

Systems of Equations: Ax = b

- From our previous discussion, we know that the system of equations Ax = b has a unique solution if and only if the matrix A is square and invertible
- This is true if the columns A_i are linearly independent
- From now on, we will consider only invertible systems.
- $\bullet\,$ In fact, today we will consider special versions of A

The \$64 Question

- How do we solve a systems of equations?
- \bullet We factor the matrix A into a simpler form

Triangular Systems

Taking Stock

 $\bullet\,$ Let's suppose that we are able to find two $n\times n$ matrices $L,\,U$ such that

$$A = LU$$

where

- L is upper triangular.
- $\bullet~U$ is lower triangular with 1's on the diagonal.
- How could use such a decomposition to solve the system Ax = b?

Using a Triangular Decomposition

Forward Substitution

- Once we have an triangular decomposition, we can use it to easily solve the system Ax = b.
- Note that the system Ax = b is equivalent to the original system, which is then equivalent to LUx = b.
- We can solve the system in two steps:
 - First solve the system Ly = b (forward substitution).
 - Then solve the system Ux = y (backward substitution).

$$\begin{array}{rcl} \ell_{11}y_1 & = & b_1 \\ \ell_{21}y_1 & + & \ell_{22}y_2 & + & \cdots & = & b_2 \\ \ell_{n1}y_1 & + & \ell_{n2}y_2 & + & \ell_{n3}y_3 & + & \cdots & = & b_n \end{array}$$

• Just substitute forward into:

$$y_i = \frac{b_i - \sum_{j=1}^{i-1} \ell_{ij} y_j}{\ell_i i}$$

• So we have y such that Ly = b.

Example Matrix

- Next, we simply solve the system Ux = y
- $\bullet\,$ Backwards substitution works in a similar fashion, but loops "down" from n down to 1

TRIANGULARSOLVE(L, U, b)

- 1 $n \leftarrow rows[L]$
- 2 for $i \leftarrow 1$ to n
- 3 do $y[i] \leftarrow (b[i] \sum_{j < i} \ell_{ij} y_j) / \ell_{ii}$
- 4 for $i \leftarrow n$ to 1

5 do
$$x[i] \leftarrow (y[i] - \sum_{j>i} u_{ij}x_j)/u_{ii}$$

6 return x

Example

IE170:Lecture 29

• We'll solve Ax = LUx = b.

 $\bullet \ \mbox{Hopefully we get} \ x = (1,1,1,1)^T$

Lecture Notes

Special Matrices

• If A is a square symmetric $(A = A^T)$ matrix such that

 $x^T A x > 0 \ \forall x \in \mathbb{R}^n, x \neq 0$

then A is said to be symmetric positive definite.

They are everywhere!

- Electrical circuit problems
- Structural Engineering (elastic deformations)
- Variance-Covariance matrices
- Numerical solution of partial differential equations
- Solution of linear systems
 - $Ax = b \Leftrightarrow x$ minimizes $1/2x^T Ax b^t x$
- Least Squares Problems!

Fun SPD Facts

- If A is SPD, then A is nonsingular
 - Proof: If A is singular, then there is $x \neq 0 \in \mathbb{R}^n$ with Ax = 0, so $x^T A x = 0$, and x is not SPD. QUITE ENOUGH DONE
- If M is non-singular, then $A = MM^T$ is SPD
 - Proof: $A^T = (MM^T)^T = MM^T = A$, so A is symmetric. $x^TAx = x^T(MM^T)x = y^Ty$ for $y = M^Tx$. $y^Ty = \sum_{i=1}^n y_i^2 \ge 0$, and it is only 0 when y = 0, but $y \ne 0$ or else M^T would have been singular, since $y = M^Tx$. QUITE ENOUGH DONE

Jeff Linderoth (Lehigh University) IE170:Lecture 29 Lecture Notes 9 / 23 Jeff Linderoth (Lehigh University) IE170:Lecture 29 Lecture Notes 10 / 2

Looking for a Decomposition

Wouldn't it be awesome if U = L^T (like our example), so there was a decomposition of the form A = LL^T. Let's check to see if that is possible:

Γ	a_{11}	a_{12}		a_{1n}	1	ℓ_{11}	0		0	٦ ٢	ℓ_{11}	ℓ_{21}		ℓ_{n1}
	a_{21}	a_{22}		a_{2n}		ℓ_{21}	ℓ_{22}	• • •	0		0	ℓ_{22}		ℓ_{n2}
					=				_					
						:								:
	•	•	•	•		· ·	-	•	•		•	•	•	•
L	a_{n1}	a_{n2}		a_{nn}		ℓ_{n1}	ℓ_{n2}	• • •	ℓ_{nn} .	ΙL	0	0		ℓ_{nn} .

• And this implies that...

•
$$a_{i1} = \ell_{i1}\ell_{11}$$
, so $a_{11} = \ell_{11}^2$, $\ell_{i1} = a_{i1}/\ell_{11}$
• $a_{i2} = \ell_{i1}\ell_{21} + \ell_{i2}\ell_{22}$

General Formula

- This only depends on columns up to *j*!
- Assuming we have computed the first j 1 columns of L, the j^{th} columns can be computed using the formulae

$$g_{jj} = \sqrt{a_{jj} - \sum_{k < j} g_{jk}^2}$$
$$g_{ij} = \frac{a_{ij} - \sum_{k < j} g_{ik}g_{jk}}{g_{jj}} \quad \text{for } j > i$$

Query and Example

- What if $a_{jj} \sum_{k < j} g_{jk}^2 < 0$?
- Then A is not SPD.
- The proof of this fact is too complicated to give now, but it is true that A is SPD if and only if it can be written as $A = LL^T$ for a lower triangular matrix L
- L is known as the Cholesky factor of A, after the French mathematician André-Louis Cholesky.

	16	4	8	4	
1 _	4	10	8	4	
$A \equiv$	8	8	12	10	
	4	4	10	12	

• Assuming we can do the arithmetic correctly, we should get $A = LL^T$, with L the previous L in this lecture.

Least Squares

• Suppose I am given some data points (measurements)

$$(x_1, y_1), (x_2, y_2), \dots (x_m, y_m)$$

And we wish to find a function that closely approximates these measurements:

$$y_i = F(x_i) + \eta_i$$

where the η_i are "small."

• We will assume that F(x) has the form:

$$F(x) = \sum_{j=1}^{n} c_j f_j(x)$$

Least Squares

• A common choice of the "basis functions" $f_i(x)$ are small order polynomials:

$$F(x) = c_1 + c_2 x + c_3 x^2 + \ldots + c_n x^{n-1}.$$

- Choosing n = m means that the function will exactly match the y_i , and is generally a "bad idea", as this is known as overfitting,
- Instead, n is typically much smaller than m
 - For example, if n = 2, then we are looking for the best "linear" fit of the data

More Least Squares

• Let's create the matrix

$$A = \begin{bmatrix} f_1(x_1) & f_2(x_1) & \vdots & f_n(x_1) \\ f_1(x_2) & f_2(x_2) & \vdots & f_n(x_2) \\ \vdots & \vdots & \cdots & \vdots \\ f_n(x_1) & f_n(x_1) & \vdots & f_n(x_1) \end{bmatrix}$$

- So $Ac = [F(x_1), F(x_2), \dots, F(x_m)]^T$ is the *m*-vector of predicted values for y, so
- $\eta = Ac y$ is the vector that we are trying to minimize

Least Squares

Jeff Linderoth (Lehigh University)

• In least-squares, we minimize the squared (Euclidean) length of η , or

$$\min \|\eta\|^2 = \|Ac - y\|^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}c_j - y_i\right)^2$$

• Taking derivatives, setting the result equal to zero, and putting things back in matrix notation, means that we look for a c such that

$$(Ac - y)^T A = 0$$
 or $A^T Ac = A^T y$

IE170:Lecture 29

Normal Equations

Jeff Linderoth (Lehigh University)

$$A^T A c = A^T y$$

- $\bullet~\mbox{We seek}~c = (A^TA)^{-1}A^Ty$
- Sometimes $A^+ \stackrel{\text{def}}{=} (A^T A)^{-1} A^T$ is call the pseudoinverse of A, and it exists for non-square A
- We don't really need to take the inverse, we just solve the SPD system $A^TAc = A^Ty$

IE170:Lecture 29

• This is what you get to do in lab today!

17 / 23

Lecture Notes

Lecture Notes