

You don’t really need the superscripts (25.2-4)
Analysis?

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

The Algorithm
Analysis
Correctness

Transitive Closure

Transitive Closure

Given directed graph G = (V,E).
Compute graph T C(G) = (V,E∗) such that
e = (i, j) ∈ E∗ ⇔ ∃ path from i to j in G

Transitive closure can be thought of as establishing a data
structure that makes it possible to solve reachability questions
(can I get to x from y?) efficiently. After the preprocessing of
constructing the transitive closure, all reachability queries can
be answered in constant time by simply reporting a matrix
entry.

Transitive closure is fundamental in propagating the
consequences of modified attributes of a graph G.

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

The Algorithm
Analysis
Correctness

Applications of Transitive Closure

Consider the graph underlying any spreadsheet model, where
the vertices are cells and there is an edge from cell i to cell j
if the result of cell j depends on cell i. When the value of a
given cell is modified, the values of all reachable cells must
also be updated. The identity of these cells is revealed by the
transitive closure of G.

Many database problems reduce to computing transitive
closures, for analogous reasons.

Doing it fast is important

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

The Algorithm
Analysis
Correctness

Transitive Closure Algorithms

1 Perform BFS or DFS from each vertex and keep track of the
vertices encountered: O(V (V +E)). (Good for sparse graphs)

2 Find Strongly Connected Components. (All vertices in each
component are mutually reachable). Do BFS or DFS on
component graph. (In which component A is connected to
component B if there exists an edge from a vertex in A to a
vertex in B)

3 You can use Warshall’s Algorithm with weights 1. (In fact you
can use “bits” and make things very efficient as well)

Jeff Linderoth IE170:Lecture 22

Bellman Ford
Single Source Shortest Path on a DAG

Dijkstra

The Algorithm
Analysis
Correctness

Next Time

Flows in Networks

Continuation of TSP lab

Quiz: April 4

Programming Quiz: April 23

Jeff Linderoth IE170:Lecture 22

