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Flows

The Big Kahuna

Max-Flow Min-Cut Theorem

The following statements are equivalent

1 f is a maximum flow

2 f admits no augmenting path. (No (s, t) path in residual network)

3 |f | = c(S, T ) for some cut (S, T )
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Flows

Ford-Fulkerson Algorithm

This gave Lester Ford and Del Fulkerson an idea to find he maximum
flow in a network:

Ford-Fulkerson(V,E, c, s, t)
1 for i← 1 to n
2 do f [u, v]← f [v, u]← 0
3 while ∃ augmenting path P in Gf

4 do augment f by cf (P )

Assume all capacities are integers. If they are rational numbers, scale
them to be integers.
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Flows

Analysis

If the maximum flow is |f |∗, then (since the augmenting path must
raise the flow by at least 1 on each iteration), we will require ≤ |f |∗
iterations.

Augmenting the flow takes O(|E|)
Ford-Fulkerson runs in O(|f |∗|E|)
This is not polynomial in the size of the input.

If you augment flow along the path with largest residual capacity, one
can show that at most O(|E| lg U) iterations are needed.

U = max(u,v)∈V×V c(u, v)

The “greedy” (maximum capacity) aumenting path algorithm runs in
O(|E|2 lg U). This is polynomial in the size of the input, but not
strongly polynomial (It still depends on the magnitude of the
“numbers” in the instance, not on the size of the instance itself).
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Flows

Can We Do Better!? – Edmonds-Karp

Instead of augmenting on an arbitrary augmenting path, why don’t
we augment flow along the shortest augmenting path.

Here shortest means simply number of edges taken, so all edges have
weight 1.

Therefore shortest pahs can be found just like you did in lab – with
BFS

With some heavy machinery (See book), one can show that if you
only augment on shortest paths, then you have to do at most
O(|V ||E|) augmentations of the flow

Therefore Edmonds-Karp algorithm runs in O(|V ||E|2) time.

There are even faster algorithms, such as push-relabel, but we won’t
cover those.
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Flows

Maximum Bipartite Matching

A graph G = (V,E) is bipartite if we can partition the vertices into
V = L ∪R such that all edges in E go between L and R

A matching is a subset of edges M ⊆ E such that for all v ∈ V , ≤ 1
edge of M is incident upon it.

Maximum Bipartite Matching

Given (undirected) bipartite graph G = (L ∪R,E), find a matching M
of G that contains the most edges
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Flows

Applications

There are lots of applications of matching problems

Airlines

L set of planes
R set of routes
(u, v) ∈ E if plane u can fly route v
Maximize the number of routes served by planes
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Flows

Solving It

Bipartite matching is one of many problems that can be equivalently
formulated (and solved) via maximum flows.

Given G = (L ∪R,E), create flow network G′ = (V ′, E′)
V ′ = V ∪ {s, t}
E′ = {(s, u) | u ∈ L} ∪ E ∪ {(v, t) | v ∈ R}
c(u, v) = 1 ∀(u, v) ∈ E′
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Flows

Observations

(You can see the book for more formal proofs)

There is a matching M in G of size |M | if and only if there is an
(integer-valued) flow f in G′ of value |f | = |M |.
Thus a maximum-matching in a bipartite graph G is the value of the
maximum flow in the flow network G′
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Flows

IE170 Problem Sets

Here is a table of score distributions for the graded problem sets

Problem Set Grader Points Max Min Avg Median

1 Prof. L 50 47 30 41.3 41.5
2 Abhishek 90 71 16 51.25 52.5
3 Abhishek 50 41 18 29.4 29
4 Mustafa 30 27 10 19.8 23

5/6 Udom 75 47 22 37 39.5

Total 100 74.2 48.5 60.6 60.9
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Flows

IE170 Points

You have accumulated roughly 40% of your
total score for IE170

18% Problem Sets
15% Quiz #1
7% Participation

Score Distribution

≥ 85 1
[80, 85) 3
[75, 80) 2
[70, 75) 3
[65, 70) 0
[60, 65) 1
[55, 60) 1
< 55 1
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Flows

IE171 Problem Sets

Here is a table of score distributions for the graded labs. (All out of
100)

Lab Grader Max Min Avg Median

1 Prof. L 100 100 100 100
2/3 Abhishek 98 12 47 42
4 Mustafa 108 27.5 82 97.5

5/6 Udom 100 10 65 75

Total 100.3 62.5 85.4 86.7
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Flows

IE171 Average

You have accumulated roughly 50% of your
total score for IE171

Two more labs.

Coding Quiz (25%)

Lowest Lab score tossed

Score Distribution

≥ 100 1
[95, 100) 2
[90, 95) 3
[85, 90) 0
[80, 85) 2
[75, 80) 2
< 75 2
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Flows

Start Studying!

Dynamic Programming (15.[1,3])

Greedy Algorithms (16.[1,2])

Graphs and Search (22.*)

Spanning Trees (23.*)

(Single Source) Shortest Paths (24.[1,2,3])

(All Pairs) Shortest Paths (25.[1,2])

Max Flow (26.[1,2,3])

Jeff Linderoth (Lehigh University) IE170:Lecture 25 Lecture Notes 15 / 23

Flows

Next Time

Review. No Lab. But we will meet in lab for a review session for a
while.

Quiz: April 4

Programming Quiz: April 23

Jeff Linderoth (Lehigh University) IE170:Lecture 25 Lecture Notes 16 / 23


