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Systems of Equations: Az =b Triangular Systems

@ From our previous discussion, we know that the system of equations

Az = b has a unique solution if and only if the matrix A is square and . . .
q y . @ Let's suppose that we are able to find two n x n matrices L, U such

invertible
- - - - . that
@ This is true if the columns A; are linearly independent A=LU
@ From now on, we will consider only invertible systems.
where
@ In fact, today we will consider special versions of A o L is upper triangular.

e U is lower triangular with 1's on the diagonal.

The $64 Question @ How could use such a decomposition to solve the system Ax = b?

@ How do we solve a systems of equations?

@ We factor the matrix A into a simpler form

©
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Using a Triangular Decomposition Forward Substitution
_ N _ _ i = b
@ Once we have an triangular decomposition, we can use it to easily lo1y1 + laoys 4+ - — by
solve the system Ax = b. loayi 4+ luoys 4+ lusys + -0 = by
e Note that the system Ax = b is equivalent to the original system,
which is then equivalent to LUz = b. @ Just substitute forward into:
@ We can solve the system in two steps: i—1
) - bi — 32521 bijy;
o First solve the system Ly = b (forward substitution). = =
e Then solve the system Uz = y (backward substitution). tii

@ So we have y such that Ly = b.
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Example Matrix Example

@ Next, we simply solve the system Ux =y

@ Backwards substitution works in a similar fashion, but loops “down”
from n down to 1

4 0 0 O 32
u11T1 + u2x2 + uizr3 + - = N0
UeT2 + u23T3 + = Y2 L= S oo U=L" b= -
2 2 20 28
UnnTn = Yn 1 1 3 1 30

TRIANGULARSOLVE(L, U, b)
n « rows[L] o We'll solve Ax = LUz = 0.
fori—1ton

_ . o Hopefully we get z = (1,1,1,1)T
do y[i] — (bli] = >, lijy;)/Lii
fori—ntol

:j:tlfr[ril] ;1:_ (Y] = 22 5 wijzs) /wii

SOl W N
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Special Matrices Fun spPD Facts

o If A is a square symmetric (A = AT) matrix such that

2T Az >0V e R",z#0
e If Ais sPD, then A is nonsingular
then A is said to be symmetric positive definite. e Proof: If A is singular, then there is z # 0 € R™ with Ax =0, so
2T Az =0, and z is not SPD. QUITE ENOUGH DONE

They are everywhere! o If M is non-singular, then A = M M7 is spD

. - Proof: AT = (MMT)T = MMT = A, so A is symmetric.
@ Electrical circuit problems ¢ ’ Y n
_ P _ _ _ 2T Ar = 2" (MM )z = yTy fory = MTx. yTy=>""y? >0, and
o Structural Engineering (elastic deformations) it is only 0 when y = 0, but y # 0 or else M would have been
singular, since y = M7 x. QUITE ENOUGH DONE

@ Variance-Covariance matrices
@ Numerical solution of partial differential equations
@ Solution of linear systems

o Ax = b & x minimizes 1/227 Ax — bix ?

@ Least Squares Problems!
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Looking for a Decomposition General Formula

e Wouldn't it be awesome if U = L (like our example), so there was a
decomposition of the form A = LLT. Let's check to see if that is

Qi = 9i1951 + 9292 + - - - + Gij—195,5—1 + 9ij 955

possible:

@ This only depends on columns up to j!
a1l a2 - ain i 0 -~ 0 i1 a1 o A @ Assuming we have computed the first j — 1 columns of L, the jth
a2t azz e azn || b b2 0 0 foz oo fn2 columns can be computed using the formulae
anl  an2 te Ann L1 Lln2 te Lnn 0 0 te Lnn - - N 2

9i5 = @jj — Zgjk:
@ And this implies that... k<j

o a;1 = ¥;j1li1, 50 a1 = 5%1. Uiy = a1/t Qi3 — Zk<j 9ik gk . .
o ajz = linlar + linla 9ij = for j >1

9ji

Jeff Linderoth (Lehigh University) IE170:Lecture 29 Lecture Notes 11 /23 Jeff Linderoth (Lehigh University) IE170:Lecture 29 Lecture Notes 12 /23




Query and Example Least Squares

o What if aj; — >, g?k <07 @ Suppose | am given some data points (measurements)

@ Then A is not SPD.

(w1,91), (T2,92), - - - (Tms Ym)
@ The proof of this fact is too complicated to give now, but it is true e

that A is sPD if and only if it can be written as A = LL” for a lower And we wish to find a function that closely approximates these
triangular matrix L measurements:
@ L is known as the Cholesky factor of A, after the French yi = F(xi) +ni

mathematician André-Louis Cholesky. where the 7; are “small.”
i :

e We will assume that F'(z) has the form:

146 140 S i @ Assuming we can do the n
A= arithmetic correctly, we should F(z) = i filz
8§ & 1210 get A= LLT, with L the (@) ; 353()
4 4 10 12 previous L in this lecture.
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Least Squares More Least Squares

_ _ _ @ Let's create the matrix
@ A common choice of the "basis functions” f;(x) are small order

polynomials: fi(z1)  fa(xq) ; fn(z1)
F(z)=c1 +cx+ca’+ ... +cpa™ L. A— filza)  fowa) = fulo)

e Choosing n = m means that the function will exactly match the y;, _
and is generally a “bad idea”, as this is known as overfitting, L fo(@1) fo(@1) o falz1)
@ Instead, n is typically much smaller than m

_ T - i .
o For example, if n = 2, then we are looking for the best “linear” fit of o So Ac = [F(z1), F(2),... F(xm)]" is the m-vector of predicted
the data values for y, so

@ 1 = Ac — y is the vector that we are trying to minimize
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Least Squares Solving Least Squares

Normal Equations

@ In least-squares, we minimize the squared (Euclidean) length of 7, or

) ATAc= ATy
m n
min [|n|* = ||Ac — y|* = Z Zaijcj — Vi o We seek c = (AT A)~1 ATy
= o Sometimes A+ % (AT A)~1 AT is call the pseudoinverse of A, and it
e Taking derivatives, setting the result equal to zero, and putting things exists for non-square A
back in matrix notation, means that we look for a ¢ such that @ We don't really nned to take the inverse, we just solve the SPD

system AT Ac = ATy
@ This is what you get to do in lab today!

(Ac—y)TA=0o0r AT Ac = ATy.
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