Another Look at Matrix Multiplication

Important Notation

- If $A \in \mathbb{R}^{m \times n}$, then A_j is the j^{th} column, and a_j is the j^{th} row.
- If $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$, then $[AB]_{ij} = a_i^T B_j$.
- That is, you find the i, j element of the matrix AB, by taking the inner product of the i^{th} row of A with the j^{th} column of B.
- Naturally this is only defined if $A \in \mathbb{R}^{m \times \ell}$ and $B \in \mathbb{R}^{\ell \times n}$, wherein also

$$[AB]_{ij} = \sum_{k=1}^{\ell} a_{ik} b_{kj}.$$

Jeff Linderoth (Lehigh University) IE170:Lecture 28 Lecture Notes 1 / 12 Jeff Linderoth (Lehigh University) IE170:Lecture 28 Lecture Notes 2 / 12 Linear Algebra Review

Matrix Multiplication: Linear Combinations of Columns

IE170: Algorithms in Systems Engineering: Lecture 28

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

April 11, 2007

• Looking at it another way, write B as its columns:

$$B = \begin{pmatrix} B_1 & B_2 \cdots B_n \end{pmatrix}$$

Then the j^{th} column of AB is AB_j , or

$$AB = A (B_1 \quad B_2 \cdots B_n) = (AB_1 \quad AB_2 \cdots AB_n)$$

so that each column of AB is a linear combination of the columns of A, and the multipliers for the linear combination are given in the column B_i

Matrix Multiplication: Linear Combinations of Rows

• We can also express the relationship in terms of the rows of A

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}, AB = \begin{pmatrix} a_1B \\ a_2B \\ \vdots \\ a_mB \end{pmatrix}$$

So that the i^{th} row of AB is a linear combination of the rows of B, with the weights in the combination coming from the weights in a_i .

Another Nice Formula $(AB)^T = B^T A^T.$

Linear Algebra Review

More Definitions You Already Knew

Some Definitions You Already Knew

Vectors {A₁, A₂...A_n} are said to be linearly dependent if the zero vector can be written as a non-trivial linear combination of the vectors, or ∃α₁, α₂,..., α_n not all equal to zero such that

$$\sum_{j=1}^{n} \alpha_j A_j = 0.$$

Alternatively, if A_j are columns of A, then the A_j are linearly dependent if Az = 0 for some z ≠ 0

Vectors {A₁, A₂...A_n} are said to be linearly independent if the zero vector cannot be written as a non-trivial linear combination of the vectors, or

$$\sum_{j=1}^{n} \alpha_j A_j = 0 \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

Alternatively, if A_j are columns of A, then the A_j are linearly independent if Az = 0 → z = 0. (0 is the only solution to Az = 0).

Jeff Linderoth (Lehigh University)	IE170:Lecture 28		Lecture Notes 5 / 12		2 Jeff Linderoth (Lehigh University)	IE170:Lecture 28		Lecture Notes	6 / 12
Linear Algebra Review				Linear Algebra Review					

More Definitions

- The Range of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(A)$ is the set of all linear combinations of the columns of A. Thus, $\mathcal{R}(A) \subseteq \mathbb{R}^{m}$.
- $b \in \mathcal{R}(A) \Leftrightarrow \exists x \in \mathbb{R}^n \text{ with } Ax = b$
- $\bullet\,$ The range is sometimes called the column space of A
- $\mathcal{R}(A^T) \subseteq \mathbb{R}^n$ is sometimes called the row space of A.
- Two vectors x, y are orthogonal if $x^T y = 0$
- The set of all (*m*-dimensional) vectors orthogonal to vectors in $\mathcal{R}(A)$ is the null space of A^T
- $z \in \mathcal{N}(A^T) \Leftrightarrow A^T z = 0$
- $z^Tb = z^T(Ax) = x^TA^Tz = 0$ if $b \in \mathcal{R}(A), z \in \mathcal{N}(A^T)$
- Likewise, the set of *n*-dimensional vectors orthogonal to the vectors in $\mathcal{R}(A^T)$ is the null space of A

Matrix Identities

- A square matrix $A \in \mathbb{R}^{n \times n}$ whose columns are linearly independent is called nonsingular.
- A is nonsingular if Ax = 0 only when x = 0
- If A is nonsingular, then Ax = b has a unique solution.
 - Proof: Ax = b, Ay = b, A(x y) = 0, so x y = 0 if A is nonsingular
- For every nonsingular matrix, there exists a unique matrix A^{-1} ("A inverse") such that $A^{-1}Ax = x \ \forall x \in \mathbb{R}^n$, or $AA^{-1} = I = A^{-1}A$
 - Uniqueness Proof: If B and C are both inverses: B = BI = B(AC) = (BA)C = C
- A square matrix whose columns all have length (norm) 1, and that are (pairwise) orthogonal is called orthogonal.
- If $Q \in \mathbb{R}^{n \times n}$ is orthogonal then (by definition) $Q^T Q = I$, so then $Q^T = Q^{-1}$.

Linear Equations

• A linear equation in n variables x_1, \ldots, x_n is an equation of the form

 $a_1x_1 + a_2x_2 + \dots + a_nx_n = b$

where a_1, a_2, \ldots, a_n and b are constants.

- A solution to the equation is an assignment of values to the variables such that the equation is satisfied.
- Suppose we interpret the constants $a_1, a_2, \dots a_n$ as the entries of an *n*-dimensional vector *a*.
- Let's also make a vector x out of the variables x_1, x_2, \ldots, x_n .
- Then we can rewire the above equation as simply $a^T x = b$.

Systems of Linear Equations

- Suppose we are given a set of *n* variables whose values must satisfy more than one equation.
- In this case, we have a system of equations, such as

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \tag{1}$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \tag{2}$$

÷

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
 (4)

where a_{ij} is a constant for all $1 \le i \le m$ and $1 \le j \le n$ and b_1, \ldots, b_m are constants.

• As before, a solution to this system of equations is an assignment values to the variables such that all equations are satisfied.

Jeff Linderoth (Lehigh University)	IE170:Lecture 28	Lecture Notes 9 / 12	Jeff Linderoth (Lehigh University)	IE170:Lecture 28		Lecture Notes	10 / 12
Linear Algebra Review				Linear Algebra Review			

Matrix Notation

- Now we can interpret the constants a_{ij} as the entries of a matrix A and the constants b_1, \ldots, b_m as the entries of a vector b.
- Interpreting the variables x_1, \ldots, x_n as a vector, we can again write the system of equation simply as Ax = b.
- From our previous discussion, we know that the system of equations Ax = b has a unique solution if and only if the matrix A is square and invertible, (if the columns A_i are linearly independent).
- From now on, we will consider only such systems.
- How do we solve a systems of equations?

Special Matrices

- A square matrix D is diagonal if $d_{ij} = 0$ whenever $i \neq j$.
- A square matrix L is lower triangular if $l_{ij} = 0$ whenever j > i.
- A square matrix U is upper triangular if $u_{ij} = 0$ whenever j < i.
- A square matrix P is a permutation matrix if there is a single 1 in each row and column.
- The identity matrix, usually denoted *I* is a diagonal matrix that is also a permutation matrix.
- What effect does (right)-multiplying by a permutation matrix have?
- What effect does (left)-multiplying by a permutation matrix have?

The LUP Decomposition

Using the LUP Decomposition

 \bullet Let's suppose that we are able to find three $n\times n$ matrices L, U, and P such that

$$PA = LU$$

where

- $\bullet~L$ is upper triangular.
- $\bullet~U$ is lower triangular with 1's on the diagonal.
- *P* is a permutation matrix.
- This is called an LUP decomposition of A.
- How could use such a decomposition to solve the system Ax = b?

- Once we have an LUP decomposition, we can use it to easily solve the system Ax = b.
- Note that the system PAx = Pb is equivalent to the original system, which is then equivalent to LUx = Pb.
- We can solve the system in two steps:
 - First solve the system Ly = Pb (forward substitution).
 - Then solve the system Ux = y (backward substitution).

Jeff Linderoth (Lehigh University)	IE170:Lecture 28	Lecture Notes	13 / 12	Jeff Linderoth (Lehigh University)	IE170:Lecture 28		Lecture Notes	14 / 12
Linear Algebra Review				Linear Algebra Review				

How Does This Help Us

- First, let's convince ourselves that Pb is really nothing more than a "permuted" version of b.
- Typically permutation matrices P are (compactly) represented by an array $\pi[1,\ldots,n].$
- $\pi[i] = 1 \Rightarrow P_{i,\pi[i]} = 1, P_{ij} = 0 \forall j \neq \pi[i]$
- Recall: left multiply just takes linear combinations of the rows.
 - PA has (i, j) entry of $a_{\pi[i], j}$ and Pb has $b_{\pi[i]}$ in the i^{th} position.
- You will see (28.1-5) that PA is A with rows permuted, and AP is A with columns permuted

$$\begin{array}{rclrcrcrcrcrc} y_1 & = & b_{\pi[1]} \\ l_{21}y_1 & + & y_2 & + & \cdots & = & b_{\pi[2]} \\ l_{n1}y_1 & + & l_{n2}y_2 & + & l_{n3}y_3 + & + & \cdots & = & b_{\pi[n]} \end{array}$$

• Just substitute forward into:

$$y_i = b_{\pi[i]} - \sum_{j=1}^{i-1} l_{ij} y_j$$

IE170:Lecture 28

Finding the LU Decomposition

- Let's assume for now that P = I and concentrate on finding L and U.
- We can find the these two matrices using a procedure similar to Gaussian elimination.
- In fact, we will implement the algorithm recursively.
- First we'll divide the matrix A into four pieces:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & w^{T} \\ v & A' \end{bmatrix}$$
(5)

• Next, we'll use use row operations to change v into the zero vector and record the operations in another matrix.

Linear Algebra Review

Breaking up A

Finding the LU Decomposition (cont.)

• By simple multiplication, you can verify the following factorization of *A*:

$$A = \begin{bmatrix} a_{11} & w^T \\ v & A' \end{bmatrix}$$
(7)

$$= \begin{bmatrix} 1 & 0 \\ v/a_{11} & I \end{bmatrix} \begin{bmatrix} a_{11} & w^T \\ 0 & A' - vw^T/a_{11} \end{bmatrix}$$
(8)

- We can show that if A is nonsingular, then so is $A' vw^T/a_{11}$.
- So we can recursively call the method to factor the $(n-1) \times (n-1)$ matrix $A' vw^T/a_{11}$.
- Applying this recursion n times yields the desired factorization

Finding the LU Decomposition (cont.)

• To see how to get the factorization from the recursive application of the algorithm, we have the following.

$$A = \begin{bmatrix} 1 & 0 \\ v/a_{11} & I \end{bmatrix} \begin{bmatrix} a_{11} & w^T \\ 0 & A' - vw^T/a_{11} \end{bmatrix}$$
(9)

$$= \begin{bmatrix} 1 & 0 \\ v/a_{11} & I \end{bmatrix} \begin{bmatrix} a_{11} & w^{I} \\ 0 & L'U' \end{bmatrix}$$
(10)

$$= \begin{bmatrix} 1 & 0 \\ v/a_{11} & L' \end{bmatrix} \begin{bmatrix} a_{11} & w^T \\ 0 & U' \end{bmatrix}$$
(11)

- This shows how to obtain the factorization recursively.
- This can also be done iteratively and "in place."

Finding the LUP Decomposition

- The element a_{11} is called the pivot element.
- Note that the above decomposition method fails whenever the pivot element is zero.
- In this case, we can permute the rows of A to obtain a new pivot element.
- In fact, for numerical stability, it is desirable to have the pivot element be as large as possible in absolute value.
- If no nonzero pivot is available, A is singular.
- This leads to the following modified factorization.

$$QA = \begin{bmatrix} a_{k1} & w^T \\ v & A' \end{bmatrix}$$
(12)
$$= \begin{bmatrix} 1 & 0 \\ v/a_{k1} & I \end{bmatrix} \begin{bmatrix} a_{k1} & w^T \\ 0 & A' - vw^T/a_{k1} \end{bmatrix}$$

Linear Algebra Review

Finding the LUP Decomposition (cont.)

• As before, we obtain L', U', and P' and we get

$$PA = \begin{bmatrix} 1 & 0 \\ 0 & P' \end{bmatrix} QA \tag{14}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & P' \end{bmatrix} \begin{bmatrix} 1 & 0 \\ v/a_{k1} & I \end{bmatrix} \begin{bmatrix} a_{k1} & w^T \\ 0 & A' - vw^T/a_{k1} \end{bmatrix}$$
(15)

$$= \begin{bmatrix} 1 & 0 \\ P'v/a_{k1} & I \end{bmatrix} \begin{bmatrix} a_{k1} & w \\ 0 & P'(A' - vw^T/a_{k1}) \end{bmatrix}$$
(16)

$$= \begin{bmatrix} 1 & 0 \\ P'v/a_{k1} & I \end{bmatrix} \begin{bmatrix} a_{k1} & w \\ 0 & L'U' \end{bmatrix}$$
(17)

$$= \begin{bmatrix} 1 & 0 \\ P'v/a_{k1} & L' \end{bmatrix} \begin{bmatrix} a_{k1} & w^T \\ 0 & U' \end{bmatrix}$$
(18)

• What is the running time of finding the LUP decomposition?

Jeff Linderoth (Lehigh University) IE170:Lecture 28 Lecture Notes 21 / 12 Jeff Linderoth (Lehigh University) IE170:Lecture 28 Lecture Notes 22 / 12 Linear Algebra Review

Using the LUP Decomposition

- Note that finding the decomposition has the same running time as Gaussian elimination.
- The decomposition can be stored in almost the same space as the original matrix.
- Once we have an LUP decomposition, we can solve Ax = b with various right hand sides in time $\Theta(n^2)$.

