
IE170: Algorithms in Systems Engineering: Lecture 24

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

March 28, 2007

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 1 / 24

Taking Stock

Last Time

Transitive Closure (Fast)

Flows in Networks

This Time

Flows, Flows, Flows

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 2 / 24

Flows

Flows in Networks

G = (V,E) directed.

Each edge (u, v) ∈ E has a capacity c(u, v) ≥ 0
If (u, b) 6∈ E ⇒ c(u, v) = 0
We will typically have a special source vertex s ∈ V , a sink vertex
t ∈ V , and we will assume there exists paths from
s v t ∀v ∈ V

The combination of all of these things (G, s, t, c) is known as a flow
network.

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 3 / 24

Flows

Net Flows

A net flow is a function f : V × V → R|V |×|V | that satisfies three
conditions:

1 Capacity Constraints:
f(u, v) ≤ c(u, v)

2 Skew Symmetry:

f(u, v) = −f(v, u) ∀u ∈ V, v ∈ V

3 Flow Conservation:∑
v∈V

f(u, v) = 0 ∀u ∈ V \ {s, t}

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 4 / 24

Flows

More Flow

An important value we will be worried about is the value of flow
f = |f | =

∑
v∈V f(s, v): The total flow out of the source.

The Maximum Flow Problem

Given G = (V,E). source node s ∈ V , sink node t ∈ V , edge capacities
c. Find a flow whose value is maximum.

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 5 / 24

Flows

Lemma, Lemma, Lemma

Recall Shorthand

f(X, Y) =
∑
x∈X

∑
y∈Y

f(x, y).

1 f(X, X) = 0 ∀X ⊆ V

2 f(X, Y) = −f(Y, X) ∀X, Y ⊆ V

3 Let X, Y, Z ⊂ V be such that X ∩ Y = ∅, then

f(X ∪ Y, Z) = f(X, Z) + f(Y, Z)
f(Z,X ∪ Y) = f(Z,X) + f(Z, Y)

4 |f | = f(V, t)

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 6 / 24

Flows

Cuts

A cut of a (flow) network G = (V,E) is a partition of V into S and
T = V \ S such that s ∈ S and t ∈ T

For flow f , net flow across a cut is f(S, T) and the cuts capacity is
c(S, T) =

∑
u∈S

∑
v∈T c(u, v)

A minimum cut of G is a cut whose capacity is minimum

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 7 / 24

Flows

A Simple Upper Bound

Flow Across Cuts Lemma

For any cut (S, T), f(S, T) = |f |

Coronary :-)

The value of any flow is no more than the capacity of any cut

|f | = f(S, T) =
∑
u∈S

∑
v∈T

f(u, v) ≤
∑
u∈S

∑
v∈T

c(u, v) = c(S, T).

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 8 / 24

Ford-Fulkerson Method

Residual Capacity

Given a flow f in a network G = (V,E), we ask ourselves the
question: How much more flow can I push from u ∈ V to v ∈ V ?

The answer is simple: The residual capacity of the arc (u, v):

cf (u, v) def= c(u, v)− f(u, v) ≥ 0.

Note: f(v, u) might be < 0. (like if f(u, v) > 0).
So if “no” original arc (v, u), and flow from (u, v), f(v, u) < 0⇒
residual capacity!

We can “increase” the flow from (v, u) by reducing the from from
(u, v)

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 9 / 24

Ford-Fulkerson Method

Residual Network

Give flow f , we can create a residual network from the flow.
Gf = (V,Ef), with

Ef
def= {(u, v) ∈ V × V | cf (u, v) > 0},

so that each edge in the residual network can admit a positive flow.

So if there is a path from s t in Gf , then there must be a way to
increase the flow without violating the capacity constraints on any of
the edges

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 10 / 24

Ford-Fulkerson Method

Augmenting Flow Lemma

We define the flow sum of two flows f1, f2 as the sum of the
individual flows

(f1 + f2)(u, v) = f1(u, v) + f2(u, v).

Note that f1 + f2 is also a flow function

Moreover, we have the following:

Flow Sum Lemma (26.2)

Given a flow network G, a flow f in G. Let f ′ be any flow in the residual
network Gf . Then the flow sum f +f ′ is a flow in G with value |f |+ |f ′|

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 11 / 24

Ford-Fulkerson Method

Augmenting Paths

Consider a path Pst from s to t in Gf .

According to the lemma, we can increase the flow in G by increasing
the flow along each edge in Pst

Think of it as a sequence of pipes along which we can squirt more
flow from s to t

How much more? Simple: cf (Pst) = min{cf (u, v) | (u, v) is on Pst.

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 12 / 24

Ford-Fulkerson Method

Augmenting Paths

Augmenting flow: Let P be an augmenting path in Gf , define
fP : V × V → R|V |×|V | :

fP (u, v) =

cf (p) (u, v) on P
−cf (p) (v, u) on P
0 otherwise

then fP is a flow in Gf with value |fP | = cf (P) > 0
corollary: f ′ = f + fP is a flow in G with value
|f ′| = |f |+ cf (P) > |f |

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 13 / 24

Ford-Fulkerson Method

The Big Kahuna

Max-Flow Min-Cut Theorem

The following statements are equivalent

1 f is a maximum flow

2 f admits no augmenting path. (No (s, t) path in residual network)

3 |f | = c(S, T) for some cut (S, T)

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 14 / 24

Ford-Fulkerson Method

Proof of MFMC

(1) ⇒ (2). By contradiction. If f has an augmenting path, then the
flow can’t have been maximum (by previous corollary)

(2) ⇒ (3). Let

S = {v ∈ V | ∃ path from s to v in Gf}.
T = V \ S.

Note that t ∈ T or else there was an augmenting path, so (S, T) is a
cut. For each u ∈ S, v ∈ T , f(u, v) = c(u, v) or otherwise
(u, v) ∈ Ef and we should have put v ∈ S. Therefore
|f | = f(S, T) = c(S, T) for the chosen cut (S, T)
(3) ⇒ (1). Since |f | ≤ c(S, T) (always), the fact that |f | = c(S, T)
for the chosen cut implies that f must be a maximum flow.

Quite Enough Done

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 15 / 24

Ford-Fulkerson Method

Ford-Fulkerson Algorithm

This gave Lester Ford and Del Fulkerson an idea to find he maximum
flow in a network:

Ford-Fulkerson(V,E, c, s, t)
1 for i← 1 to n
2 do f [u, v]← f [v, u]← 0
3 while ∃ augmenting path P in Gf

4 do augment f by cf (P)

Assume all capacities are integers. If they are rational numbers, scale
them to be integers.

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 16 / 24

Ford-Fulkerson Method

Analysis

If the maximum flow is |f |∗, then (since the augmenting path must
raise the flow by at least 1 on each iteration), we will require ≤ |f |∗
iterations.

Augmenting the flow takes O(|E|)
Ford-Fulkerson runs in O(|f |∗|E|)
This is not polynomial in the size of the input.

If you augment flow along the path with largest residual capacity, one
can show that at most O(|E| lg U) iterations are needed.

U = max(u,v)∈V×V c(u, v)

The “greedy” (maximum capacity) aumenting path algorithm runs in
O(|E|2 lg U). This is polynomial in the size of the input, but not
strongly polynomial (It still depends on the magnitude of the
“numbers” in the instance, not on the size of the instance itself).

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 17 / 24

Edmonds-Karp

Can We Do Better!? – Edmonds-Karp

Instead of augmenting on an arbitrary augmenting path, why don’t
we augment flow along the shortest augmenting path.

Here shortest means simply number of edges taken, so all edges have
weight 1.

Therefore shortest pahs can be found just like you did in lab – with
BFS

With some heavy machinery (See book), one can show that if you
only augment on shortest paths, then you have to do at most
O(|V ||E|) augmentations of the flow

Therefore Edmonds-Karp algorithm runs in O(|V ||E|2) time.

There are even faster algorithms, such as push-relabel, but we won’t
cover those.

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 18 / 24

Bipartite Matching

Maximum Bipartite Matching

A graph G = (V,E) is bipartite if we can partition the vertices into
V = L ∪R such that all edges in E go between L and R

A matching is a subset of edges M ⊆ E such that for all v ∈ V , ≤ 1
edge of M is incident upon it.

Maximum Bipartite Matching

Given (undirected) bipartite graph G = (L ∪R,E), find a matching M
of G that contains the most edges

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 19 / 24

Bipartite Matching

Applications

There are lots of applications of matching problems

Airlines

L set of planes
R set of routes
(u, v) ∈ E if plane u can fly route v
Maximize the number of routes served by planes

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 20 / 24

Bipartite Matching

Solving It

Bipartite matching is one of many problems that can be equivalently
formulated (and solved) via maximum flows.

Given G = (L ∪R,E), create flow network G′ = (V ′, E′)
V ′ = V ∪ {s, t}
E′ = {(s, u) | u ∈ L} ∪ E ∪ {(v, t) | v ∈ R}
c(u, v) = 1 ∀(u, v) ∈ E′

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 21 / 24

Bipartite Matching

Observations

(You can see the book for more formal proofs)

There is a matching M in G of size |M | if and only if there is an
(integer-valued) flow f in G′ of value |f | = |M |.
Thus a maximum-matching in a bipartite graph G is the value of the
maximum flow in the flow network G′

What is a cut in G′?

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 22 / 24

Bipartite Matching

Next Time

More applications of Max Flow

FINALLY Start going over homework and problem sets

Quiz: April 4

Programming Quiz: April 23

Jeff Linderoth (Lehigh University) IE170:Lecture 24 Lecture Notes 23 / 24

