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All-Pairs Shortest Paths New Graph Data Structure
@ This is maybe the one and only time we are going to use an
o Given directed graph G = (V, E), w: E — RIZ, (To ease adjacency matrix graph representation.
notation, we let V.= {1,2,...,n}.) e Given G = (V, E) and weight function w : E — RIFl, create
@ Goal: Create an m x n matrix of shortest path distances 6(i, j) |V | x |V| matrix W as
@ We could run BELLMAN-FORD if negative weights edges
o Running Time: O(|V|?|E)). 0 t=17
@ We could run DIJKSTRA if no negative weight edges wij = 9§ w(7) (ij.) €L
o Running Time: ([V|31g|V]) (with binary heap S (4,4) ¢ E
ol )
implementation) _ N @ In this case it is useful to consider having 0 weight “loops” on
o We'll see how to do slightly better, by exploiting an analogy the nodes (w;; = 0)

to matrix multiplication

@ The output of an all pairs shortest path algorithm is a matrix
D = (d)z'j, where dij = (5(2,])
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Dynamic Programming: Attempt #1

@ Subpaths of shortest paths are shortest paths

o Let EZ(-;.n) be the shortest path from i € V to j € V that uses
e To initialize
i=7

< m edges
0 _ 10
* 00 i F ]

@ What is the recursion we are looking for?

(m) _
(=

(Since wj; = 0)
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More Facts Abour OQur DP

@ Notethatm=1= EZ(;.) = W;j
@ All simple shortest paths contain < n — 1 edges, so simply
compute Z%*l = 0(4,7)

o We will keep a “label-matrix” L™ which in the end will be
L=V =D

e Initialize with L) = W by definition
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Incrementing m

EXTEND(L, W)
1 create (n X n) matrix L'

2 fori—1ton

3 doforj«—1ton

4 do /}; < oo

5 for k—1ton

6 do Egj — min(@j, ik + W)

APSP1(W)

1 LW =w

2 form«—2ton—1

3 do L™ = EXTEND(L™ 1, W)
4 return L1
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Let's Compare

@ Analysis?

EXTEND(L, W) MAaTRIXMULTIPLY (A, B)
1 create (n x n) matrix L' 1 create (n x n) matrix C
2 fori—1ton 2 fori—1ton
3 doforj«—1ton 3 doforj«—1lton
do E;]<—OO do Cij<—0
for k —1ton for k —1ton
do f;] — min(ﬁ'— Eik + wkj) do Cij < Cij + aikbkj

17

~NOo O~
~NOo O~
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Observation! Who Cares!?!1?

@ So what if EXTEND looks like MATRIX MULTIPLY?

Extend MatrixMultiply

We Only Care about computing L("~1)

LI
min

@ Suppose we wanted to compute the matrix
AAAAAAAA = A

@ Long way: 7 matrix multiplies

+
oOX + QT

Ll

@ Short Way: 3 matrix multiplies

o A, A% At = A%AZ% A% = AtAY
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Single Source Shortest Path on a DAG

The Algorithm Correctness and Analysis

Faster All-Pairs-Shortest-Paths Floyd-Warshall Algorithm

APSP2(W)

1 LW =w

2 m«1

3 whilem<n-—1 . )

4 do L2m) — EXTEND(L™, L™) @ Again, a DP approach, but uses a different label definition.

5 m «— 2m, e Def: For a path (vi,v2,...,vg), an intermediate vertex is any
6 return L(m) vertex of p other than v and vy.

@ Floyd-Warshall Labels: Let dg.{) be the shortest path from i to
j such that all intermediate vertices are in the set

e OK to “overshoot” n — 1, since shortest path labels don't {1,2,...,k}.
change after m = n — 1 (since no negative cycles)

@ “Repeated squaring” is a technique used to improve the

efficiency of lots of other algorithms
@ Analysis:
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Another DP Recursion

@ Consider a shortest path P from i to j such that all
intermediate vertices are in {1,2,... k}.

There are two cases

@ £k is not an intermediate vertex. Then all intermediate
vertices of P are in {1,2,...,k—1}

© £k is an intermediate vertex. Then for the paths P;; and
Py, all interediate vertices are in {1,2,...,k — 1}
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Transitive Closure

@ Given directed graph G = (V, E).

e Compute graph 7C(G) = (V, E*) such that
e=(i,j) € E* & J path fromito j in G

@ Transitive closure can be thought of as establishing a data
structure that makes it possible to solve reachability questions
(can | get to x from y?) efficiently. After the preprocessing of
constructing the transitive closure, all reachability queries can
be answered in constant time by simply reporting a matrix
entry.

@ Transitive closure is fundamental in propagating the

consequences of modified attributes of a graph G.
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Building the Algorithm

@ This simple obervation, immediately suggests a DP recursion
Wi 5 k=0
min(dj; " dit +dict) k>

e We look for D) = (d)gl)

FLOYD-WARSHALL(W)

1 DO =w

2 fork<—1ton

3 dofori—1ton

4 do for j — 1 ton

5 do dY — min(df !, df ™V +dlfY)
6

return D™
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Applications of Transitive Closure

@ Consider the graph underlying any spreadsheet model, where
the vertices are cells and there is an edge from cell i to cell j
if the result of cell 5 depends on cell . When the value of a
given cell is modified, the values of all reachable cells must
also be updated. The identity of these cells is revealed by the
transitive closure of G.

@ Many database problems reduce to computing transitive
closures, for analogous reasons.

e Doing it fast is important
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Transitive Closure Algorithms Next Time

@ Perform BFS or DFS from each vertex and keep track of the

vertices encountered: O(V(V + E)). (Good for sparse graphs)
Flows in Networks

Continuation of TSP lab
Quiz:  April 4
Programming Quiz: April 23

@ Find Strongly Connected Components. (All vertices in each
component are mutually reachable). Do BFS or DFS on
component graph. (In which component A is connected to
component B if there exists an edge from a vertex in A to a
vertex in B)
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© You can use Warshall's Algorithm with weights 1. (In fact you
can use “bits” and make things very efficient as well)




