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Taking Stock

Last Time

Flows

This Time

Review!
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Flows

Stuff We Learned

Dynamic Programming (15.[1,3])

Greedy Algorithms (16.[1,2])

Graphs and Search (22.*)

Spanning Trees (23.*)

(Single Source) Shortest Paths (24.[1,2,3])

(All Pairs) Shortest Paths (25.[1,2])

Max Flow (26.[1,2,3])
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Flows

Dynamic Programming

Dynamic Programming in a Nutshell

1 Characterize the structure of an optimal solution

2 Recursively define the value of an optimal solution

3 Compute the value of an optimal solution “from the bottum up”

4 Construct optimal solution (if required)

Examples

Assembly Line Balancing

Lot Sizing
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Flows

Assembly Line Balancing

Let fi(j) be the fastest time to get through
Sij ∀i = 1, 2 ∀j = 1, 2, . . . n

f∗ = min(f1(n) + x1, f2(n) + x2)
f1(1) = e1 + a11

f2(1) = e2 + a21

f1(j) = min(f1(j − 1) + a1j , f2(j − 1) + t2,j−1 + a1j)
f2(j) = min(f2(j − 1) + a2j , f1(j − 1) + t1,j−1 + a2j)

Lot Sizing

Let ft(s): be the minimum cost of meeting demands from
t, t + 1, . . . T (t until the end) if s units are in inventory at the
beginning of period t

ft(s) = min
x∈0,1,2,...

{ct(x) + ht(s + x− dt) + ft+1(s + x− dt)}.
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Greedy

Greedy is not always optimal!

But it sometimes works:

Activity Selection

Let Sij ⊆ A be the set of activities that start after activity i needs
to finish and before activity j needs to start:

Sij
def= {k ∈ S | fi ≤ sk, fk ≤ sj}

Let’s assume that we have sorted the activities such that

f1 ≤ f2 ≤ · · · ≤ fn

Schedule jobs in S0,n+1
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Flows

cij be the size of a maximum-sized subset of mutually compatible
jobs in Sij .

If Sij = ∅, then cij = 0
If Sij 6= ∅, then cij = cik + 1 + ckj for some k ∈ Sij . We pick the
k ∈ Sij that maximizes the number of jobs:

cij =
{

0 if Sij = ∅
maxk∈Sij

cik + ckj + 1 if Sij 6= ∅

Note we need only check i < k < j

To Solve Sij

1 Choose m ∈ Sij with the earliest finish time. The Greedy Choice

2 Then solve problem on jobs Smj
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Graphs!

Adjacency List, Adjacency Matrix

Breadth First Search

Depth First Search

BFS

Input: Graph G = (V,E), source node s ∈ V

Output: d(v), distance (smallest # of edges) from s to v ∀v ∈ V

Output: π(v), predecessor of v on the shortest path from s to v
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BFS

BFS(V,E, s)
1 for each u in V \ {s}
2 do d(u)←∞
3 π(u)← nil
4 d[s]← 0
5 Q← ∅
6 add(Q, s)
7 while Q 6= ∅
8 do u← poll(Q)
9 for each v in Adj[u]

10 do if d[v] =∞
11 then d[v]← d[u] + 1
12 π[v] = u
13 add(Q, v)
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Flows

DFS

DFS

Input: Graph G = (V,E)
Output: Two timestamps for each node d(v), f(v),
Output: π(v), predecessor of v

not on shortest path necessarily

dfs(V,E)
1 for each u in V
2 do color(u)← green
3 π(u)← nil
4 time← 0
5 for each u in V
6 do if color[u] = green
7 then dfs-visit(u)
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Flows

DFS (Visit Node—Recursive)

dfs-visit(u)
1 color(u)← yellow
2 d[u]← time++

3 for each v in Adj[u]
4 do if color[v] = green
5 then π[v]← u
6 dfs-visit(v)
7
8 color(u)← red
9 f [u] = time++
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Classifying Edges in the DFS Tree

Given a DFS Tree Gπ, there are four type of edges (u, v)

1 Tree Edges: Edges in Eπ. These are found by exploring (u, v) in the
DFS procedure

2 Back Edges: Connect u to an ancestor v in a DFS tree

3 Forward Edges: Connect u to a descendent v in a DFS tree

4 Cross Edges: All other edges. They can be edges in the same DFS
tree, or can cross trees in the DFS forest Gπ
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Modifying DFS to Classify Edges

DFS can be modified to classify edges as it encounters them...

Classify e = (u, v) based on the color of v when e is first explored...

green: Indicates Tree Edge

yellow: Indicates Back Edge

red: Indicates Forward or Cross Edge
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Stuff You Can Do with DFS

Topological Sort: The Whole Algorithm

1 DFS search the graph

2 List vertices in order of decreasing finishing time

Strongly Connected Components

1 Call DFS(G) to topologically sort G

2 Compute GT

3 Call DFS(GT ) but consider vertices in topologically sorteded order
(from G)

4 Vertices in each tree of depth-first forest for SCC
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Spanning Tree

Kruskal’s Algorithm

1 Start with each vertex being its own component

2 Merge two components into one by choosing the light edge that
connects them

3 Scans the set of edges in increasing order of weight

Prim’s Algorithm

Builds one tree, so A is always a tree

Let VA be the set of vertices on which A is incident

Start from an arbitrary root r

At each step find a light edge crossing the cut (VA, V \ VA)
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Kruskal’s Algorithm

kruskal(V,E, w)
1 A← ∅
2 for each v in V
3 do make-set(v)
4 sort(E,w)
5 for each (u, v) in (sorted) E
6 do if Find-Set(u) 6= Find-Set(v)
7 then A← A ∪ {(u, v)}
8 Union(u, v)return A

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 16 / 16



Flows

Pseudocode for Prim

Prim(V,E, w, r)
1 Q← ∅
2 for each u ∈ V
3 do key[u]←∞
4 π[u]← nilInsert(Q, u)
5 key[r] = 0
6 while Q 6= ∅
7 do u← Extract-Min(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and wuv < key[v]

10 then π[v]← u
11 key[v] = wuv
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Shortest Paths

(Single Source) shortest-path algorithms produce a label:
d[v] = δ(s, v).
Initially d[v] =∞, reduces as the algorithm goes, so always
d[v] ≥ δ(s, v)
Also produce labels π[v], predecessor of v on a shortest path from s.
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Relax!

The algorithms work by improving (lowering) the shortest path
estimate d[v]
This operation is called relaxing an edge (u, v)
Can we improve the shortest-path estimate for v by going through u
and taking (u, v)?

Relax(u, v, w)
1 if d[v] > d[u] + wuv

2 then d[v]← d[u] + wuv

3 π[v]← u
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Lemma, Lemma, Lemma

Path Relaxation Property

Let P = {v0, v1, . . . vk} be a shortest path from s = v0 to vk. If the
edges (v0, v1), (v1, v2), (vk−1, vk) are relaxed in that order, (there can
be other relaxations in-between), then d[vk] = δ(s, vk)
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Bellman-Ford Algorithm

Works with Negative-Weight Edges

Returns true is there are no negative-weight cycles reachable from s,
false otherwise

Bellman-Ford(V,E, w, s)
1 Init-Single-Source(V, s)
2 for i← 1 to |V | − 1
3 do for each (u, v) in E
4 do Relax(u, v, w)
5 for each (u, v) in E
6 do if d[v] > d[u] + wuv

7 then return False
8
9 return True
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SSSP Dag

DAG-Shortest-Paths(V,E, s, w)
1 Init-Single-Source(V, s)
2 topologically sort the vertices
3 for each u in topologically sortedV
4 do for each v ∈ Adj[u]
5 do RELAX(u, v, w)
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Dijkstra

Dijkstra(V,E, w, s)
1 Init-Single-Source(V, s)
2 S ← ∅
3 Q← V
4 while Q 6= ∅
5 do u← Extract-Min(Q)
6 S ← S ∪ {u}
7 for each v ∈ Adj[u]
8 do Relax(u, v, w)

Dijkstra’s Algorithm Runs in O(E lg V ), with a binary heap
implementation.
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All Pairs Shortest Paths

The output of an all pairs shortest path algorithm is a matrix
D = (d)ij , where dij = δ(i, j)

DP: `
(m)
ij be the shortest path from i ∈ V to j ∈ V that uses ≤ m

edges

`
(m)
ij = min

1≤k≤n
(`(m−1)

ik + wkj)

Extend(L,W )
1 create (n× n) matrix L′

2 for i← 1 to n
3 do for j ← 1 to n
4 do `′

ij ←∞
5 for k ← 1 to n
6 do `′

ij ← min(`′
ij , `ik + wkj)

This is just like matrix
multiplication.

We can speed this up.
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Faster All-Pairs-Shortest-Paths

APSP2(W )
1 L(1) = W
2 m← 1
3 while m ≤ n− 1
4 do L(2m) = Extend(Lm, Lm)
5 m← 2m
6 return L(m)

OK to “overshoot” n− 1, since shortest path labels don’t change
after m = n− 1 (since no negative cycles)

“Repeated squaring” is a technique used to improve the efficiency of
lots of other algorithms

Analysis:
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Floyd Warshall

Floyd-Warshall Labels: Let d
(k)
ij be the shortest path from i to j such

that all intermediate vertices are in the set {1, 2, . . . , k}.
This simple obervation, immediately suggests a DP recursion

d
(k)
ij =

{
wij k = 0
min(dk−1

ij , dk−1
ik + dk−1

kj ) k ≥ 1

We look for D(n) = (d)(n)
ij
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Floyd-Warshall

Floyd-Warshall(W )
1 D(0) = W
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n

5 do d
(k)
ij ← min(dk−1

ij , d
(k−1)
ik + d

(k−1)
kj )

6 return D(n)
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Flows

A net flow is a function f : V × V → R|V |×|V | that satisfies three
conditions:

1 Capacity Constraints:

0 ≤ f(u, v) ≤ c(u, v)

2 Skew Symmetry:

f(u, v) = −f(v, u) ∀u ∈ V, v ∈ V

3 Flow Conservation:∑
v∈V

f(u, v) = 0 ∀u ∈ V \ {s, t}

The Maximum Flow Problem

Given G = (V,E). source node s ∈ V , sink node t ∈ V , edge capacities
c. Find a flow whose value is maximum.
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Flows

Phlow Phacts

For any cut (S, T ), f(S, T ) = |f |
Resdiual capacity of arcs given flow:

cf (u, v) def= c(u, v)− f(u, v) ≥ 0.

Give flow f , we can create a residual network from the flow.
Gf = (V,Ef ), with

Ef
def= {(u, v) ∈ V × V | cf (u, v) > 0},

so that each edge in the residual network can admit a positive flow.
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Max-Flow Min-Cut Theorem

The following statements are equivalent

1 f is a maximum flow

2 f admits no augmenting path. (No (s, t) path in residual network)

3 |f | = c(S, T ) for some cut (S, T )

Ford-Fulkerson(V,E, c, s, t)
1 for i← 1 to n
2 do f [u, v]← f [v, u]← 0
3 while ∃ augmenting path P in Gf

4 do augment f by cf (P )

Analysis of this? Do better algorithms exist?
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Maximum Bipartite Matching

A graph G = (V,E) is bipartite if we can partition the vertices into
V = L ∪R such that all edges in E go between L and R

A matching is a subset of edges M ⊆ E such that for all v ∈ V , ≤ 1
edge of M is incident upon it.

Maximum Bipartite Matching

Given (undirected) bipartite graph G = (L ∪R,E), find a matching M
of G that contains the most edges
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Stuff To Know: EVERYTHING!

DP and Greedy

Develop (and potentially solve small) problems via DP

Activity Selection (or related problems): Greedy Works

Graphs

BFS, DFS, and Analysis.

Classifying edges in directed and undirected graphs

Topological Sorting

Finding Strongly Connected Components

Spanning Trees

Kruskal’s Algorithm (and analysis)

Prim’s Algorithm (and analysis)
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More Stuff To Know...

Single Source Shortest Paths

Distance Labels and Relax

Path Relaxation Property

Bellman-Ford Algorithm

How to do it
When (Why?) it works
Analysis

SSSP Dag

How to do it
When (Why?) it works
Analysis

Dijkstra’s Algorithm

How to do it
When (Why?) it works
Analysis
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Even More Stuff To Know...

All Pairs Shortest Paths

Analogue to Matrix Multiplication

Floyd-Warshall

How to do it?
When (Why?) it works?
Analysis

Flows

What is a flow?

What is a cut?

What is MFMC Theorem?

How to create residual graph Gf?

How to do Augmenting Paths algorithm (Ford Fulkerson/Edmonds
Karp)

Analysis
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Next Time

Quiz! April 4

No Class: Friday April 6. Have a nice holiday! We start numerical
methods on Monday
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