IE170: Algorithms in System	ns Engineering: Le	ecture 26	Last Time			
Jeff Lind	eroth		• Flows			J
Department of Industrial ar Lehigh Uni	nd Systems Engineering versity		This Time			
April 2,	2007		Review!			
		oda) ala
						U
Jeff Linderoth (Lehigh University) IE170:Lectu Flows	ire 26 Li	ecture Notes 1 / 16	Jeff Linderoth (Lehigh University)	IE170:Lecture 26 Flows	Lecture Notes	2 / 16
Stuff We Learned			Dynamic Programming			

- Dynamic Programming (15.[1,3])
- Greedy Algorithms (16.[1,2])
- Graphs and Search (22.*)
- Spanning Trees (23.*)
- (Single Source) Shortest Paths (24.[1,2,3])
- (All Pairs) Shortest Paths (25.[1,2])
- Max Flow (26.[1,2,3])

Dynamic Programming in a Nutshell

- Characterize the structure of an optimal solution
- **2** Recursively define the value of an optimal solution
- Sompute the value of an optimal solution "from the bottum up"
- Construct optimal solution (if required)

Examples

- Assembly Line Balancing
- Lot Sizing

Assembly Line Balancing

• Let $f_i(j)$ be the fastest time to get through $S_{ij} \ \forall i = 1, 2 \ \forall j = 1, 2, \dots n$

$$\begin{aligned} f^* &= \min(f_1(n) + x_1, f_2(n) + x_2) \\ f_1(1) &= e_1 + a_{11} \\ f_2(1) &= e_2 + a_{21} \\ f_1(j) &= \min(f_1(j-1) + a_{1j}, f_2(j-1) + t_{2,j-1} + a_{1j}) \\ f_2(j) &= \min(f_2(j-1) + a_{2j}, f_1(j-1) + t_{1,j-1} + a_{2j}) \end{aligned}$$

Flows

ot Sizing

• Let $f_t(s)$: be the minimum cost of meeting demands from $t, t+1, \ldots T$ (t until the end) if s units are in inventory at the beginning of period t

$$f_t(s) = \min_{x \in 0, 1, 2, \dots} \{ c_t(x) + h_t(s + x - d_t) + f_{t+1}(s + x - d_t) \}.$$

Greedy

- Greedy is not always optimal!
- But it sometimes works:

Activity Selection

 Let S_{ij} ⊆ A be the set of activities that start after activity i needs to finish and before activity j needs to start:

Flows

$$S_{ij} \stackrel{\text{def}}{=} \{k \in S \mid f_i \le s_k, f_k \le s_j\}$$

• Let's assume that we have sorted the activities such that

$$f_1 \le f_2 \le \dots \le f_r$$

• Schedule jobs in $S_{0,n+1}$

Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes	5 / 16	Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes	6 / 16
Flows			Flows				

• c_{ij} be the size of a maximum-sized subset of mutually compatible jobs in S_{ij} .

- If $S_{ij} = \emptyset$, then $c_{ij} = 0$
- If $S_{ij} \neq \emptyset$, then $c_{ij} = c_{ik} + 1 + c_{kj}$ for some $k \in S_{ij}$. We pick the $k \in S_{ij}$ that maximizes the number of jobs:

$$c_{ij} = \begin{cases} 0 & \text{if } S_{ij} = 0\\ \max_{k \in S_{ij}} c_{ik} + c_{kj} + 1 & \text{if } S_{ij} \neq 0 \end{cases}$$

 $\bullet \,$ Note we need only check i < k < j

To Solve S_{ij}

- **①** Choose $m \in S_{ij}$ with the earliest finish time. The Greedy Choice
- **2** Then solve problem on jobs S_{mj}

Graphs!

- Adjacency List, Adjacency Matrix
- Breadth First Search
- Depth First Search

BFS

- Input: Graph G = (V, E), source node $s \in V$
- Output: d(v), distance (smallest # of edges) from s to $v \ \forall v \in V$
- Output: $\pi(v)$, predecessor of v on the shortest path from s to v

BFS BF1 2 3 4

Flows

DFS

BFS	S(V, E, s)	DFS
1	for each u in $V \setminus \{s\}$	• Input: Graph $G = (V, E)$
2	do $d(u) \leftarrow \infty$	• Output: Two timestamps for each node $d(v)$, $f(v)$,
3	$\pi(u) \leftarrow \text{NIL}$	• Output: $\pi(v)$, predecessor of v
4	$d[s] \leftarrow 0$	 not on shortest path necessarily
5	$Q \leftarrow \emptyset$	$\operatorname{Drg}(V, F)$
0	ADD(Q, S) while $Q \neq \emptyset$	$\frac{DFS(V, E)}{1 \text{for each } u \text{ in } V}$
7 8	do $u \leftarrow POLL(Q)$	$2 do \ color(u) \leftarrow GREEN$
9	for each v in $Adj[u]$	$3 \qquad \pi(u) \leftarrow \text{NIL}$
10	do if $d[v] = \infty$	4 $time \leftarrow 0$
11	then $d[v] \leftarrow d[u] + 1$	5 for each u in V
12	$\pi[v] = u$	6 do if $color[u] = GREEN$
13	$\operatorname{ADD}(Q,v)$	7 then DFS-VISIT (u)

Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes 9 / 16	Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes 10 / 16
	Flows			Flows	

DFS (Visit Node—Recursive)

DFS-VISIT(u)

- $color(u) \leftarrow \text{YELLOW}$ 1
- $d[u] \gets time{++}$ 2
- for each v in Adj[u]3
- do if color[v] = GREEN4

5 then
$$\pi[v] \leftarrow u$$

6 DFS-VISIT

DFS-VISIT
$$(v)$$

- $color(u) \leftarrow \text{RED}$ 8
- $f[u] = time^{++}$ 9

Given a DFS Tree G_{π} , there are four type of edges (u, v)

Classifying Edges in the DFS Tree

- **O Tree Edges**: Edges in E_{π} . These are found by exploring (u, v) in the DFS procedure
- **2** Back Edges: Connect u to an ancestor v in a DFS tree
- **§** Forward Edges: Connect u to a descendent v in a DFS tree
- **Cross Edges**: All other edges. They *can* be edges in the same DFS tree, or can cross trees in the DFS forest G_{π}

Modifying DFS to Classify Edges

Stuff You Can Do with DFS

• DFS can be modified to classify edges as it encounters them...

- Classify e = (u, v) based on the color of v when e is first explored...
- GREEN: Indicates Tree Edge
- **YELLOW:** Indicates Back Edge
- RED: Indicates Forward or Cross Edge

Topological Sort: The Whole Algorithm DFS search the graph List vertices in order of decreasing finishing time Strongly Connected Components Call DFS(G) to topologically sort G Compute G^T Call DFS(G^T) but consider vertices in topologically sorteded order

Vertices in each tree of depth-first forest for SCC

Spanning Tree

Kruskal's Algorithm

- Start with each vertex being its own component
- Over the set of the

Prim's Algorithm

- $\bullet\,$ Builds one tree, so A is always a tree
- Let V_A be the set of vertices on which A is incident
- Start from an arbitrary root \boldsymbol{r}
- At each step find a light edge crossing the cut $(V_A, V \setminus V_A)$

Kruskal's Algorithm

(from G)

KRUSKAL(V, E, w) $A \leftarrow \emptyset$ 1 2 for each v in V **do** MAKE-SET(v)3 SORT(E, w)4 for each (u, v) in (sorted) E5 **do if** FIND-SET $(u) \neq$ FIND-SET(v)6 then $A \leftarrow A \cup \{(u, v)\}$ 7 UNION(u, v)return A 8

Flows

Pseudocode for Prim

Prim	A(V, E, w, r)
1	$Q \leftarrow \emptyset$
2	for each $u \in V$
3	do $key[u] \leftarrow \infty$
4	$\pi[u] \leftarrow \operatorname{NiLINSERT}(Q, u)$
5	key[r] = 0
6	while $Q eq \emptyset$
7	do $u \leftarrow \text{Extract-Min}(Q)$
8	for each $v \in Adj[u]$
9	do if $v \in Q$ and $w_{uv} < key[v]$
10	then $\pi[v] \leftarrow u$
11	$key[v] = w_{uv}$

Shortest Paths

- (Single Source) shortest-path algorithms produce a label: $d[v] = \delta(s, v).$
- Initially $d[v] = \infty$, reduces as the algorithm goes, so always $d[v] \ge \delta(s, v)$

Flows

• Also produce labels $\pi[v]$, predecessor of v on a shortest path from s.

Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes 17 / 16	Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes	18 / 16
	Flows			Flows		

Relax!

Lemma, Lemma, Lemma

- The algorithms work by improving (lowering) the shortest path estimate d[v]
- This operation is called relaxing an edge (u, v)
- Can we improve the shortest-path estimate for v by going through uand taking (u, v)?

Path Relaxation Property

Let $P = \{v_0, v_1, \dots, v_k\}$ be a shortest path from $s = v_0$ to v_k . If the edges (v_0, v_1) , (v_1, v_2) , (v_{k-1}, v_k) are relaxed in that order, (there can be other relaxations in-between), then $d[v_k] = \delta(s, v_k)$

1 **if** $d[v] > d[u] + w_{uv}$

2 then
$$d[v] \leftarrow d[u] + w_{uv}$$

3 $\pi[v] \leftarrow u$

Bellman-Ford Algorithm

- Works with Negative-Weight Edges
- Returns true is there are no negative-weight cycles reachable from s, false otherwise

BELLMAN-FORD(V, E, w, s)

- INIT-SINGLE-SOURCE(V, s)1
- for $i \leftarrow 1$ to |V| 12
- do for each (u, v) in E 3
- do RELAX(u, v, w)4
- for each (u, v) in E5
- **do if** $d[v] > d[u] + w_{uv}$ 6
- 7 then return *False*
- 8

Flows

SSSP Dag

DAG-SHORTEST-PATHS(V, E, s, w)

- 1 INIT-SINGLE-SOURCE(V, s)
- 2 topologically sort the vertices
- for each u in topologically sortedV 3
- 4 do for each $v \in Adj[u]$
- do $\operatorname{RELAX}(u, v, w)$ 5

9 return <i>True</i>							
Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes	21 / 16	Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes	22 / 16
	Flows				Flows		

Dijkstra

- DIJKSTRA(V, E, w, s)
- INIT-SINGLE-SOURCE(V, s)
- $S \leftarrow \emptyset$ 2
- 3 $Q \leftarrow V$
- while $Q \neq \emptyset$ 4
- **do** $u \leftarrow \text{Extract-Min}(Q)$ 5
- $S \leftarrow S \cup \{u\}$ 6
- for each $v \in Adj[u]$ 7
- do Relax(u, v, w)8
- Dijkstra's Algorithm Runs in $O(E \lg V)$, with a binary heap implementation.

All Pairs Shortest Paths

- The output of an all pairs shortest path algorithm is a matrix $D = (d)_{ij}$, where $d_{ij} = \delta(i, j)$
- DP: $\ell_{ij}^{(m)}$ be the shortest path from $i \in V$ to $j \in V$ that uses $\leq m$ edges

$$\ell_{ij}^{(m)} = \min_{1 \le k \le n} (\ell_{ik}^{(m-1)} + w_{kj})$$

EXTEND(L, W)

5

6

- create $(n \times n)$ matrix L'
- for $i \leftarrow 1$ to n2
- do for $j \leftarrow 1$ to n
- do $\ell'_{ii} \leftarrow \infty$ 4
- for $k \leftarrow 1$ to n

do
$$\ell'_{ij} \leftarrow \min(\ell'_{ij}, \ell_{ik} + w_{kj})$$

- This is just like matrix multiplication.
- We can speed this up.

Flows

Faster All-Pairs-Shortest-Paths

$$\begin{array}{c} \text{APSP2}(W) \\ 1 \quad L^{(1)} = W \\ 2 \quad m \leftarrow 1 \end{array}$$

 $2 \quad m \leftarrow 1$

4 do
$$L^{(2m)} = \text{EXTEND}(L^m, L^m)$$

- 5 $m \leftarrow 2m$
- 6 return $L^{(m)}$
- OK to "overshoot" n-1, since shortest path labels don't change after m = n-1 (since no negative cycles)
- "Repeated squaring" is a technique used to improve the efficiency of lots of other algorithms
- Analysis:

Floyd Warshall

- Floyd-Warshall Labels: Let $d_{ij}^{(k)}$ be the shortest path from i to j such that all intermediate vertices are in the set $\{1, 2, \ldots, k\}$.
- This simple obervation, immediately suggests a DP recursion

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & k = 0\\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & k \ge 1 \end{cases}$$

• We look for $D^{(n)} = (d)_{ij}^{(n)}$

Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes	25 / 16	Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes	26 / 16
	Flows				Flows		
Floyd-Warshall				Flows			
				 A net flow is a functi conditions: 	fon $f: V \times V \to \mathbb{R}^{ V \times V }$	$^{\prime }$ that satisfies three	ē
FLOYD-WARSHALL(W)				Capacity Constraints	:		
1 $D^{(0)} = W$					$0 \le f(u, v) \le c(u, v)$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$				Skew Symmetry:			
4 do for $j \leftarrow 1$ to	n			f(u)	$(u, v) = -f(v, u) \ \forall u \in V,$	$v \in V$	
5 do $d_{ij}^{(k)} \leftarrow \mathbf{m}$ 6 return D	$ \lim_{(n)} (d_{ij}^{k-1}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) $			Solution: Sol			
-				$\sum_{v \in V}$	$\sum_{v \in V} f(u, v) = 0 \forall u \in V \setminus$	$\{s,t\}$	

The Maximum Flow Problem

Given G = (V, E). source node $s \in V$, sink node $t \in V$, edge capacities c. Find a flow whose value is maximum.

16 Jeff Linderoth (Lehigh University)

Phlow Phacts

- For any cut (S,T), f(S,T) = |f|
- Resdiual capacity of arcs given flow:

$$c_f(u,v) \stackrel{\text{def}}{=} c(u,v) - f(u,v) \ge 0$$

• Give flow f, we can create a residual network from the flow. $G_f=(V,E_f),$ with

Flows

$$E_f \stackrel{\text{def}}{=} \{(u, v) \in V \times V \mid c_f(u, v) > 0\},\$$

so that each edge in the residual network can admit a positive flow.

Max-Flow Min-Cut Theorem

The following statements are equivalent

- f is a maximum flow
- **2** f admits no augmenting path. (No (s,t) path in residual network)
- 0 |f| = c(S,T) for some cut (S,T)

FORD-FULKERSON(V, E, c, s, t)

- 1 for $i \leftarrow 1$ to n
- 2 **do** $f[u, v] \leftarrow f[v, u] \leftarrow 0$
- 3 while \exists augmenting path P in G_f
- 4 **do** augment f by $c_f(P)$

Analysis of this? Do better algorithms exist?

			0 / 10					00 / 10
Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes 2	29 / 16	Jeff Linderoth (Lehigh University)	IE170:Le	cture 26	Lecture Notes	30 / 16
	Flows				Flows			

Maximum Bipartite Matching

- A graph G = (V, E) is bipartite if we can partition the vertices into V = L ∪ R such that all edges in E go between L and R
- A matching is a subset of edges M ⊆ E such that for all v ∈ V, ≤ 1 edge of M is incident upon it.

Maximum Bipartite Matching

Given (undirected) bipartite graph $G=(L\cup R,E),$ find a matching M of G that contains the most edges

Stuff To Know: EVERYTHING!

DP and Greedy

- Develop (and potentially solve small) problems via DP
- Activity Selection (or related problems): Greedy Works

Graphs

- BFS, DFS, and Analysis.
- Classifying edges in directed and undirected graphs
- Topological Sorting
- Finding Strongly Connected Components

Spanning Trees

- Kruskal's Algorithm (and analysis)
- Prim's Algorithm (and analysis)

More Stuff To Know...

Flows

More Stuff To Know	Even More Stuff To Know
Single Source Shortest Paths	All Pairs Shortest Paths
 Distance Labels and RELAX Path Relaxation Property Bellman-Ford Algorithm How to do it When (Why?) it works Analysis SSSP Dag How to do it When (Why?) it works Analysis Dijkstra's Algorithm How to do it When (Why?) it works Analysis 	 Analogue to Matrix Multiplication Floyd-Warshall How to do it? When (Why?) it works? Analysis Flows What is a flow? What is a flow? What is a cut? What is MFMC Theorem? How to create residual graph G_f? How to do Augmenting Paths algorithm (Ford Fulkerson/Edmonds Karp) Analysis

Flows

Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes	33 / 16	Jeff Linderoth (Lehigh University)	IE170:Lecture 26	Lecture Notes	34 / 16
	Flows						

Next Time

• Quiz! April 4

• No Class: Friday April 6. Have a nice holiday! We start numerical methods on Monday

