IE170: Algorithms in Systems Engineering:

Lecture 23

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

March 26, 2007

Jeff Linderoth
All-Pairs Shortest Paths

IE170:Lecture 23
Definition
Dumb DP
Matrix Multiply?

Taking Stock

@ All-Pairs Shortest Paths l

@ Transitive Closure (Fast)

@ Flows in Networks

Jeff Linderoth
All-Pairs Shortest Paths

IE170:Lecture 23

Definition
Dumb DP
Matrix Multiply?

Transitive Closure

Transitive Closure

@ Given directed graph G = (V, E).

e Compute graph 7C(G) = (V, E*) such that
e=(i,j) € E* < J path fromito j in G

e Transitive closure can be thought of as establishing a data
structure that makes it possible to solve reachability questions
(can | get to x from y?) efficiently. After the preprocessing of
constructing the transitive closure, all reachability queries can
be answered in constant time by simply reporting a matrix
entry.

@ Transitive closure is fundamental in propagating the

consequences of modified attributes of a graph G.

Jeff Linderoth

IE170:Lecture 23

Applications of Transitive Closure

o Consider the graph underlying any spreadsheet model, where
the vertices are cells and there is an edge from cell i to cell j
if the result of cell 5 depends on cell . When the value of a
given cell is modified, the values of all reachable cells must
also be updated. The identity of these cells is revealed by the
transitive closure of G.

@ Many database problems reduce to computing transitive
closures, for analogous reasons.

e Doing it fast is important

Jeff Linderoth IE170:Lecture 23

All-Pairs Shortest Paths Definition
Dumb DP

Matrix Multiply?

Transitive Closure Algorithms

@ Perform BFS or DFS from each vertex and keep track of the
vertices encountered: O(V(V + E)). (Good for sparse graphs)

@ Find Strongly Connected Components. (All vertices in each
component are mutually reachable). Do BFS or DFS on
component graph. (In which component A is connected to
component B if there exists an edge from a vertex in A to a
vertex in B)

© You can use Warshall's Algorithm with weights 1. (In fact you
can use “bits” and make things very efficient as well)

Jeff Linderoth IE170:Lecture 23

Definitions
Floyd-Warshall DP Recursion
Algorithm

Definitions
Floyd-Warshall DP Recursion
Algorithm

Flows in Networks

o G = (V,E) directed.

e Each edge (u,v) € E has a capacity c¢(u,v) >0

o If (u,b) ¢ E = c(u,v) =0

o We will typically have a special source vertex s € V, a sink

vertex t € V', and we will assume there exists paths from
s~v~t YveV

Jeff Linderoth IE170:Lecture 23

Definitions
Floyd-Warshall DP Recursion
Algorithm

Flows

@ A positive flow is a function p: V x V — RIVIXIVI that
satisfies two conditions:

© Capacity Constraints:
0 <plu,v) <clu,v) Vu e Vv eV
@ Flow Conservation:

Zp(v,u) = Zp(u,v) Vu eV \ {s,t}

veV veV

@ We will assume that a positive flow either goes from u to v or

from v to uw but not both.

o If not, we can “cancel” the flow, and preserve the conditions

Jeff Linderoth IE170:Lecture 23

Net Flows

@ A net flow is a function f: V x V — RIVIXIVI that satisfies
three conditions:

© Capacity Constraints:
0 < f(u,v) < c(u,v)
@ Skew Symmetry:
flu,v) = —=f(v,u) Vu e Vv eV
© Flow Conservation:

Zf(u,v) =0VueV\{s,t}

veV
Another way to think of flow conservation:

S fww= Y fw)

veV | f(v,u)>0 veV | f(u,w)>0

Jeff Linderoth IE170:Lecture 23

Definitions Definitions
Floyd-Warshall DP Recursion Floyd-Warshall DP Recursion

Algorithm Algorithm

Different Yet Same More Flow

@ There are two difference between positive flow p and net flow

f @ So from here on out, we will use net flow instead of positive
Q@ p(u,v) > 0 (while not true for f) flow.
Q |/ satisfies the skew symmetric condition @ An important value we will be worried about is the value of
@ However the functions are really equivalent. Given p, define f flow f = [f| = > ,cv f(s,v): The total flow out of the
as source.

flu,v) = p(u,v) — p(v,u)

This satisfies flow conservation and capacity constraints

The Maximum Flow Problem

® Given f define p as Given G = (V, E). source node s € V, sink node t € V, edge

(u.0) { flu,v) i flu,v) >0 capacities c. Find a flow whose value is maximum.
p(u,v) =

0 if f(u,0) <0

Jeff Linderoth IE170:Lecture 23 Jeff Linderoth IE170:Lecture 23

Definitions Definitions

Floyd-Warshall DP Recursion Floyd-Warshall DP Recursion
Algorithm Algorithm

>'s Scare Me! Lemma, Lemma, Lemma

@ With this shorthand notatation, writing down useful flow

e We'll introduce a shorthand notation for summing between properties is easy. Can you prove the following?
sets of vertices.
@ Gven X CV, YCV Q (X, X)=0VXCV
Q f(X,)Y)=—f(,X)VX,)Y CV
FXY) = Z;(ny(:v,y). @ Let X,Y,Z CV besuch that X NY = (), then
rEX Yye

fXuy,z) = f(X,2)+ (Y, 2)
F(Z,XUY) = f(Z,X)+ f(Z,Y)

@ Therefore flow conservation is

fHul,V)=0 VueV\({s,t}

0 If|=f(Vt)

Jeff Linderoth IE170:Lecture 23 Jeff Linderoth IE170:Lecture 23

Definitions
Floyd-Warshall DP Recursion

Algorithm

Cuts

o A cut of a (flow) network G = (V, E) is a partition of V" into
Sand T=V \ Ssuchthats€ SandteT

@ For flow f, net flow across a cut is f(S,T) and the cuts
capacity is c(S,T) = > ,cs 2 ver (U, V)
@ A minimum cut of G is a cut whose capacity is minimum

Example...

Jeff Linderoth IE170:Lecture 23

Definition
Algorithms

Transitive Closure Algorithms

Residual Network

e Given a flow f in a network G = (V, E), we ask ourselves the
question: How much more flow can | push from u € V to
veV?

@ The answer is simple: The residual capacity of the arc (u,v):
def
ct(u,v) = c(u,v) — f(u,v) > 0.

@ Give flow f, we can create a residual network from the flow.
Gy = (V,Ey), with

Ey o {(u,v) e Vx V| ct(u,v) > 0},

so that each edge in the residual network can admit a positive
flow.

Jeff Linderoth IE170:Lecture 23

Definitions
Floyd-Warshall DP Recursion
Algorithm

A Simple Upper Bound

e For any cut (S,T), f(S,T) = |f|
Proof
f5,1) = f(
= f(’)
= f(

The value of any flow is no more than the capacity of any cut

FI=F(ST) = flu0) <D elu,v) = (S, T).
v T T

"~ Jeff Linderoth IE170:Lecture 23

Definition
Algorithms
Transitive Closure Algorithms

Augmenting Flow Lemma

@ We define the flow sum of two flows fi, fs as the sum of the
individual flows

(fl + f2)(uvv) = fl(uvv) + f2(uvv)'

o Note that f; + fo is also a flow function

@ Moreover, we have the following:

Augmenting Flow Lemma

Given a flow network G, a flow f in G. Let f’ be any flow in the
residual network G¢. Then the flow sum f + f’is a flow in G

with value |f| + | f|

Jeff Linderoth IE170:Lecture 23

Definition
Algorithms

Transitive Closure Algorithms

Definition
Algorithms

Transitive Closure Algorithms

Augmenting Paths

@ Consider a path Py from s to ¢ in Gy.

@ According to the lemma, we can increase the flow in G by
increasing the flow along in edge in Py

o (Think of it as a sequence of pipes along which we can quirt
more flow from s to ¢

@ How much more?

Jeff Linderoth IE170:Lecture 23

Definition

Algorithms

Transitive Closure

Augmenting Paths

@ How much more?
ct(Pst) = min{cy(u,v) | (u,v) is on path Py}.

@ Augmenting flow: Let P be an augmenting path in G, define
fp:VxV—=RVIXIVE

ct(p) (u,v) on P
fp(u,v) = —cf(p) (v,u)on P
0 otherwise

then fp is a flow in Gy with value |fp| = c¢(P) >0

@ corollary: f" = f+ fpis a flow in G with value

1] = £+ cr(P) > [f]

Jeff Linderoth IE170:Lecture 23

Definition
Algorithms
Transitive Closure

Algorithms

The Big Kahuna

Max-Flow Min-Cut Theorem

The following statements are equivalent
Q@ [is a maximum flow

@ f admits no augmenting path. (No (s,t) path in residual
network)

Q |f| = c(S,T) for some cut (S,T)

Jeff Linderoth

IE170:Lecture 23

Algorithms

Proof of MFMC

@ (1) = (2). By contradiction. If f has an augmenting path,
then the flow can’t have been maximum (by previous

corollary)
e (2) = (3). Let
S = {veV|dpath from stovin Gy}
T = V\&S.

Note that ¢ € T or else there was an augmenting path, so

(S,T) is a cut. For each u € S,v e T, f(u,v) = c(u,v) or

otherwise (u,v) € E¢ and we should have put v € S.

Therefore |f| = f(S,T) = ¢(S,T) for the chosen cut (5,7
e (3) = (1). Since |f| < ¢(S,T) (always), the fact that

|f] = ¢(S,T) for the chosen cut implies that f must be a

maximum flow.
QUITE ENOUGH DONE

Jeff Linderoth IE170:Lecture 23

Definition Definition
Algorithms Algorithms

Transitive Closure Algorithms Transitive Closure Algorithms

Ford-Fulkerson Algorithm Analysis

@ This gave Lester Ford and Del Fulkerson an idea to find he

maximum flow in a network:
o If the maximum flow is |f|*, then (since the augmenting path

must raise the flow by at least 1 on each iteration), we will

require < | f|* iterations.
do flu,v] — f[v,u] —0 e = UL e
while 3 augmenting path P in Gy o Augmenting the flow takes O(| E])
do augment f by c;(P) e FORD-FULKERSON runs in O(| f|*|E])

FORD-FULKERSON(V, E, ¢, s, 1)
fori— 1ton

AW DN

@ This is not polynomial in the size of the input.

@ Assume all capacities are integers. If they are rational

numbers, scale them to be integers.

Jeff Linderoth IE170:Lecture 23 Jeff Linderoth IE170:Lecture 23

Can We Do Better!? This/Next Time

@ Two Smart Guys had the following idea.

@ Instead of augmenting on an arbitrary augmenting path, why
don't we sugment flow along the shortest augmenting path.

@ Here shortest means simply number of edges taken, so all o Continuation of TSP lab.

edges have weight 1. o Will give you some “test graphs”.
o Will also give you a bit more homework (on max flows)

o No Late Homework Accepted
@ Quiz: April 4
@ Programming Quiz: April 23

@ Therefore shortest pahs can be found just like you did in lab —
with BFS

@ With some heavy machinery (See book), one can show that if
you only augment on shortest paths, then you have to do at
most O(|V'||E|) augmentations of the flow

@ Therefore Edmonds-Karp algorithm runs in O(|V||E|?) time.

@ There are even faster algorithms, such as push-relabel, but we

won't cover those.

Jeff Linderoth IE170:Lecture 23 Jeff Linderoth IE170:Lecture 23

