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Linear Algebra Review

Another Look at Matrix Multiplication

Important Notation

If A ∈ Rm×n, then Aj is the jth column, and aj is the jth row.

If A ∈ Rm×k, B ∈ Rk×n, then [AB]ij = aT
i Bj .

That is, you find the i, j element of the matrix AB, by taking the

inner product of the ith row of A with the jth column of B.

Naturally this is only defined if A ∈ Rm×` and B ∈ R`×n, wherein also

[AB]ij =
∑̀
k=1

aikbkj .
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Linear Algebra Review

Matrix Multiplication: Linear Combinations of Columns

Looking at it another way, write B as its columns:

B = (B1 B2 · · ·Bn)

Then the jth column of AB is ABj , or

AB = A (B1 B2 · · ·Bn) = (AB1 AB2 · · ·ABn)

so that each column of AB is a linear combination of the columns of
A, and the multipliers for the linear combination are given in the
column Bj
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Linear Algebra Review

Matrix Multiplication: Linear Combinations of Rows

We can also express the relationship in terms of the rows of A

A =


a1

a2
...

am

 , AB =


a1B
a2B

...
amB


So that the ith row of AB is a linear combination of the rows of B,
with the weights in the combination coming from the weights in ai.

Another Nice Formula

(AB)T = BT AT .
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Linear Algebra Review

Some Definitions You Already Knew

Vectors {A1, A2 . . . An} are said to be linearly dependent if the zero
vector can be written as a non-trivial linear combination of the
vectors, or ∃α1, α2, . . . , αn not all equal to zero such that

n∑
j=1

αjAj = 0.

Alternatively, if Aj are columns of A, then the Aj are linearly
dependent if Az = 0 for some z 6= 0
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Linear Algebra Review

More Definitions You Already Knew

Vectors {A1, A2 . . . An} are said to be linearly independent if the zero
vector cannot be written as a non-trivial linear combination of the
vectors, or

n∑
j=1

αjAj = 0 ⇒ α1 = α2 = · · · = αn = 0

Alternatively, if Aj are columns of A, then the Aj are linearly
independent if Az = 0 → z = 0. (0 is the only solution to Az = 0).
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Linear Algebra Review

More Definitions

The Range of a matrix A ∈ Rm×n, denoted R(A) is the set of all
linear combinations of the columns of A. Thus, R(A) ⊆ Rm.

b ∈ R(A) ⇔ ∃x ∈ Rn with Ax = b

The range is sometimes called the column space of A

R(AT ) ⊆ Rn is sometimes called the row space of A.

Two vectors x, y are orthogonal if xT y = 0
The set of all (m-dimensional) vectors orthogonal to vectors in R(A)
is the null space of AT

z ∈ N (AT ) ⇔ AT z = 0
zT b = zT (Ax) = xT AT z = 0 if b ∈ R(A), z ∈ N (AT )
Likewise, the set of n-dimensional vectors orthogonal to the vectors in
R(AT ) is the null space of A
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Linear Algebra Review

Matrix Identities

A square matrix A ∈ Rn×n whose columns are linearly independent is
called nonsingular.

A is nonsingular if Ax = 0 only when x = 0
If A is nonsingular, then Ax = b has a unique solution.

Proof: Ax = b, Ay = b, A(x− y) = 0, so x− y = 0 if A is nonsingular

For every nonsingular matrix, there exists a unique matrix A−1 (“A
inverse”) such that A−1Ax = x ∀x ∈ Rn, or AA−1 = I = A−1A

Uniqueness Proof: If B and C are both inverses:
B = BI = B(AC) = (BA)C = C

A square matrix whose columns all have length (norm) 1, and that
are (pairwise) orthogonal is called orthogonal.

If Q ∈ Rn×n is orthogonal then (by definition) QT Q = I, so then
QT = Q−1.
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Linear Algebra Review

Linear Equations

A linear equation in n variables x1, . . . , xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b

where a1, a2, . . . , an and b are constants.

A solution to the equation is an assignment of values to the variables
such that the equation is satisfied.

Suppose we interpret the constants a1, a2, . . . an as the entries of an
n-dimensional vector a.

Let’s also make a vector x out of the variables x1, x2, . . . , xn.

Then we can rewire the above equation as simply aT x = b.
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Linear Algebra Review

Systems of Linear Equations

Suppose we are given a set of n variables whose values must satisfy
more than one equation.

In this case, we have a system of equations, such as

a11x1 + a12x2 + · · ·+ a1nxn = b1 (1)

a21x1 + a22x2 + · · ·+ a2nxn = b2 (2)
...

... (3)

am1x1 + am2x2 + · · ·+ amnxn = bm (4)

where aij is a constant for all 1 ≤ i ≤ m and 1 ≤ j ≤ n and
b1, . . . , bm are constants.

As before, a solution to this system of equations is an assignment of
values to the variables such that all equations are satisfied.
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Linear Algebra Review

Matrix Notation

Now we can interpret the constants aij as the entries of a matrix A
and the constants b1, . . . , bm as the entries of a vector b.

Interpreting the variables x1, . . . , xn as a vector, we can again write
the system of equation simply as Ax = b.

From our previous discussion, we know that the system of equations
Ax = b has a unique solution if and only if the matrix A is square and
invertible, (if the columns Aj are linearly independent).

From now on, we will consider only such systems.

How do we solve a systems of equations?
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Linear Algebra Review

Special Matrices

A square matrix D is diagonal if dij = 0 whenever i 6= j.

A square matrix L is lower triangular if lij = 0 whenever j > i.

A square matrix U is upper triangular if uij = 0 whenever j < i.

A square matrix P is a permutation matrix if there is a single 1 in
each row and column.

The identity matrix, usually denoted I is a diagonal matrix that is
also a permutation matrix.

What effect does (right)-multiplying by a permutation matrix have?

What effect does (left)-multiplying by a permutation matrix have?
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Linear Algebra Review

The LUP Decomposition

Let’s suppose that we are able to find three n× n matrices L, U , and
P such that

PA = LU

where

L is upper triangular.
U is lower triangular with 1’s on the diagonal.
P is a permutation matrix.

This is called an LUP decomposition of A.

How could use such a decomposition to solve the system Ax = b?
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Linear Algebra Review

Using the LUP Decomposition

Once we have an LUP decomposition, we can use it to easily solve
the system Ax = b.

Note that the system PAx = Pb is equivalent to the original system,
which is then equivalent to LUx = Pb.

We can solve the system in two steps:

First solve the system Ly = Pb (forward substitution).
Then solve the system Ux = y (backward substitution).
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Linear Algebra Review

How Does This Help Us

First, let’s convince ourselves that Pb is really nothing more than a
“permuted” version of b.

Typically permutation matrices P are (compactly) represented by an
array π[1, . . . , n].
π[i] = 1 ⇒ Pi,π[i] = 1, Pij = 0∀j 6= π[i]
Recall: left multiply just takes linear combinations of the rows.

PA has (i, j) entry of aπ[i],j and Pb has bπ[i] in the ith position.

You will see (28.1-5) that PA is A with rows permuted, and AP is A
with columns permuted
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Linear Algebra Review

Forward Substitution

y1 = bπ[1]

l21y1 + y2 + · · · = bπ[2]

ln1y1 + ln2y2 + ln3y3+ + · · · = bπ[n]

Just substitute forward into:

yi = bπ[i] −
i−1∑
j=1

lijyj

Jeff Linderoth (Lehigh University) IE170:Lecture 28 Lecture Notes 16 / 12



Linear Algebra Review

Finding the LU Decomposition

Let’s assume for now that P = I and concentrate on finding L and U .

We can find the these two matrices using a procedure similar to
Gaussian elimination.

In fact, we will implement the algorithm recursively.

First we’ll divide the matrix A into four pieces:
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Linear Algebra Review

Breaking up A

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 (5)

=
[

a11 wT

v A′

]
(6)

Next, we’ll use use row operations to change v into the zero vector
and record the operations in another matrix.
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Linear Algebra Review

Finding the LU Decomposition (cont.)

By simple multiplication, you can verify the following factorization of
A:

A =
[

a11 wT

v A′

]
(7)

=
[

1 0
v/a11 I

] [
a11 wT

0 A′ − vwT /a11

]
(8)

We can show that if A is nonsingular, then so is A′ − vwT /a11.

So we can recursively call the method to factor the (n− 1)× (n− 1)
matrix A′ − vwT /a11.

Applying this recursion n times yields the desired factorization
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Linear Algebra Review

Finding the LU Decomposition (cont.)

To see how to get the factorization from the recursive application of
the algorithm, we have the following.

A =
[

1 0
v/a11 I

] [
a11 wT

0 A′ − vwT /a11

]
(9)

=
[

1 0
v/a11 I

] [
a11 wT

0 L′U ′

]
(10)

=
[

1 0
v/a11 L′

] [
a11 wT

0 U ′

]
(11)

This shows how to obtain the factorization recursively.

This can also be done iteratively and “in place.”

Jeff Linderoth (Lehigh University) IE170:Lecture 28 Lecture Notes 20 / 12



Linear Algebra Review

Finding the LUP Decomposition

The element a11 is called the pivot element.

Note that the above decomposition method fails whenever the pivot
element is zero.

In this case, we can permute the rows of A to obtain a new pivot
element.

In fact, for numerical stability, it is desirable to have the pivot
element be as large as possible in absolute value.

If no nonzero pivot is available, A is singular.

This leads to the following modified factorization.

QA =
[

ak1 wT

v A′

]
(12)

=
[

1 0
v/ak1 I

] [
ak1 wT

0 A′ − vwT /ak1

]
(13)
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Linear Algebra Review

Finding the LUP Decomposition (cont.)

As before, we obtain L′, U ′, and P ′ and we get

PA =
[

1 0
0 P ′

]
QA (14)

=
[

1 0
0 P ′

] [
1 0

v/ak1 I

] [
ak1 wT

0 A′ − vwT /ak1

]
(15)

=
[

1 0
P ′v/ak1 I

] [
ak1 wT

0 P ′(A′ − vwT /ak1)

]
(16)

=
[

1 0
P ′v/ak1 I

] [
ak1 wT

0 L′U ′

]
(17)

=
[

1 0
P ′v/ak1 L′

] [
ak1 wT

0 U ′

]
(18)

What is the running time of finding the LUP decomposition?
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Linear Algebra Review

Using the LUP Decomposition

Note that finding the decomposition has the same running time as
Gaussian elimination.

The decomposition can be stored in almost the same space as the
original matrix.

Once we have an LUP decomposition, we can solve Ax = b with
various right hand sides in time Θ(n2).
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