
IE170: Algorithms in Systems Engineering: Lecture 26

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

April 2, 2007

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 1 / 16

Taking Stock

Last Time

Flows

This Time

Review!

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 2 / 16

Flows

Stuff We Learned

Dynamic Programming (15.[1,3])

Greedy Algorithms (16.[1,2])

Graphs and Search (22.*)

Spanning Trees (23.*)

(Single Source) Shortest Paths (24.[1,2,3])

(All Pairs) Shortest Paths (25.[1,2])

Max Flow (26.[1,2,3])

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 3 / 16

Flows

Dynamic Programming

Dynamic Programming in a Nutshell

1 Characterize the structure of an optimal solution

2 Recursively define the value of an optimal solution

3 Compute the value of an optimal solution “from the bottum up”

4 Construct optimal solution (if required)

Examples

Assembly Line Balancing

Lot Sizing

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 4 / 16



Flows

Assembly Line Balancing

Let fi(j) be the fastest time to get through
Sij ∀i = 1, 2 ∀j = 1, 2, . . . n

f∗ = min(f1(n) + x1, f2(n) + x2)
f1(1) = e1 + a11

f2(1) = e2 + a21

f1(j) = min(f1(j − 1) + a1j , f2(j − 1) + t2,j−1 + a1j)
f2(j) = min(f2(j − 1) + a2j , f1(j − 1) + t1,j−1 + a2j)

Lot Sizing

Let ft(s): be the minimum cost of meeting demands from
t, t + 1, . . . T (t until the end) if s units are in inventory at the
beginning of period t

ft(s) = min
x∈0,1,2,...

{ct(x) + ht(s + x− dt) + ft+1(s + x− dt)}.

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 5 / 16

Flows

Greedy

Greedy is not always optimal!

But it sometimes works:

Activity Selection

Let Sij ⊆ A be the set of activities that start after activity i needs
to finish and before activity j needs to start:

Sij
def= {k ∈ S | fi ≤ sk, fk ≤ sj}

Let’s assume that we have sorted the activities such that

f1 ≤ f2 ≤ · · · ≤ fn

Schedule jobs in S0,n+1

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 6 / 16

Flows

cij be the size of a maximum-sized subset of mutually compatible
jobs in Sij .

If Sij = ∅, then cij = 0
If Sij 6= ∅, then cij = cik + 1 + ckj for some k ∈ Sij . We pick the
k ∈ Sij that maximizes the number of jobs:

cij =
{

0 if Sij = ∅
maxk∈Sij

cik + ckj + 1 if Sij 6= ∅

Note we need only check i < k < j

To Solve Sij

1 Choose m ∈ Sij with the earliest finish time. The Greedy Choice

2 Then solve problem on jobs Smj

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 7 / 16

Flows

Graphs!

Adjacency List, Adjacency Matrix

Breadth First Search

Depth First Search

BFS

Input: Graph G = (V,E), source node s ∈ V

Output: d(v), distance (smallest # of edges) from s to v ∀v ∈ V

Output: π(v), predecessor of v on the shortest path from s to v

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 8 / 16



Flows

BFS

BFS(V,E, s)
1 for each u in V \ {s}
2 do d(u)←∞
3 π(u)← nil
4 d[s]← 0
5 Q← ∅
6 add(Q, s)
7 while Q 6= ∅
8 do u← poll(Q)
9 for each v in Adj[u]

10 do if d[v] =∞
11 then d[v]← d[u] + 1
12 π[v] = u
13 add(Q, v)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 9 / 16

Flows

DFS

DFS

Input: Graph G = (V,E)
Output: Two timestamps for each node d(v), f(v),
Output: π(v), predecessor of v

not on shortest path necessarily

dfs(V,E)
1 for each u in V
2 do color(u)← green
3 π(u)← nil
4 time← 0
5 for each u in V
6 do if color[u] = green
7 then dfs-visit(u)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 10 / 16

Flows

DFS (Visit Node—Recursive)

dfs-visit(u)
1 color(u)← yellow
2 d[u]← time++

3 for each v in Adj[u]
4 do if color[v] = green
5 then π[v]← u
6 dfs-visit(v)
7
8 color(u)← red
9 f [u] = time++

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 11 / 16

Flows

Classifying Edges in the DFS Tree

Given a DFS Tree Gπ, there are four type of edges (u, v)

1 Tree Edges: Edges in Eπ. These are found by exploring (u, v) in the
DFS procedure

2 Back Edges: Connect u to an ancestor v in a DFS tree

3 Forward Edges: Connect u to a descendent v in a DFS tree

4 Cross Edges: All other edges. They can be edges in the same DFS
tree, or can cross trees in the DFS forest Gπ

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 12 / 16



Flows

Modifying DFS to Classify Edges

DFS can be modified to classify edges as it encounters them...

Classify e = (u, v) based on the color of v when e is first explored...

green: Indicates Tree Edge

yellow: Indicates Back Edge

red: Indicates Forward or Cross Edge

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 13 / 16

Flows

Stuff You Can Do with DFS

Topological Sort: The Whole Algorithm

1 DFS search the graph

2 List vertices in order of decreasing finishing time

Strongly Connected Components

1 Call DFS(G) to topologically sort G

2 Compute GT

3 Call DFS(GT ) but consider vertices in topologically sorteded order
(from G)

4 Vertices in each tree of depth-first forest for SCC

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 14 / 16

Flows

Spanning Tree

Kruskal’s Algorithm

1 Start with each vertex being its own component

2 Merge two components into one by choosing the light edge that
connects them

3 Scans the set of edges in increasing order of weight

Prim’s Algorithm

Builds one tree, so A is always a tree

Let VA be the set of vertices on which A is incident

Start from an arbitrary root r

At each step find a light edge crossing the cut (VA, V \ VA)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 15 / 16

Flows

Kruskal’s Algorithm

kruskal(V,E, w)
1 A← ∅
2 for each v in V
3 do make-set(v)
4 sort(E,w)
5 for each (u, v) in (sorted) E
6 do if Find-Set(u) 6= Find-Set(v)
7 then A← A ∪ {(u, v)}
8 Union(u, v)return A

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 16 / 16



Flows

Pseudocode for Prim

Prim(V,E, w, r)
1 Q← ∅
2 for each u ∈ V
3 do key[u]←∞
4 π[u]← nilInsert(Q, u)
5 key[r] = 0
6 while Q 6= ∅
7 do u← Extract-Min(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and wuv < key[v]

10 then π[v]← u
11 key[v] = wuv

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 17 / 16

Flows

Shortest Paths

(Single Source) shortest-path algorithms produce a label:
d[v] = δ(s, v).
Initially d[v] =∞, reduces as the algorithm goes, so always
d[v] ≥ δ(s, v)
Also produce labels π[v], predecessor of v on a shortest path from s.

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 18 / 16

Flows

Relax!

The algorithms work by improving (lowering) the shortest path
estimate d[v]
This operation is called relaxing an edge (u, v)
Can we improve the shortest-path estimate for v by going through u
and taking (u, v)?

Relax(u, v, w)
1 if d[v] > d[u] + wuv

2 then d[v]← d[u] + wuv

3 π[v]← u

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 19 / 16

Flows

Lemma, Lemma, Lemma

Path Relaxation Property

Let P = {v0, v1, . . . vk} be a shortest path from s = v0 to vk. If the
edges (v0, v1), (v1, v2), (vk−1, vk) are relaxed in that order, (there can
be other relaxations in-between), then d[vk] = δ(s, vk)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 20 / 16



Flows

Bellman-Ford Algorithm

Works with Negative-Weight Edges

Returns true is there are no negative-weight cycles reachable from s,
false otherwise

Bellman-Ford(V,E, w, s)
1 Init-Single-Source(V, s)
2 for i← 1 to |V | − 1
3 do for each (u, v) in E
4 do Relax(u, v, w)
5 for each (u, v) in E
6 do if d[v] > d[u] + wuv

7 then return False
8
9 return True

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 21 / 16

Flows

SSSP Dag

DAG-Shortest-Paths(V,E, s, w)
1 Init-Single-Source(V, s)
2 topologically sort the vertices
3 for each u in topologically sortedV
4 do for each v ∈ Adj[u]
5 do RELAX(u, v, w)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 22 / 16

Flows

Dijkstra

Dijkstra(V,E, w, s)
1 Init-Single-Source(V, s)
2 S ← ∅
3 Q← V
4 while Q 6= ∅
5 do u← Extract-Min(Q)
6 S ← S ∪ {u}
7 for each v ∈ Adj[u]
8 do Relax(u, v, w)

Dijkstra’s Algorithm Runs in O(E lg V ), with a binary heap
implementation.

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 23 / 16

Flows

All Pairs Shortest Paths

The output of an all pairs shortest path algorithm is a matrix
D = (d)ij , where dij = δ(i, j)

DP: `
(m)
ij be the shortest path from i ∈ V to j ∈ V that uses ≤ m

edges

`
(m)
ij = min

1≤k≤n
(`(m−1)

ik + wkj)

Extend(L,W )
1 create (n× n) matrix L′

2 for i← 1 to n
3 do for j ← 1 to n
4 do `′

ij ←∞
5 for k ← 1 to n
6 do `′

ij ← min(`′
ij , `ik + wkj)

This is just like matrix
multiplication.

We can speed this up.

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 24 / 16



Flows

Faster All-Pairs-Shortest-Paths

APSP2(W )
1 L(1) = W
2 m← 1
3 while m ≤ n− 1
4 do L(2m) = Extend(Lm, Lm)
5 m← 2m
6 return L(m)

OK to “overshoot” n− 1, since shortest path labels don’t change
after m = n− 1 (since no negative cycles)

“Repeated squaring” is a technique used to improve the efficiency of
lots of other algorithms

Analysis:

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 25 / 16

Flows

Floyd Warshall

Floyd-Warshall Labels: Let d
(k)
ij be the shortest path from i to j such

that all intermediate vertices are in the set {1, 2, . . . , k}.
This simple obervation, immediately suggests a DP recursion

d
(k)
ij =

{
wij k = 0
min(dk−1

ij , dk−1
ik + dk−1

kj ) k ≥ 1

We look for D(n) = (d)(n)
ij

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 26 / 16

Flows

Floyd-Warshall

Floyd-Warshall(W )
1 D(0) = W
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n

5 do d
(k)
ij ← min(dk−1

ij , d
(k−1)
ik + d

(k−1)
kj )

6 return D(n)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 27 / 16

Flows

Flows

A net flow is a function f : V × V → R|V |×|V | that satisfies three
conditions:

1 Capacity Constraints:

0 ≤ f(u, v) ≤ c(u, v)

2 Skew Symmetry:

f(u, v) = −f(v, u) ∀u ∈ V, v ∈ V

3 Flow Conservation:∑
v∈V

f(u, v) = 0 ∀u ∈ V \ {s, t}

The Maximum Flow Problem

Given G = (V,E). source node s ∈ V , sink node t ∈ V , edge capacities
c. Find a flow whose value is maximum.

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 28 / 16



Flows

Phlow Phacts

For any cut (S, T ), f(S, T ) = |f |
Resdiual capacity of arcs given flow:

cf (u, v) def= c(u, v)− f(u, v) ≥ 0.

Give flow f , we can create a residual network from the flow.
Gf = (V,Ef ), with

Ef
def= {(u, v) ∈ V × V | cf (u, v) > 0},

so that each edge in the residual network can admit a positive flow.

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 29 / 16

Flows

Max-Flow Min-Cut Theorem

The following statements are equivalent

1 f is a maximum flow

2 f admits no augmenting path. (No (s, t) path in residual network)

3 |f | = c(S, T ) for some cut (S, T )

Ford-Fulkerson(V,E, c, s, t)
1 for i← 1 to n
2 do f [u, v]← f [v, u]← 0
3 while ∃ augmenting path P in Gf

4 do augment f by cf (P )

Analysis of this? Do better algorithms exist?

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 30 / 16

Flows

Maximum Bipartite Matching

A graph G = (V,E) is bipartite if we can partition the vertices into
V = L ∪R such that all edges in E go between L and R

A matching is a subset of edges M ⊆ E such that for all v ∈ V , ≤ 1
edge of M is incident upon it.

Maximum Bipartite Matching

Given (undirected) bipartite graph G = (L ∪R,E), find a matching M
of G that contains the most edges

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 31 / 16

Flows

Stuff To Know: EVERYTHING!

DP and Greedy

Develop (and potentially solve small) problems via DP

Activity Selection (or related problems): Greedy Works

Graphs

BFS, DFS, and Analysis.

Classifying edges in directed and undirected graphs

Topological Sorting

Finding Strongly Connected Components

Spanning Trees

Kruskal’s Algorithm (and analysis)

Prim’s Algorithm (and analysis)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 32 / 16



Flows

More Stuff To Know...

Single Source Shortest Paths

Distance Labels and Relax

Path Relaxation Property

Bellman-Ford Algorithm

How to do it
When (Why?) it works
Analysis

SSSP Dag

How to do it
When (Why?) it works
Analysis

Dijkstra’s Algorithm

How to do it
When (Why?) it works
Analysis

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 33 / 16

Flows

Even More Stuff To Know...

All Pairs Shortest Paths

Analogue to Matrix Multiplication

Floyd-Warshall

How to do it?
When (Why?) it works?
Analysis

Flows

What is a flow?

What is a cut?

What is MFMC Theorem?

How to create residual graph Gf?

How to do Augmenting Paths algorithm (Ford Fulkerson/Edmonds
Karp)

Analysis

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 34 / 16

Flows

Next Time

Quiz! April 4

No Class: Friday April 6. Have a nice holiday! We start numerical
methods on Monday

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 35 / 16


