Another Look at Matrix Multiplication

IE170: Algorithms in Systems Engineering: Lecture 28

Jeff Linderoth
Department of Industrial and Systems Engineering Lehigh University

April 11, 2007

Important Notation

- If $A \in \mathbb{R}^{m \times n}$, then A_{j} is the $j^{\text {th }}$ column, and a_{j} is the $j^{\text {th }}$ row.
- If $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$, then $[A B]_{i j}=a_{i}^{T} B_{j}$.
- That is, you find the i, j element of the matrix $A B$, by taking the inner product of the $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B.
- Naturally this is only defined if $A \in \mathbb{R}^{m \times \ell}$ and $B \in \mathbb{R}^{\ell \times n}$, wherein also

$$
[A B]_{i j}=\sum_{k=1}^{\ell} a_{i k} b_{k j}
$$

Matrix Multiplication: Linear Combinations of Columns

- Looking at it another way, write B as its columns:

$$
B=\left(\begin{array}{ll}
B_{1} & B_{2} \cdots B_{n}
\end{array}\right)
$$

Then the $j^{\text {th }}$ column of $A B$ is $A B_{j}$, or

$$
A B=A\left(B_{1} \quad B_{2} \cdots B_{n}\right)=\left(\begin{array}{ll}
A B_{1} & A B_{2} \cdots A B_{n}
\end{array}\right)
$$

so that each column of $A B$ is a linear combination of the columns of A, and the multipliers for the linear combination are given in the column B_{j}

Matrix Multiplication: Linear Combinations of Rows

- We can also express the relationship in terms of the rows of A

$$
A=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right), A B=\left(\begin{array}{c}
a_{1} B \\
a_{2} B \\
\vdots \\
a_{m} B
\end{array}\right)
$$

So that the $i^{\text {th }}$ row of $A B$ is a linear combination of the rows of B, with the weights in the combination coming from the weights in a_{i}.

Another Nice Formula

$$
(A B)^{T}=B^{T} A^{T}
$$

Some Definitions You Already Knew

- Vectors $\left\{A_{1}, A_{2} \ldots A_{n}\right\}$ are said to be linearly dependent if the zero vector can be written as a non-trivial linear combination of the vectors, or $\exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ not all equal to zero such that

$$
\sum_{j=1}^{n} \alpha_{j} A_{j}=0
$$

- Alternatively, if A_{j} are columns of A, then the A_{j} are linearly dependent if $A z=0$ for some $z \neq 0$

More Definitions You Already Knew

- Vectors $\left\{A_{1}, A_{2} \ldots A_{n}\right\}$ are said to be linearly independent if the zero vector cannot be written as a non-trivial linear combination of the vectors, or

$$
\sum_{j=1}^{n} \alpha_{j} A_{j}=0 \Rightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0
$$

- Alternatively, if A_{j} are columns of A, then the A_{j} are linearly independent if $A z=0 \rightarrow z=0$. (0 is the only solution to $A z=0$).

More Definitions

- The Range of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(A)$ is the set of all linear combinations of the columns of A. Thus, $\mathcal{R}(A) \subseteq \mathbb{R}^{m}$.
- $b \in \mathcal{R}(A) \Leftrightarrow \exists x \in \mathbb{R}^{n}$ with $A x=b$
- The range is sometimes called the column space of A
- $\mathcal{R}\left(A^{T}\right) \subseteq \mathbb{R}^{n}$ is sometimes called the row space of A.
- Two vectors x, y are orthogonal if $x^{T} y=0$
- The set of all (m-dimensional) vectors orthogonal to vectors in $\mathcal{R}(A)$ is the null space of A^{T}
- $z \in \mathcal{N}\left(A^{T}\right) \Leftrightarrow A^{T} z=0$
- $z^{T} b=z^{T}(A x)=x^{T} A^{T} z=0$ if $b \in \mathcal{R}(A), z \in \mathcal{N}\left(A^{T}\right)$
- Likewise, the set of n-dimensional vectors orthogonal to the vectors in $\mathcal{R}\left(A^{T}\right)$ is the null space of A

Matrix Identities

- A square matrix $A \in \mathbb{R}^{n \times n}$ whose columns are linearly independent is called nonsingular.
- A is nonsingular if $A x=0$ only when $x=0$
- If A is nonsingular, then $A x=b$ has a unique solution.
- Proof: $A x=b, A y=b, A(x-y)=0$, so $x-y=0$ if A is nonsingular
- For every nonsingular matrix, there exists a unique matrix A^{-1} ("A inverse") such that $A^{-1} A x=x \forall x \in \mathbb{R}^{n}$, or $A A^{-1}=I=A^{-1} A$
- Uniqueness Proof: If B and C are both inverses:
$B=B I=B(A C)=(B A) C=C$
- A square matrix whose columns all have length (norm) 1 , and that are (pairwise) orthogonal is called orthogonal.
- If $Q \in \mathbb{R}^{n \times n}$ is orthogonal then (by definition) $Q^{T} Q=I$, so then $Q^{T}=Q^{-1}$.

Linear Equations

- A linear equation in n variables x_{1}, \ldots, x_{n} is an equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ and b are constants.

- A solution to the equation is an assignment of values to the variables such that the equation is satisfied.
- Suppose we interpret the constants $a_{1}, a_{2}, \ldots a_{n}$ as the entries of an n-dimensional vector a.
- Let's also make a vector x out of the variables $x_{1}, x_{2}, \ldots, x_{n}$.
- Then we can rewire the above equation as simply $a^{T} x=b$.

Matrix Notation

- Now we can interpret the constants $a_{i j}$ as the entries of a matrix A and the constants b_{1}, \ldots, b_{m} as the entries of a vector b.
- Interpreting the variables x_{1}, \ldots, x_{n} as a vector, we can again write the system of equation simply as $A x=b$.
- From our previous discussion, we know that the system of equations $A x=b$ has a unique solution if and only if the matrix A is square and invertible, (if the columns A_{j} are linearly independent).
- From now on, we will consider only such systems.
- How do we solve a systems of equations?

Systems of Linear Equations

- Suppose we are given a set of n variables whose values must satisfy more than one equation.
- In this case, we have a system of equations, such as

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \tag{2}\\
\vdots & \vdots \tag{3}\\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{align*}
$$

where $a_{i j}$ is a constant for all $1 \leq i \leq m$ and $1 \leq j \leq n$ and b_{1}, \ldots, b_{m} are constants.

- As before, a solution to this system of equations is an assignment values to the variables such that all equations are satisfied.

Special Matrices

- A square matrix D is diagonal if $d_{i j}=0$ whenever $i \neq j$.
- A square matrix L is lower triangular if $l_{i j}=0$ whenever $j>i$.
- A square matrix U is upper triangular if $u_{i j}=0$ whenever $j<i$.
- A square matrix P is a permutation matrix if there is a single 1 in each row and column.
- The identity matrix, usually denoted I is a diagonal matrix that is also a permutation matrix.
- What effect does (right)-multiplying by a permutation matrix have?
- What effect does (left)-multiplying by a permutation matrix have?

The LUP Decomposition

- Let's suppose that we are able to find three $n \times n$ matrices L, U, and P such that

$$
P A=L U
$$

where

- L is upper triangular.
- U is lower triangular with 1 's on the diagonal.
- P is a permutation matrix.
- This is called an LUP decomposition of A.
- How could use such a decomposition to solve the system $A x=b$?

Using the LUP Decomposition

- Once we have an LUP decomposition, we can use it to easily solve the system $A x=b$.
- Note that the system $P A x=P b$ is equivalent to the original system, which is then equivalent to $L U x=P b$.
- We can solve the system in two steps:
- First solve the system $L y=P b$ (forward substitution).
- Then solve the system $U x=y$ (backward substitution).

How Does This Help Us

- First, let's convince ourselves that $P b$ is really nothing more than a "permuted" version of b.
- Typically permutation matrices P are (compactly) represented by an array $\pi[1, \ldots, n]$.
- $\pi[i]=1 \Rightarrow P_{i, \pi[i]}=1, P_{i j}=0 \forall j \neq \pi[i]$
- Recall: left multiply just takes linear combinations of the rows.
- $P A$ has (i, j) entry of $a_{\pi[i], j}$ and $P b$ has $b_{\pi[i]}$ in the $i^{\text {th }}$ position.
- You will see (28.1-5) that $P A$ is A with rows permuted, and $A P$ is A with columns permuted

Forward Substitution

$$
\begin{array}{ccccccc}
y_{1} & & & & & = & b_{\pi[1]} \\
l_{21} y_{1} & +y_{2} & + & \ldots & & b_{\pi[2]} & \\
l_{n 1} y_{1} & +l_{n 2} y_{2} & + & l_{n 3} y_{3}+ & + & \cdots & =
\end{array} b_{\pi[n]}
$$

- Just substitute forward into:

$$
y_{i}=b_{\pi[i]}-\sum_{j=1}^{i-1} l_{i j} y_{j}
$$

Finding the LU Decomposition

Breaking up A

$$
\begin{align*}
A & =\left[\begin{array}{c|ccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\hline a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \tag{5}\\
& =\left[\begin{array}{cc}
a_{11} & w^{T} \\
v & A^{\prime}
\end{array}\right] \tag{6}
\end{align*}
$$

- Next, we'll use use row operations to change v into the zero vector and record the operations in another matrix.

Finding the LU Decomposition (cont.)

- To see how to get the factorization from the recursive application of the algorithm, we have the following.

$$
\begin{align*}
A & =\left[\begin{array}{cc}
1 & 0 \\
v / a_{11} & I
\end{array}\right]\left[\begin{array}{cc}
a_{11} & w^{T} \\
0 & A^{\prime}-v w^{T} / a_{11}
\end{array}\right] \tag{9}\\
& =\left[\begin{array}{cc}
1 & 0 \\
v / a_{11} & I
\end{array}\right]\left[\begin{array}{cc}
a_{11} & w^{T} \\
0 & L^{\prime} U^{\prime}
\end{array}\right] \tag{10}\\
& =\left[\begin{array}{cc}
1 & 0 \\
v / a_{11} & L^{\prime}
\end{array}\right]\left[\begin{array}{cc}
a_{11} & w^{T} \\
0 & U^{\prime}
\end{array}\right] \tag{11}
\end{align*}
$$

- This shows how to obtain the factorization recursively.
- This can also be done iteratively and "in place."

Finding the LUP Decomposition

- The element a_{11} is called the pivot element.
- Note that the above decomposition method fails whenever the pivot element is zero.
- In this case, we can permute the rows of A to obtain a new pivot element.
- In fact, for numerical stability, it is desirable to have the pivot element be as large as possible in absolute value.
- If no nonzero pivot is available, A is singular.
- This leads to the following modified factorization.

$$
\begin{align*}
Q A & =\left[\begin{array}{cc}
a_{k 1} & w^{T} \\
v & A^{\prime}
\end{array}\right] \tag{12}\\
& =\left[\begin{array}{cc}
1 & 0 \\
v / a_{k 1} & I
\end{array}\right]\left[\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-v w^{T} / a_{k 1}
\end{array}\right]
\end{align*}
$$

Finding the LUP Decomposition (cont.)

- As before, we obtain L^{\prime}, U^{\prime}, and P^{\prime} and we get

$$
\begin{align*}
P A & =\left[\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right] Q A \tag{14}\\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
v / a_{k 1} & I
\end{array}\right]\left[\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-v w^{T} / a_{k 1}
\end{array}\right] \tag{15}\\
& =\left[\begin{array}{cc}
1 & 0 \\
P^{\prime} v / a_{k 1} & I
\end{array}\right]\left[\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & P^{\prime}\left(A^{\prime}-v w^{T} / a_{k 1}\right)
\end{array}\right] \tag{16}\\
& =\left[\begin{array}{cc}
1 & 0 \\
P^{\prime} v / a_{k 1} & I
\end{array}\right]\left[\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & L^{\prime} U^{\prime}
\end{array}\right] \tag{17}\\
& =\left[\begin{array}{cc}
1 & 0 \\
P^{\prime} v / a_{k 1} & L^{\prime}
\end{array}\right]\left[\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & U^{\prime}
\end{array}\right] \tag{18}
\end{align*}
$$

- What is the running time of finding the LUP decomposition?

Using the LUP Decomposition

- Note that finding the decomposition has the same running time as Gaussian elimination.
- The decomposition can be stored in almost the same space as the original matrix.
- Once we have an LUP decomposition, we can solve $A x=b$ with various right hand sides in time $\Theta\left(n^{2}\right)$.

