
All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

IE170: Algorithms in Systems Engineering:
Lecture 23

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

March 26, 2007

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Taking Stock

Last Time

All-Pairs Shortest Paths

This Time

Transitive Closure (Fast)

Flows in Networks

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Dumb DP
Matrix Multiply?

Transitive Closure

Transitive Closure

Given directed graph G = (V,E).
Compute graph T C(G) = (V,E∗) such that
e = (i, j) ∈ E∗ ⇔ ∃ path from i to j in G

Transitive closure can be thought of as establishing a data
structure that makes it possible to solve reachability questions
(can I get to x from y?) efficiently. After the preprocessing of
constructing the transitive closure, all reachability queries can
be answered in constant time by simply reporting a matrix
entry.

Transitive closure is fundamental in propagating the
consequences of modified attributes of a graph G.

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Dumb DP
Matrix Multiply?

Applications of Transitive Closure

Consider the graph underlying any spreadsheet model, where
the vertices are cells and there is an edge from cell i to cell j
if the result of cell j depends on cell i. When the value of a
given cell is modified, the values of all reachable cells must
also be updated. The identity of these cells is revealed by the
transitive closure of G.

Many database problems reduce to computing transitive
closures, for analogous reasons.

Doing it fast is important

Jeff Linderoth IE170:Lecture 23



All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Dumb DP
Matrix Multiply?

Transitive Closure Algorithms

1 Perform BFS or DFS from each vertex and keep track of the
vertices encountered: O(V (V +E)). (Good for sparse graphs)

2 Find Strongly Connected Components. (All vertices in each
component are mutually reachable). Do BFS or DFS on
component graph. (In which component A is connected to
component B if there exists an edge from a vertex in A to a
vertex in B)

3 You can use Warshall’s Algorithm with weights 1. (In fact you
can use “bits” and make things very efficient as well)

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definitions
DP Recursion
Algorithm

Flows in Networks

G = (V,E) directed.

Each edge (u, v) ∈ E has a capacity c(u, v) ≥ 0
If (u, b) 6∈ E ⇒ c(u, v) = 0
We will typically have a special source vertex s ∈ V , a sink
vertex t ∈ V , and we will assume there exists paths from
s v  t ∀v ∈ V

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definitions
DP Recursion
Algorithm

Flows

A positive flow is a function p : V × V → R|V |×|V | that
satisfies two conditions:

1 Capacity Constraints:

0 ≤ p(u, v) ≤ c(u, v) ∀u ∈ V, v ∈ V

2 Flow Conservation:∑
v∈V

p(v, u) =
∑
v∈V

p(u, v) ∀u ∈ V \ {s, t}

We will assume that a positive flow either goes from u to v or
from v to u but not both.

If not, we can “cancel” the flow, and preserve the conditions

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definitions
DP Recursion
Algorithm

Net Flows

A net flow is a function f : V × V → R|V |×|V | that satisfies
three conditions:

1 Capacity Constraints:

0 ≤ f(u, v) ≤ c(u, v)

2 Skew Symmetry:

f(u, v) = −f(v, u) ∀u ∈ V, v ∈ V

3 Flow Conservation:∑
v∈V

f(u, v) = 0 ∀u ∈ V \ {s, t}

Another way to think of flow conservation:∑
v∈V | f(v,u)>0

f(v, u) =
∑

v∈V | f(u,v)>0

f(u, v)

Jeff Linderoth IE170:Lecture 23



All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definitions
DP Recursion
Algorithm

Different Yet Same

There are two difference between positive flow p and net flow
f

1 p(u, v) ≥ 0 (while not true for f)
2 f satisfies the skew symmetric condition

However the functions are really equivalent. Given p, define f
as

f(u, v) = p(u, v)− p(v, u)

This satisfies flow conservation and capacity constraints

Given f define p as

p(u, v) =
{

f(u, v) if f(u, v) > 0
0 if f(u, v) ≤ 0

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definitions
DP Recursion
Algorithm

More Flow

So from here on out, we will use net flow instead of positive
flow.

An important value we will be worried about is the value of
flow f = |f | =

∑
v∈V f(s, v): The total flow out of the

source.

The Maximum Flow Problem

Given G = (V,E). source node s ∈ V , sink node t ∈ V , edge
capacities c. Find a flow whose value is maximum.

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definitions
DP Recursion
Algorithm

Σ’s Scare Me!

We’ll introduce a shorthand notation for summing between
sets of vertices.

Given X ⊆ V , Y ⊆ V

f(X, Y ) =
∑
x∈X

∑
y∈Y

f(x, y).

Therefore flow conservation is

f({u}, V ) = 0 ∀u ∈ V \ {s, t}.

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definitions
DP Recursion
Algorithm

Lemma, Lemma, Lemma

With this shorthand notatation, writing down useful flow
properties is easy. Can you prove the following?

1 f(X, X) = 0 ∀X ⊆ V

2 f(X, Y ) = −f(Y, X) ∀X, Y ⊆ V

3 Let X, Y, Z ⊂ V be such that X ∩ Y = ∅, then

f(X ∪ Y, Z) = f(X, Z) + f(Y, Z)
f(Z,X ∪ Y ) = f(Z,X) + f(Z, Y )

4 |f | = f(V, t)

Jeff Linderoth IE170:Lecture 23



All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definitions
DP Recursion
Algorithm

Cuts

A cut of a (flow) network G = (V,E) is a partition of V into
S and T = V \ S such that s ∈ S and t ∈ T

For flow f , net flow across a cut is f(S, T ) and the cuts
capacity is c(S, T ) =

∑
u∈S

∑
v∈T c(u, v)

A minimum cut of G is a cut whose capacity is minimum

Example...

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definitions
DP Recursion
Algorithm

A Simple Upper Bound

For any cut (S, T ), f(S, T ) = |f |
Proof

f(S, T ) = f(S, V )− f(S, S) Since S ∪ T = V, S ∩ T = ∅
= f(S, V )
= f({s}, V ) + f(S \ {s}, V ) flow conservation

= f({s}, V )
= |f |

Coronary :-)

The value of any flow is no more than the capacity of any cut

|f | = f(S, T ) =
∑
u∈S

∑
v∈T

f(u, v) ≤
∑
u∈S

∑
v∈T

c(u, v) = c(S, T ).

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Algorithms
Algorithms

Residual Network

Given a flow f in a network G = (V,E), we ask ourselves the
question: How much more flow can I push from u ∈ V to
v ∈ V ?

The answer is simple: The residual capacity of the arc (u, v):

cf (u, v) def= c(u, v)− f(u, v) ≥ 0.

Give flow f , we can create a residual network from the flow.
Gf = (V,Ef ), with

Ef
def= {(u, v) ∈ V × V | cf (u, v) > 0},

so that each edge in the residual network can admit a positive
flow.

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Algorithms
Algorithms

Augmenting Flow Lemma

We define the flow sum of two flows f1, f2 as the sum of the
individual flows

(f1 + f2)(u, v) = f1(u, v) + f2(u, v).

Note that f1 + f2 is also a flow function

Moreover, we have the following:

Augmenting Flow Lemma

Given a flow network G, a flow f in G. Let f ′ be any flow in the
residual network Gf . Then the flow sum f + f ′ is a flow in G
with value |f |+ |f ′|

Jeff Linderoth IE170:Lecture 23



All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Algorithms
Algorithms

Augmenting Paths

Consider a path Pst from s to t in Gf .

According to the lemma, we can increase the flow in G by
increasing the flow along in edge in Pst

(Think of it as a sequence of pipes along which we can quirt
more flow from s to t

How much more?

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Algorithms
Algorithms

Augmenting Paths

How much more?

cf (Pst) = min{cf (u, v) | (u, v) is on path Pst}.

Augmenting flow: Let P be an augmenting path in Gf , define
fP : V × V → R|V |×|V | :

fP (u, v) =


cf (p) (u, v) on P
−cf (p) (v, u) on P
0 otherwise

then fP is a flow in Gf with value |fP | = cf (P ) > 0
corollary: f ′ = f + fP is a flow in G with value
|f ′| = |f |+ cf (P ) > |f |

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Algorithms
Algorithms

The Big Kahuna

Max-Flow Min-Cut Theorem

The following statements are equivalent

1 f is a maximum flow

2 f admits no augmenting path. (No (s, t) path in residual
network)

3 |f | = c(S, T ) for some cut (S, T )

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Algorithms
Algorithms

Proof of MFMC

(1) ⇒ (2). By contradiction. If f has an augmenting path,
then the flow can’t have been maximum (by previous
corollary)

(2) ⇒ (3). Let

S = {v ∈ V | ∃ path from s to v in Gf}.
T = V \ S.

Note that t ∈ T or else there was an augmenting path, so
(S, T ) is a cut. For each u ∈ S, v ∈ T , f(u, v) = c(u, v) or
otherwise (u, v) ∈ Ef and we should have put v ∈ S.
Therefore |f | = f(S, T ) = c(S, T ) for the chosen cut (S, T )
(3) ⇒ (1). Since |f | ≤ c(S, T ) (always), the fact that
|f | = c(S, T ) for the chosen cut implies that f must be a
maximum flow.

Quite Enough Done
Jeff Linderoth IE170:Lecture 23



All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Algorithms
Algorithms

Ford-Fulkerson Algorithm

This gave Lester Ford and Del Fulkerson an idea to find he
maximum flow in a network:

Ford-Fulkerson(V,E, c, s, t)
1 for i← 1 to n
2 do f [u, v]← f [v, u]← 0
3 while ∃ augmenting path P in Gf

4 do augment f by cf (P )

Assume all capacities are integers. If they are rational
numbers, scale them to be integers.

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Definition
Algorithms
Algorithms

Analysis

If the maximum flow is |f |∗, then (since the augmenting path
must raise the flow by at least 1 on each iteration), we will
require ≤ |f |∗ iterations.

Augmenting the flow takes O(|E|)
Ford-Fulkerson runs in O(|f |∗|E|)
This is not polynomial in the size of the input.

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

Can We Do Better!?

Two Smart Guys had the following idea.

Instead of augmenting on an arbitrary augmenting path, why
don’t we sugment flow along the shortest augmenting path.

Here shortest means simply number of edges taken, so all
edges have weight 1.

Therefore shortest pahs can be found just like you did in lab –
with BFS

With some heavy machinery (See book), one can show that if
you only augment on shortest paths, then you have to do at
most O(|V ||E|) augmentations of the flow

Therefore Edmonds-Karp algorithm runs in O(|V ||E|2) time.

There are even faster algorithms, such as push-relabel, but we
won’t cover those.

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths
Floyd-Warshall

Transitive Closure

This/Next Time

Continuation of TSP lab.

Will give you some “test graphs”.
Will also give you a bit more homework (on max flows)
No Late Homework Accepted

Quiz: April 4

Programming Quiz: April 23

Jeff Linderoth IE170:Lecture 23


