Taking Stock

IE170: Algorithms in Systems Engineering: Lecture 27

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

April 9, 2007

```
Last Time
    - Easy Quiz
```

```
This Time
    - Numerical Linear Algebra
    - Matrix representations
```


Vectors and Matrices

- Vectors and matrices are constructs that arise naturally in many applications.
- Operating on vectors and matrices requires numerical algorithms.
- An $m \times n$ matrix is an array of $m n$ real numbers:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- A is said to have n columns and m rows.
- An n-dimensional column vector is a matrix with one column.
- An n-dimensional row vector is a matrix with one row .
- By default, a vector will be considered a column vector
- The set of all n-dimensional vectors will be denoted \mathbb{R}^{n}.
- The set of all $m \times n$ matrices will be denoted $\mathbb{R}^{m \times n}$.

Matrices

- The transpose of a matrix A is

$$
A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right]
$$

- If $x, y \in \mathbb{R}^{n}$, then $x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}$.
- This is called the inner product of x and y.
- If $A \in \mathbb{R}^{m \times n}$, then A_{j} is the $j^{\text {th }}$ column, and a_{j} is the $j^{\text {th }}$ row.
- If $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$, then $[A B]_{i j}=a_{i}^{T} B_{j}$.
- That is, you find the i, j element of the matrix $A B$, by taking the inner product of the $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B.
- The density of a matrix is the percentage of entries that are nonzero.
- Dense vectors can simply be stored in an array.
- Dense matrices can be stored in a 2-dimensional array.
- (Here I will show you a bit of code...)
- Matrices that arise in practice, however, are typically sparse.
- For example, in linear programming, it is rare to find a practial instance that has more than 10 nonzeros/column, even though they may have tens of thousands of rows

Sparse Matrix Storage

- Sparse matrices can be stored using a variety of different strategies
- We will learn three

Three Sparse Matrix Formats

- Yale Sparse Matrix Format (Triples)
- (Compressed) Sparse Column Format
- (Compressed) Sparse Row Format

Yale Sparse Matrix Format

- Stores the matrix in three arrays:
- A: double array holding the element values
- IA: int array holding the row indices of the non-zero values
- JA: int array holding the column indices of the non-zero values
- The arrays A, IA, and JA all have length equal to the number of non-zero elements in the matrix
- Is this the "sparsest" way to hold a matrix?
- Does it support efficient operations that we would like to do (like inner product of two columns?)

Compressed Sparse Column Format
Compressed Sparse Row Format

- Again stores the matrix in three arrays, but the arrays here have different meanings:
- matval: double array holding the element values
- matind: int array holding the row indices of the nonzero entries in each column.
- matbeg: int array holding the location (index into) the matval and matind arrays for the first element of each column
- matval and matind: each have length equal to number of non-zeros
- matbeg: has length one more than the number of columns in the matrix
- Like Compressed Column Format, except "row-wise"
- matval: double array holding the element values
- matind: int array holding the columns indices of the nonzero entries in each column.
- matbeg: int array holding the location (index into) the matval and matind arrays for the first element of each row
- matval and matind: each have length equal to number of non-zeros
- matbeg: has length one more than the number of rows in the matrix

Taking Stock

IE170

- Yet To Grade: Problem Sets $8,9,10$
- Roughly 60% of grade accounted for. Final: 30\%

IE171

- Yet To Grade: Lab 8 (Spanning Tree), Lab 9 (TSP)
- Roughly 50% of the grade accounted for. Quiz: 20%
- Questions on Quiz \#2?

Score Distributions

Quiz 2	
≥ 110	1
$[100,110)$	1
$[95,100)$	1
$[90,95)$	1
$[85,90)$	1
$[80,85)$	2
$[75,80)$	1
$[70,75)$	1
$[65,70)$	2
$[60,65)$	0
<60	1

IE170	
≥ 80	4
$[75,80)$	1
$[70,75)$	2
$[65,70)$	2
$[60,65)$	1
$[50,60)$	1
<50	1

IE171	
≥ 95	1
$[90,95)$	4
$[85,90)$	1
$[80,85)$	1
$[75,80)$	0
$[70,75)$	0
$[65,70)$	2
$[60,65)$	1
$[55,60)$	1
<55	1

