Taking Stock

IE170: Algorithms in Systems Engineering:

 Lecture 3Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University
January 19, 2007

Last Time

- Lots of funky math
- Playing with summations: Formulae and Bounds
- Sets
- A brief introduction to our friend Θ

This Time

- Questions on Homework?
- Θ, O and Ω
- Recursion
- Analyzing Recurrences

Comparing Algorithms

- Consider algorithm A with running time given by f and algorithm B with running time given by g.
- We are interested in knowing

$$
L=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

- What are the four possibilities?
- $L=0$: g grows faster than f
- $L=\infty: f$ grows faster than g
- $L=c: f$ and g grow at the same rate.
- The limit doesn't exist.
Θ Notation
- We now define the set

$$
\begin{aligned}
& \Theta(g)=\left\{f: \exists c_{1}, c_{2}, n_{0}>0\right. \text { such that } \\
& \left.\qquad c_{1} g(n) \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}\right\}
\end{aligned}
$$

- If $f \in \Theta(g)$, then we say that f and g grow at the same rate or that they are of the same order.
- Note that

$$
f \in \Theta(g) \Leftrightarrow g \in \Theta(f)
$$

- We also know that if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c
$$

for some constant c, then $f \in \Theta(g)$.

Big- O Notation
$O(g)=\left\{f \mid \exists\right.$ constants $c, n_{0}>0$ s.t. $\left.f(n) \leq c g(n) \forall n \geq n_{0}\right\}$

- If $f \in O(g)$, then we say that " f is big-O of" g or that g grows at least as fast as f
- If we say $2 n^{2}+3 n+1=2 n^{2}+O(n)$ this means that $2 n^{2}+3 n+1=2 n^{2}+f(n)$ for some $f \in O(n)$ (e.g. $f(n)=3 n+1$).

Big- Ω Notation
$\Omega(g)=\left\{f \mid \exists\right.$ constants $c, n_{0}>0$ s.t. $\left.0 \leq c g(n) \leq f(n) \forall n \geq n_{0}\right\}$

- $f \in \Omega(g)$ means that g is an asymptotic lower bound on f
- f "grows faster than" g

```
Note
    - \(f \in \Theta(g) \Leftrightarrow f \in O(g)\) and \(f \in \Omega(g)\).
    - \(f \in \Omega(g) \Leftrightarrow g \in O(f)\).
```

Strict Asymptotic Bounds. "Little oh"

$$
\begin{aligned}
& f \in o(g) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \\
& f \in \omega(g) \Leftrightarrow g \in o(f) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
\end{aligned}
$$

Note

- $f \in o(g) \Rightarrow f \in O(g) \backslash \Theta(g)$.
- $f \in \omega(g) \Rightarrow f \in O(g) \backslash \Theta(g)$.

Comparing Functions

- The notation we have just defined gives us a way of ordering functions.
- This gives us a method for comparing algorithms based on their running times!

The Upshot!

- $f \in O(g)$ is like " $f \leq g$,"
- $f \in \Omega(g)$ is like " $f \geq g$,"
- $f \in o(g)$ is like " $f<g$,"
- $f \in \omega(g)$ is like " $f>g$," and
- $f \in \Theta(g)$ is like " $f=g$."

Examples

Some Functions in $O\left(n^{2}\right)$
- n^{2}
- $n^{2}+n$
- $n^{2}+1000 n$
- $1000 n^{2}+1000 n$
- n
- $n n^{1.9999}$
- $n^{2} / \lg \lg n$

- n^{2}
- $n^{2}+n$
- $n^{2}+1000 n$
- $1000 n^{2}+1000 n$
- n
- $n^{2} / \lg \lg n$

Some Functions in $\Omega\left(n^{2}\right)$

- n^{2}
- $n^{2}+n$
- $n^{2}+1000 n$
- $1000 n^{2}+1000 n$
- n^{3}
- $n^{2.0001}$
- $n^{2} / \lg \lg n$

A Question

Which of these are $o\left(n^{2}\right) ?, \omega\left(n^{2}\right)$?

Commonly Occurring Functions

Polynomials

- $f(n)=\sum_{i=0}^{k} a_{i} n^{i}$ is a polynomial of degree k
- Polynomials f of degree k are in $\Theta\left(n^{k}\right)$.

Exponentials

- A function in which n appears as an exponent on a constant is an exponential function, i.e., 2^{n}.
- For all positive constants a and $b, \lim _{n \rightarrow \infty} \frac{n^{a}}{b^{n}}=0$.
- This means that exponential functions always grow faster than polynomials

More Functions

Logarithms

- $x=\log _{n}(a) \Leftrightarrow b^{x}=a$
- Logarithms of different bases differ only by a constant multiple, so they all grow at the same rate.
- A polylogarithmic function is a function in $O\left(\lg ^{k}\right)$.
- Polylogarithmic functions always grow more slowly than polynomials.

Factorials

- $n!=n(n-1)(n-2) \cdots(1)$
- $n!=o\left(n^{n}\right), n!=\omega\left(2^{n}\right)$
- $\lg (n!)=\Theta(n \lg n)$
- $a^{n} a^{m}=a^{n+m}$
- We use the notation
- $\lg n=\log _{2} n$
- $\ln n=\log _{e} n$
- $\lg ^{k} n=(\lg n)^{k}$
- Changing the base of a logarithm changes its value by a constant factor

Log Rules

- $a=b^{\log _{b} a}$
- $\lg \left(\prod_{k=1}^{n} a_{k}\right)=\sum_{k=1}^{n} \lg a_{k}$
- $\log _{b} a^{n}=n \log _{b} a$
- $\log _{b} a=\left(\log _{c} a\right) /\left(\log _{c} b\right)$
- $\log _{b} a=1 /\left(\log _{a} b\right)$
- $a^{\log _{b} n}=n^{\log _{b} a}$

Problem Difficulty

$A+++++++++++++++++++++++$

- The difficulty of a problem can be judged by the (worst-case) running time of the best-known algorithm.
- Problems for which there is an algorithm with polynomial running time (or better) are called polynomially solvable.
- Generally, these problems are considered to be easy.
- Formally, they are in the complexity class \mathcal{P}
- There are many interesting problems for which it is not known if there is a polynomial-time algorithm.
- These problems are generally considered difficult.
- This is known as the complexity class $\mathcal{N P}$.
- You will get a very good grade in this class if you prove $\mathcal{P}=\mathcal{N} P$
- It is open of the great open questions in mathematics: Are these truly difficult problems, or have we not yet discovered the right algorithm?
- If you answer this question, you can win a million dollars: http://www.claymath.org/millennium/P_vs_NP/
- Most important, you can get the jokes from the Simpsons: www.mathsci.appstate.edu/~sjg/simpsonsmath/
- In this course, we will stick mostly to the easy problems, for which a polynomial time algorithm is known.

Analyzing Recurrences

Deep Thoughts

To understand recursion, we must first understand recursion

- General methods for analyzing recurrences
- Substitution
- Master Theorem
- Generating Functions
- Note that when we analyze a recurrence, we may not get or need an exact answer, only an asymptotic one
- We may prove the running time is in $O(f)$ or $\Theta(f)$

Good Stuff

- If you are only concerned about the asymptotic behavior of a recurrence, then
(1) You can ignore floors and ceilings: (Asymptotic behavior doesn't care if you round down or up)
(2) We assume that all algorithms run in $\Theta(1)$ (Constant time) for a small enough fixed input size n. This makes the base case of induction easy.

A Few Examples of Recurrences

- This recurrence arises in algorithms that loop through the input to eliminate one item.

$$
T(n)= \begin{cases}1 & n=1 \\ T(n-1)+n & n>1\end{cases}
$$

- This recurrence arises in algorithms that halve the input in one step.

$$
T(n)= \begin{cases}1 & n=1 \\ T(n / 2)+1 & n>1\end{cases}
$$

Soms More Recurrences

- This recurrence arises in algorithms that halve the input in one step, but have to scan through the data at each step.

$$
T(n)= \begin{cases}1 & n=1 \\ T(n / 2)+n & n>1\end{cases}
$$

- This recurrence arises in algorithms that quarter the input in one step, but have to scan through the data 4 times at each step.

$$
T(n)= \begin{cases}1 & n=1 \\ T(n / 4)+4 n & n>1\end{cases}
$$

Solving Recurrences by Substitution

A Simple Two Part Plan

(1) Guess an answer
(2) Use induction to prove or disprove your guess

- Here let's show that if

$$
T(n)=T(\lceil n / 2\rceil)+1 \Rightarrow T \in O(\lg n)
$$

The Master Theorem

- Most recurrences that we will be interested in are of the form

$$
T(n)= \begin{cases}1 & n=1 \\ a T(n / b)+f(n) & n>1\end{cases}
$$

- The Master Theorem tells us how to analyze recurrences of this form.
- If $f \in O\left(n^{\log _{b} a-\varepsilon}\right)$, for some constant $\varepsilon>0$, then $T \in \Theta\left(n^{\log _{b} a}\right)$.
- If $f \in \Theta\left(n^{\log _{b} a}\right)$, then $T \in \Theta\left(n^{\log _{b} a} \lg n\right)$.
- If $f \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$, for some constant $\varepsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and $n>n_{0}$, then $T \in \Theta(f)$.
- How do we interpret this?

A Few More Examples

- This recurrence arises in algorithms that partition the input in one step, but then make recursive calls on both pieces.

$$
T(n)= \begin{cases}1 & n=1 \\ 2 T(n / 2)+1 & n>1\end{cases}
$$

- This recurrence arises in algorithms that scan through the data at each step, divide it in half and then make recursive calls on each piece.

$$
T(n)= \begin{cases}1 & n=1 \\ 2 T(n / 2)+n & n>1\end{cases}
$$

- We can analyze these using the Master Theorem.

The Call Stack

- The call stack of a program keeps track of the current sequence of function calls.
- When a new function call is made, data for the current one is saved on the call stack.
- When a function call returns, it returns to the next function on the top of the stack.
- The stack depth is the maximum number of functions on the stack at any one time.
- In a recursive program, the stack depth can be very large.
- This can create memory problems, even for simple recursive programs.
- There is also an overhead associated with each function call.

A Few More Comments on Recursion

- Generally speaking, recursive algorithms should have the following two properties to be guarantee well-defined termination.
- They should solve an explicit base case.
- Each recursive call should be made with a smaller input size.
- All recursive algorithms have an associated tree that can be used to diagram the function calls.
- Execution of the program essentially requires traversal of the tree.
- By adding up the number of steps at each node of the tree, we can compute the running time.
- We will revisit trees later in the course.

Next Time

- Homework is due!
- Simple Sorting and Its Analysis
- Three Hours of Fun-Filled Lab

Go Bears!

