Taking Stock

IE170: Algorithms in Systems Engineering: Lecture 29

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

April 16, 2007

Last Time
 - Matrix Review

```
This Time
    - Solving Triangular Systems
    - Solving Symmetric Positive Definite Systems
    - Least Squares
```

Systems of Equations: $A x=b$

- From our previous discussion, we know that the system of equations $A x=b$ has a unique solution if and only if the matrix A is square and invertible
- This is true if the columns A_{j} are linearly independent
- From now on, we will consider only invertible systems.
- In fact, today we will consider special versions of A

The \$64 Question

- How do we solve a systems of equations?
- We factor the matrix A into a simpler form

Triangular Systems

- Let's suppose that we are able to find two $n \times n$ matrices L, U such that

$$
A=L U
$$

where

- L is upper triangular.
- U is lower triangular with 1 's on the diagonal.
- How could use such a decomposition to solve the system $A x=b$?
- Once we have an triangular decomposition, we can use it to easily solve the system $A x=b$.
- Note that the system $A x=b$ is equivalent to the original system, which is then equivalent to $L U x=b$.
- We can solve the system in two steps:
- First solve the system $L y=b$ (forward substitution).
- Then solve the system $U x=y$ (backward substitution).

$$
\begin{aligned}
\ell_{11} y_{1} & =b_{1} \\
\ell_{21} y_{1}+\ell_{22} y_{2}+\cdots & =b_{2} \\
\ell_{n 1} y_{1}+\ell_{n 2} y_{2}+\ell_{n 3} y_{3}+\cdots & =b_{n}
\end{aligned}
$$

- Just substitute forward into:

$$
y_{i}=\frac{b_{i}-\sum_{j=1}^{i-1} \ell_{i j} y_{j}}{\ell_{i} i}
$$

- So we have y such that $L y=b$.

Example Matrix

Example

$$
L=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 \\
2 & 2 & 2 & 0 \\
1 & 1 & 3 & 1
\end{array}\right] \quad U=L^{T} \quad b=\left[\begin{array}{c}
32 \\
26 \\
28 \\
30
\end{array}\right]
$$

TriangularSolve (L, U, b)

$1 \quad n \leftarrow \operatorname{rows}[L]$
2 for $i \leftarrow 1$ to n
3 do $y[i] \leftarrow\left(b[i]-\sum_{j<i} \ell_{i j} y_{j}\right) / \ell_{i i}$
4 for $i \leftarrow n$ to 1
5 do $x[i] \leftarrow\left(y[i]-\sum_{j>i} u_{i j} x_{j}\right) / u_{i i}$
6 return x

- We'll solve $A x=L U x=b$.
- Hopefully we get $x=(1,1,1,1)^{T}$

Special Matrices

- If A is a square symmetric $\left(A=A^{T}\right)$ matrix such that

$$
x^{T} A x>0 \forall x \in \mathbb{R}^{n}, x \neq 0
$$

then A is said to be symmetric positive definite.

They are everywhere!

- Electrical circuit problems
- Structural Engineering (elastic deformations)
- Variance-Covariance matrices
- Numerical solution of partial differential equations
- Solution of linear systems
- $A x=b \Leftrightarrow x$ minimizes $1 / 2 x^{T} A x-b^{t} x$
- Least Squares Problems!

Fun Spd Facts

- If A is SPD, then A is nonsingular
- Proof: If A is singular, then there is $x \neq 0 \in \mathbb{R}^{n}$ with $A x=0$, so $x^{T} A x=0$, and x is not SPD.

Quite Enough Done

- If M is non-singular, then $A=M M^{T}$ is SPD
- Proof: $A^{T}=\left(M M^{T}\right)^{T}=M M^{T}=A$, so A is symmetric.
$x^{T} A x=x^{T}\left(M M^{T}\right) x=y^{T} y$ for $y=M^{T} x . y^{T} y=\sum_{i=1}^{n} y_{i}^{2} \geq 0$, and it is only 0 when $y=0$, but $y \neq 0$ or else M^{T} would have been singular, since $y=M^{T} x$.

Quite Enough Done

Looking for a Decomposition

- Wouldn't it be awesome if $U=L^{T}$ (like our example), so there was a decomposition of the form $A=L L^{T}$. Let's check to see if that is possible:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
\ell_{11} & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n n}
\end{array}\right]\left[\begin{array}{cccc}
\ell_{11} & \ell_{21} & \cdots & \ell_{n 1} \\
0 & \ell_{22} & \cdots & \ell_{n 2} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \ell_{n n}
\end{array}\right]
$$

- And this implies that...
- $a_{i 1}=\ell_{i 1} \ell_{11}$, so $a_{11}=\ell_{11}^{2}, \ell_{i 1}=a_{i 1} / \ell_{11}$
- $a_{i 2}=\ell_{i 1} \ell_{21}+\ell_{i 2} \ell_{22}$

General Formula

In General

$$
a_{i j}=g_{i 1} g_{j 1}+g_{i 2} g_{j 2}+\ldots+g_{i, j-1} g_{j, j-1}+g_{i j} g_{j j}
$$

- This only depends on columns up to j !
- Assuming we have computed the first $j-1$ columns of L, the $j^{\text {th }}$ columns can be computed using the formulae

$$
\begin{aligned}
g_{j j} & =\sqrt{a_{j j}-\sum_{k<j} g_{j k}^{2}} \\
g_{i j} & =\frac{a_{i j}-\sum_{k<j} g_{i k} g_{j k}}{g_{j j}} \quad \text { for } j>i
\end{aligned}
$$

Query and Example

Least Squares

- What if $a_{j j}-\sum_{k<j} g_{j k}^{2}<0$?
- Then A is not SPD.
- The proof of this fact is too complicated to give now, but it is true that A is SPD if and only if it can be written as $A=L L^{T}$ for a lower triangular matrix L
- L is known as the Cholesky factor of A, after the French mathematician André-Louis Cholesky.

$$
A=\left[\begin{array}{cccc}
16 & 4 & 8 & 4 \\
4 & 10 & 8 & 4 \\
8 & 8 & 12 & 10 \\
4 & 4 & 10 & 12
\end{array}\right]
$$

- Assuming we can do the arithmetic correctly, we should get $A=L L^{T}$, with L the previous L in this lecture. measurements:
- Suppose I am given some data points (measurements)

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{m}, y_{m}\right)
$$

And we wish to find a function that closely approximates these

$$
y_{i}=F\left(x_{i}\right)+\eta_{i}
$$

where the η_{i} are "small."

- We will assume that $F(x)$ has the form:

$$
F(x)=\sum_{j=1}^{n} c_{j} f_{j}(x)
$$

More Least Squares

- Let's create the matrix

$$
A=\left[\begin{array}{cccc}
f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & \vdots & f_{n}\left(x_{1}\right) \\
f_{1}\left(x_{2}\right) & f_{2}\left(x_{2}\right) & \vdots & f_{n}\left(x_{2}\right) \\
\vdots & \vdots & \cdots & \vdots \\
f_{n}\left(x_{1}\right) & f_{n}\left(x_{1}\right) & \vdots & f_{n}\left(x_{1}\right)
\end{array}\right]
$$

- So $A c=\left[F\left(x_{1}\right), F\left(x_{2}\right), \ldots F\left(x_{m}\right)\right]^{T}$ is the m-vector of predicted values for y, so
- $\eta=A c-y$ is the vector that we are trying to minimize

Least Squares

Solving Least Squares

- In least-squares, we minimize the squared (Euclidean) length of η, or

$$
\min \|\eta\|^{2}=\|A c-y\|^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} c_{j}-y_{i}\right)^{2}
$$

- Taking derivatives, setting the result equal to zero, and putting things back in matrix notation, means that we look for a c such that

$$
(A c-y)^{T} A=0 \text { or } A^{T} A c=A^{T} y
$$

Normal Equations

$$
A^{T} A c=A^{T} y
$$

- We seek $c=\left(A^{T} A\right)^{-1} A^{T} y$
- Sometimes $A^{+} \stackrel{\text { def }}{=}\left(A^{T} A\right)^{-1} A^{T}$ is call the pseudoinverse of A, and it exists for non-square A
- We don't really nned to take the inverse, we just solve the SPD system $A^{T} A c=A^{T} y$
- This is what you get to do in lab today!

