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Taking Stock

Last Time

Matrix Review

This Time

Solving Triangular Systems

Solving Symmetric Positive Definite Systems

Least Squares
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Systems of Equations: Ax = b

From our previous discussion, we know that the system of equations
Ax = b has a unique solution if and only if the matrix A is square and
invertible

This is true if the columns Aj are linearly independent

From now on, we will consider only invertible systems.

In fact, today we will consider special versions of A

The $64 Question

How do we solve a systems of equations?

We factor the matrix A into a simpler form
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Triangular Systems

Let’s suppose that we are able to find two n× n matrices L, U such
that

A = LU

where

L is upper triangular.
U is lower triangular with 1’s on the diagonal.

How could use such a decomposition to solve the system Ax = b?
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Using a Triangular Decomposition

Once we have an triangular decomposition, we can use it to easily
solve the system Ax = b.

Note that the system Ax = b is equivalent to the original system,
which is then equivalent to LUx = b.

We can solve the system in two steps:

First solve the system Ly = b (forward substitution).
Then solve the system Ux = y (backward substitution).
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Forward Substitution

`11y1 = b1

`21y1 + `22y2 + · · · = b2

`n1y1 + `n2y2 + `n3y3 + · · · = bn

Just substitute forward into:

yi =
bi −

∑i−1
j=1 `ijyj

`ii

So we have y such that Ly = b.
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Example Matrix

Next, we simply solve the system Ux = y

Backwards substitution works in a similar fashion, but loops “down”
from n down to 1

u11x1 + u12x2 + u13x3 + · · · = y1

u22x2 + u23x3 + · · · = y2

unnxn = yn

TriangularSolve(L,U, b)
1 n← rows[L]
2 for i← 1 to n
3 do y[i]← (b[i]−

∑
j<i `ijyj)/`ii

4 for i← n to 1
5 do x[i]← (y[i]−

∑
j>i uijxj)/uii

6 return x
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Example

L =


4 0 0 0
1 3 0 0
2 2 2 0
1 1 3 1

 U = LT b =


32
26
28
30



We’ll solve Ax = LUx = b.

Hopefully we get x = (1, 1, 1, 1)T
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Special Matrices

If A is a square symmetric (A = AT ) matrix such that

xT Ax > 0 ∀x ∈ Rn, x 6= 0

then A is said to be symmetric positive definite.

They are everywhere!

Electrical circuit problems

Structural Engineering (elastic deformations)

Variance-Covariance matrices

Numerical solution of partial differential equations

Solution of linear systems

Ax = b⇔ x minimizes 1/2xT Ax− btx

Least Squares Problems!
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Fun spd Facts

If A is spd, then A is nonsingular

Proof: If A is singular, then there is x 6= 0 ∈ Rn with Ax = 0, so
xT Ax = 0, and x is not spd. Quite Enough Done

If M is non-singular, then A = MMT is spd

Proof: AT = (MMT )T = MMT = A, so A is symmetric.
xT Ax = xT (MMT )x = yT y for y = MT x. yT y =

∑n
i=1 y2

i ≥ 0, and
it is only 0 when y = 0, but y 6= 0 or else MT would have been
singular, since y = MT x. Quite Enough Done
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Looking for a Decomposition

Wouldn’t it be awesome if U = LT (like our example), so there was a
decomposition of the form A = LLT . Let’s check to see if that is
possible:

26664
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

37775 =

26664
`11 0 · · · 0
`21 `22 · · · 0
...

...
...

...
`n1 `n2 · · · `nn

37775
26664

`11 `21 · · · `n1

0 `22 · · · `n2

...
...

...
...

0 0 · · · `nn

37775
And this implies that...

ai1 = `i1`11, so a11 = `211, `i1 = ai1/`11
ai2 = `i1`21 + `i2`22
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General Formula

In General

aij = gi1gj1 + gi2gj2 + . . . + gi,j−1gj,j−1 + gijgjj

This only depends on columns up to j!

Assuming we have computed the first j − 1 columns of L, the jth

columns can be computed using the formulae

gjj =
√

ajj −
∑
k<j

g2
jk

gij =
aij −

∑
k<j gikgjk

gjj
for j > i
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Query and Example

What if ajj −
∑

k<j g2
jk < 0?

Then A is not spd.

The proof of this fact is too complicated to give now, but it is true
that A is spd if and only if it can be written as A = LLT for a lower
triangular matrix L

L is known as the Cholesky factor of A, after the French
mathematician André-Louis Cholesky.

A =


16 4 8 4
4 10 8 4
8 8 12 10
4 4 10 12


Assuming we can do the
arithmetic correctly, we should
get A = LLT , with L the
previous L in this lecture.
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Least Squares

Suppose I am given some data points (measurements)

(x1, y1), (x2, y2), . . . (xm, ym)

And we wish to find a function that closely approximates these
measurements:

yi = F (xi) + ηi

where the ηi are “small.”

We will assume that F (x) has the form:

F (x) =
n∑

j=1

cjfj(x)
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Least Squares

A common choice of the “basis functions” fj(x) are small order
polynomials:

F (x) = c1 + c2x + c3x
2 + . . . + cnxn−1.

Choosing n = m means that the function will exactly match the yi,
and is generally a “bad idea”, as this is known as overfitting,

Instead, n is typically much smaller than m

For example, if n = 2, then we are looking for the best “linear” fit of
the data
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More Least Squares

Let’s create the matrix

A =


f1(x1) f2(x1)

... fn(x1)

f1(x2) f2(x2)
... fn(x2)

...
... · · ·

...

fn(x1) fn(x1)
... fn(x1)


So Ac = [F (x1), F (x2), . . . F (xm)]T is the m-vector of predicted
values for y, so

η = Ac− y is the vector that we are trying to minimize
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Least Squares

In least-squares, we minimize the squared (Euclidean) length of η, or

min ‖η‖2 = ‖Ac− y‖2 =
m∑

i=1

 n∑
j=1

aijcj − yi

2

Taking derivatives, setting the result equal to zero, and putting things
back in matrix notation, means that we look for a c such that

(Ac− y)T A = 0 or AT Ac = AT y.
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Solving Least Squares

Normal Equations

AT Ac = AT y

We seek c = (AT A)−1AT y

Sometimes A+ def= (AT A)−1AT is call the pseudoinverse of A, and it
exists for non-square A

We don’t really nned to take the inverse, we just solve the spd
system AT Ac = AT y

This is what you get to do in lab today!
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