I /EaSaSaS—S—_—
Taking Stock

IE170: Algorithms in Systems Engineering: Lecture 26

_ o Flows \
Jeff Linderoth
Department of Industrial and Systems Engineering
Lehigh University
@ Review!

April 2, 2007

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 1/16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 2 /16

Flows Flows

Stuff We Learned Dynamic Programming

Dynamic Programming in a Nutshell

o Dynamic Programming (15.[1,3]) © Characterize the structure of an optimal solution

o Greedy Algorithms (16.[1,2]) © Recursively define the value of an optimal solution

o Graphs and Search (22.%) © Compute the value of an optimal solution “from the bottum up”
@ Spanning Trees (23.%) © Construct optimal solution (if required)

o

@ (Single Source) Shortest Paths (24.[1,2,3])

o (Al Pair) Shortst Paths (25.1.2)

e Max Flow (26.[1,2,3]) @ Assembly Line Balancing
@ Lot Sizing

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 3/16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 4/16

Flows Flows

Assembly Line Balancing Greedy

o Let f;(j) be the fastest time to get through
S Vi=1,2Vj=1,2,...n
@ Greedy is not always optimal!

f7 = min(fi(n) + z1, f2(n) + z2) @ But it sometimes works:
fi) = ertan Activity Selection
fo(l) = ex+an o Let S;; C A be the set of activities that start after activity 7 needs
fi(j) = min(fi(j — 1)+ aj, fo(— 1) +t2j—1 + a1j) to finish and before activity j needs to start:
f2(4) = min(fo(j — 1) +ag;, f1(7 — 1) +t1-1 + ag;) et
— 1 Sij = {k €S| fi < sk, fr < 55}
@ Let fi(s): be the minimum cost of meeting demands from @ Let's assume that we have sorted the activities such that
t,t+1,...T (¢ until the end) if s units are in inventory at the
beginning of period ¢ fi<fo<- < [fa
fils) = e%n}% {ed(x) + he(s + o —di) + frra(s +x —dp)} E @ Schedule jobs in 50,511 5
x€0,1,2,...

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 5/ 16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes

Flows Flows

Graphs!
@ c;; be the size of a maximum-sized subset of mutually compatible
jobs in S;;.
o If Sij = (), then Cij = 0
@ Adjacency List, Adjacency Matrix

o If Si; # 0, then ¢;; = i, + 1 + ¢y for some k € S;;. We pick the
k € S;; that maximizes the number of jobs:

Breadth First Search
Depth First Search

o 0 if Sij =10
1) manES@‘j Cik -+ ij + 1 if S” 7& @

@ Note we need only check i < k < j Input: Graph G = (V, E), source node s € V
To Solve S;; @ Output: d(v), distance (smallest # of edges) from s to v Vv € V
@ Output: m(v), predecessor of v on the shortest path from s to v

© Choose m € S;; with the earliest finish time. The Greedy Choice

@ Then solve problem on jobs Sy,

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 7/ 16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 8/ 16

Flows Flows

BFS DFS
BFS(V,E,s)
1 for each uin V'\ {s} @ Input: Graph G = (V, E)
2 do d(u) « oo @ Output: Two timestamps for each node d(v), f(v),
3 m(u) < NIL _
4 dls] —0 @ Output: m(v), predecessor of v |
5 Q0 e not on shortest path necessarily
6 ADD(Q,s) DFs(V, E)
7 while Q # () 1 for each uinV
8 do u « POLL(Q) 2 do color(u) «—
9 for each v in Adj[u] 3 m(u) < NIL
10 do if d[v] = ¢ 4 time «— 0
11 then d[v] « d[u] + 1 5 for each uinV
12] = u 6 do if color[u] =
13 ADD(Q,v) 7 then DFS-VISIT(u)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 9 /16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes

Flows Flows

DFS (Visit Node—Recursive) Classifying Edges in the DFS Tree

DFS-VISIT(u)
color(u) «— Given a DFS Tree G, there are four type of edges (u,v)
d[u] < time++
for each v in Adj[u]
do if color[v] =
then 7[v] — u
DFS-VISIT(v) © Forward Edges: Connect u to a descendent v in a DFS tree

© Tree Edges: Edges in E;. These are found by exploring (u,v) in the
DFS procedure

© Back Edges: Connect u to an ancestor v in a DFS tree

© Cross Edges: All other edges. They can be edges in the same DFS
color(u) < RED tree, or can cross trees in the DFS forest G
flu] = time++

© 00 ~NO OB WN

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 11/ 16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 12 /16

Modifying DFS to Classify Edges Stuff You Can Do with DFS

Topological Sort: The Whole Algorithm

© DFS search the graph

@ DFS can be modified to classify edges as it encounters them... @ List vertices in order of decreasing finishing time

e Classify e = (u,v) based on the color of v when e is first explored... Strongly Connected Components

° : Indicates Tree Edge @ Call DFS(G) to topologically sort G

° . Indicates Back Edge @ Compute GT

o RED: Indicates Forward or Cross Edge © Call DFS(GT) but consider vertices in topologically sorteded order

(from G)
@ Vertices in each tree of depth-first forest for SCC

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 13 / 16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 14 / 16

Flows Flows

Spanning Tree Kruskal's Algorithm

Kruskal's Algorithm

KRUSKAL(V, E, w)

A1

for each vinV

do MAKE-SET(v)

SORT(E, w)

for each (u,v) in (sorted) E

do if FIND-SET(u) # FIND-SET(v)
then A — AU {(u,v)}

UNION(u, v)return A

© Start with each vertex being its own component

© Merge two components into one by choosing the light edge that
connects them

© Scans the set of edges in increasing order of weight

Prim’s Algorithm
@ Builds one tree, so A is always a tree

@ Let V4 be the set of vertices on which A is incident

|
0O ~NO Ol b WDN

e Start from an arbitrary root r
@ At each step find a light edge crossing the cut (V4,V \ V4)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 15 /16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 16 / 16

Pseudocode for Prim Shortest Paths

PriM(V, E,w,)

1 Q0
2 for eachuecV
3 do keylu] « oo @ (Single Source) shortest-path algorithms produce a label:
4 m|u] < NILINSERT(Q, u) d[v] = (s, v).
5 .key[r] =0 e Initially d[v] = oo, reduces as the algorithm goes, so always
6 Whlle Q 75 (Z) d[v] 2 (S(S,U)
7 do u «+— EXTRACT-MIN(Q)
8 for each v € Adj[u] @ Also produce labels 7[v], predecessor of v on a shortest path from s.
9 do if v € Q and wy, < key[v]
10 then 7[v] — u
11 keylv] = wyy

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 17 / 16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 18 / 16

Flows Flows

Lemma, Lemma, Lemma

Relax!

@ The algorithms work by improving (lowering) the shortest path
estimate d[v]

Path Relaxation Property

Let P = {vo,v1,...v;} be a shortest path from s = vy to vg. If the
edges (vo,v1), (v1,v2), (vk—1,vg) are relaxed in that order, (there can
be other relaxations in-between), then d[vy| = (s, vk)

@ This operation is called relaxing an edge (u,v)

@ Can we improve the shortest-path estimate for v by going through u
and taking (u,v)?

RELAX (u, v, w)
1 if d[v] > d[u] + wy
2 then d[v] « d[u] + wyy

3] — u

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 19 /16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 20 / 16

Bellman-Ford Algorithm SSSP Dag

@ Works with Negative-Weight Edges

@ Returns true is there are no negative-weight cycles reachable from s,

fal therwi
alse otherwise DAG-SHORTEST-PATHS(V, E, 5, w)

BELLMAN-FORD(V, E, w,) 1 INIT-SINGLE-SOURCE(V] s)

1 INIT-SINGLE-SOURCE(V] s) 2 topologically sort the vertices

2 fori—1to|V|—-1 3 for each u in topologically sortedV/
3 do for each (u,v) in E 4 do for each v € Adju]

4 do RELAX(u,v,w) 5 do RELAX(u,v,w)

5 for each (u,v) in E

6 do if d[v] > d[u] + wyy

7 then return False

8

9

return True

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 21 /16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 22 /16

Flows Flows

Dijkstra All Pairs Shortest Paths

@ The output of an all pairs shortest path algorithm is a matrix

D1JKSTRA(V, E,w, s
() D = (d)ij, where di; = 6(i, j)

1 INIT-SINGLE-SOURCE(V] s)

2 S—40 e DP: EE}TL) be the shortest path from i € V to j € V' that uses < m
3 Q«V edges

4 while Q # 0 6 = min (677 + wyy)

5 do u «— EXTRACT-MIN(Q) 1sksn

6 S = Sufu} ' EXTEND(L, W)

7 for each v € Adj[u] create (n x n) matrix L’

8 do RELAX(u, v, w) fori—1ton

1
2 o :
3 dofor j — 1 ton @ This is just like matrix
4 do 7. — oo multiplication.
@ Dijkstra’s Algorithm Runs in O(E'lg V'), with a binary heap 5 7
6

: : for k—1ton @ We can speed this up.
implementation.

do E;j — min(ﬁ;j,&k + wkj)

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 23 /16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 24 / 16

Flows Flows

Faster All-Pairs-Shortest-Paths Floyd Warshall
APSP2(W)
1 LW =w
2 me1 .
3 whilem<n-—1 @ Floyd-Warshall Labels: Let dl(-j) be the shortest path from i to j such
4 do L(®*") = EXTEND(L™, L™) that all intermediate vertices are in the set {1,2,...,k}.
5 m < 2m @ This simple obervation, immediately suggests a DP recursion
6 return L("™)

d(k) . Wij k=0

T min(d; L di T A k>

@ OK to “overshoot” n — 1, since shortest path labels don't change (n)
after m = n — 1 (since no negative cycles) ® We look for D™ = (d);;

@ “Repeated squaring” is a technique used to improve the efficiency of
lots of other algorithms

@ Analysis:

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 25 /16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 26 / 16

Flows Flows

Floyd-Warshall Flows

o A net flow is a function f:V x V — RIVIXIVI that satisfies three
conditions:

FLOYD-WARSHALL(W) © Capacity Constraints:

DO =W 0 < f(u,v) < c(u,v)

for k—1ton

do for i — 1 ton
do forj(;glton (5-1) (5-1) f(u,v):—f(’u,u) VUG‘/,’UEV

do d; — min(dj; ", dy) +dp)
return D™

@ Skew Symmetry:

© Flow Conservation:

> flu,v) =0VueV\{st}

veV

S Ok w N

The Maximum Flow Problem
Given G = (V, E). source node s € V, sink node t € V/, edge capacities g

c. Find a flow whose value is maximum.

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 27 /16 Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 28 / 16

Phlow Phacts

Max-Flow Min-Cut Theorem
The following statements are equivalent
e For any cut (S,7T), f(S,T) = |f]| Q [is a maximum flow
@ Resdiual capacity of arcs given flow: @ f admits no augmenting path. (No (s,t) path in residual network)
@ |f| =c(S,T) for some cut (S,7T)

cr(u,v) & c(u,v) — f(u,v) > 0.

FORD-FULKERSON(V, E, ¢, s, 1)

e Give flow f, we can create a residual network from the flow. .
1 fori<—1ton

Gy = (V. Ep), with 2 do flu,v] < flv,u] <0
def 3 while 3 augmenting path P in Gy
By = {(w,v) € VXV | ef(u,v) > 0}, 4 do augment f by cf(P)

so that each edge in the residual network can admit a positive flow. _ .] _
& P Analysis of this? Do better algorithms exist?

Lecture Notes 30 /16

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 29 / 16 Jeff Linderoth (Lehigh University) IE170:Lecture 26

Flows Flows

Maximum Bipartite Matching Stuff To Know: EVERYTHING!
DP and Greedy

@ Develop (and potentially solve small) problems via DP

@ Activity Selection (or related problems): Greedy Works

e A graph G = (V, E) is bipartite if we can partition the vertices into
V = L U R such that all edges in E go between L and R
@ A matching is a subset of edges M C F such that forallv eV, <1
e BFS, DFS, and Analysis.
@ Classifying edges in directed and undirected graphs

edge of M is incident upon it.

@ Topological Sorting

Maximum Bipartite Matching
Given (undirected) bipartite graph G = (L U R, E), find a matching M
of GG that contains the most edges

@ Finding Strongly Connected Components

v

Spanning Trees

% @ Kruskal's Algorithm (and analysis)
@ Prim’s Algorithm (and analysis)

RSN |

Lecture Notes 32 /16

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 31 /16 Jeff Linderoth (Lehigh University) IE170:Lecture 26

Flows Flows

More Stuff To Know... Even More Stuff To Know...
Single Source Shortest Paths All Pairs Shortest Paths
@ Distance Labels and RELAX @ Analogue to Matrix Multiplication
@ Path Relaxation Property o Floyd-Warshall

e How to do it?
o When (Why?) it works?
o Analysis

@ Bellman-Ford Algorithm
o How to do it

o When (Why?) it works 9
Bl
@ SSSP Dag @ What is a flow?
e How to do it @ What is a cut?
o When (Why?) it works o What is MFMC Theorem?
o Analysis
o Dijkstra’s Algorithm @ How to create residual graph G ;7
e How to do it @ How to do Augmenting Paths algorithm (Ford Fulkerson/Edmonds
o When (Why?) it works ? Karp) ?
o Analysis ,J @ Analysis J

Jeff Linderoth (Lehigh University)

IE170:Lecture 26
Flows

Lecture Notes 33 /16

Jeff Linderoth (Lehigh University)

IE170:Lecture 26 Lecture Notes 34 /16

Next Time

@ Quiz! April 4

@ No Class: Friday April 6. Have a nice holiday! We start numerical
methods on Monday

Jeff Linderoth (Lehigh University) IE170:Lecture 26 Lecture Notes 35/ 16

