
IE170: Algorithms in Systems Engineering:
Lecture 3

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

January 19, 2007

Jeff Linderoth IE170:Lecture 3

Taking Stock

Last Time

Lots of funky math

Playing with summations: Formulae and Bounds
Sets

A brief introduction to our friend Θ

This Time

Questions on Homework?

Θ, O and Ω
Recursion

Analyzing Recurrences

Jeff Linderoth IE170:Lecture 3

Comparing Algorithms

Consider algorithm A with running time given by f and
algorithm B with running time given by g.

We are interested in knowing

L = lim
n→∞

f(n)
g(n)

What are the four possibilities?

L = 0: g grows faster than f
L = ∞: f grows faster than g
L = c: f and g grow at the same rate.
The limit doesn’t exist.

Jeff Linderoth IE170:Lecture 3

Θ Notation

We now define the set

Θ(g) = {f : ∃ c1, c2, n0 > 0 such that
c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

If f ∈ Θ(g), then we say that f and g grow at the same rate
or that they are of the same order.

Note that
f ∈ Θ(g) ⇔ g ∈ Θ(f)

We also know that if

lim
n→∞

f(n)
g(n)

= c

for some constant c, then f ∈ Θ(g).

Jeff Linderoth IE170:Lecture 3



Big-O Notation

O(g) = {f | ∃ constants c, n0 > 0 s.t. f(n) ≤ cg(n) ∀n ≥ n0}

If f ∈ O(g), then we say that “f is big-O of” g or that g
grows at least as fast as f

If we say 2n2 + 3n + 1 = 2n2 + O(n) this means that
2n2 + 3n + 1 = 2n2 + f(n) for some f ∈ O(n) (e.g.
f(n) = 3n + 1).

Jeff Linderoth IE170:Lecture 3

Big-Ω Notation

Ω(g) = {f | ∃ constants c, n0 > 0 s.t. 0 ≤ cg(n) ≤ f(n) ∀n ≥ n0}

f ∈ Ω(g) means that g is an asymptotic lower bound on f

f “grows faster than” g

Note

f ∈ Θ(g) ⇔ f ∈ O(g) and f ∈ Ω(g).
f ∈ Ω(g) ⇔ g ∈ O(f).

Jeff Linderoth IE170:Lecture 3

Strict Asymptotic Bounds. “Little oh”

f ∈ o(g) ⇔ lim
n→∞

f(n)
g(n)

= 0

f ∈ ω(g) ⇔ g ∈ o(f) ⇔ lim
n→∞

f(n)
g(n)

= ∞

Note

f ∈ o(g) ⇒ f ∈ O(g) \Θ(g).
f ∈ ω(g) ⇒ f ∈ O(g) \Θ(g).

Jeff Linderoth IE170:Lecture 3

Comparing Functions

The notation we have just defined gives us a way of ordering
functions.

This gives us a method for comparing algorithms based on
their running times!

The Upshot!

f ∈ O(g) is like “f ≤ g,”

f ∈ Ω(g) is like “f ≥ g,”

f ∈ o(g) is like “f < g,”

f ∈ ω(g) is like “f > g,” and

f ∈ Θ(g) is like “f = g.”

Jeff Linderoth IE170:Lecture 3



Examples

Some Functions in O(n2)

n2

n2 + n

n2 + 1000n

1000n2 + 1000n

n

n1.9999

n2/ lg lg n

Some Functions in Ω(n2)

n2

n2 + n

n2 + 1000n

1000n2 + 1000n

n3

n2.0001

n2/ lg lg n

A Question

Which of these are o(n2)?, ω(n2)?

Jeff Linderoth IE170:Lecture 3

Commonly Occurring Functions

Polynomials

f(n) =
∑k

i=0 ain
i is a polynomial of degree k

Polynomials f of degree k are in Θ(nk).

Exponentials

A function in which n appears as an exponent on a
constant is an exponential function, i.e., 2n.

For all positive constants a and b, limn→∞
na

bn = 0.

This means that exponential functions always grow faster
than polynomials

Jeff Linderoth IE170:Lecture 3

More Functions

Logarithms

x = logn(a) ⇔ bx = a

Logarithms of different bases differ only by a constant
multiple, so they all grow at the same rate.

A polylogarithmic function is a function in O(lgk).
Polylogarithmic functions always grow more slowly than
polynomials.

Factorials

n! = n(n− 1)(n− 2) · · · (1)
n! = o(nn), n! = ω(2n)
lg(n!) = Θ(n lg n)

Jeff Linderoth IE170:Lecture 3

Logs

anam = an+m

We use the notation

lg n = log2 n
lnn = loge n
lgk n = (lg n)k

Changing the base of a
logarithm changes its value
by a constant factor

Log Rules

a = blogb a

lg (
∏n

k=1 ak) =
∑n

k=1 lg ak

logb an = n logb a

logb a = (logc a)/(logc b)
logb a = 1/(loga b)
alogb n = nlogb a

Jeff Linderoth IE170:Lecture 3



Problem Difficulty

The difficulty of a problem can be judged by the (worst-case)
running time of the best-known algorithm.

Problems for which there is an algorithm with polynomial
running time (or better) are called polynomially solvable.

Generally, these problems are considered to be easy.

Formally, they are in the complexity class P
There are many interesting problems for which it is not known
if there is a polynomial-time algorithm.

These problems are generally considered difficult.

This is known as the complexity class NP.

Jeff Linderoth IE170:Lecture 3

A+++++++++++++++++++++++

You will get a very good grade in this class if you prove
P = NP

It is open of the great open questions in mathematics: Are
these truly difficult problems, or have we not yet discovered
the right algorithm?

If you answer this question, you can win a million dollars:
http://www.claymath.org/millennium/P vs NP/

Most important, you can get the jokes from the Simpsons:
www.mathsci.appstate.edu/∼sjg/simpsonsmath/

In this course, we will stick mostly to the easy problems, for
which a polynomial time algorithm is known.

Jeff Linderoth IE170:Lecture 3

Analyzing Recurrences

Deep Thoughts

To understand recursion, we must first understand recursion

General methods for analyzing recurrences

Substitution
Master Theorem
Generating Functions

Note that when we analyze a recurrence, we may not get or
need an exact answer, only an asymptotic one

We may prove the running time is in O(f) or Θ(f)

Jeff Linderoth IE170:Lecture 3

Good Stuff

If you are only concerned about the asymptotic behavior of a
recurrence, then

1 You can ignore floors and ceilings: (Asymptotic behavior
doesn’t care if you round down or up)

2 We assume that all algorithms run in Θ(1) (Constant time) for
a small enough fixed input size n. This makes the base case of
induction easy.

Jeff Linderoth IE170:Lecture 3



A Few Examples of Recurrences

This recurrence arises in algorithms that loop through the
input to eliminate one item.

T (n) =

{
1 n = 1
T (n− 1) + n n > 1

This recurrence arises in algorithms that halve the input in
one step.

T (n) =

{
1 n = 1
T (n/2) + 1 n > 1

Jeff Linderoth IE170:Lecture 3

Soms More Recurrences

This recurrence arises in algorithms that halve the input in
one step, but have to scan through the data at each step.

T (n) =

{
1 n = 1
T (n/2) + n n > 1

This recurrence arises in algorithms that quarter the input in
one step, but have to scan through the data 4 times at each
step.

T (n) =

{
1 n = 1
T (n/4) + 4n n > 1

Jeff Linderoth IE170:Lecture 3

Solving Recurrences by Substitution

A Simple Two Part Plan

1 Guess an answer

2 Use induction to prove or disprove your guess

Here let’s show that if

T (n) = T (dn/2e) + 1 ⇒ T ∈ O(lg n)

Jeff Linderoth IE170:Lecture 3

The Master Theorem

Most recurrences that we will be interested in are of the form

T (n) =

{
1 n = 1
aT (n/b) + f(n) n > 1

The Master Theorem tells us how to analyze recurrences of
this form.

If f ∈ O(nlogb a−ε), for some constant ε > 0, then
T ∈ Θ(nlogb a).
If f ∈ Θ(nlogb a), then T ∈ Θ(nlogb a lg n).
If f ∈ Ω(nlogb a+ε), for some constant ε > 0, and if
af(n/b) ≤ cf(n) for some constant c < 1 and n > n0, then
T ∈ Θ(f).

How do we interpret this?

Jeff Linderoth IE170:Lecture 3



A Few More Examples

This recurrence arises in algorithms that partition the input in
one step, but then make recursive calls on both pieces.

T (n) =

{
1 n = 1
2T (n/2) + 1 n > 1

This recurrence arises in algorithms that scan through the
data at each step, divide it in half and then make recursive
calls on each piece.

T (n) =

{
1 n = 1
2T (n/2) + n n > 1

We can analyze these using the Master Theorem.

Jeff Linderoth IE170:Lecture 3

A Few More Comments on Recursion

Generally speaking, recursive algorithms should have the
following two properties to be guarantee well-defined
termination.

They should solve an explicit base case.
Each recursive call should be made with a smaller input size.

All recursive algorithms have an associated tree that can be
used to diagram the function calls.

Execution of the program essentially requires traversal of the
tree.

By adding up the number of steps at each node of the tree,
we can compute the running time.

We will revisit trees later in the course.

Jeff Linderoth IE170:Lecture 3

The Call Stack

The call stack of a program keeps track of the current
sequence of function calls.

When a new function call is made, data for the current one is
saved on the call stack.

When a function call returns, it returns to the next function
on the top of the stack.

The stack depth is the maximum number of functions on the
stack at any one time.

In a recursive program, the stack depth can be very large.

This can create memory problems, even for simple recursive
programs.

There is also an overhead associated with each function call.

Jeff Linderoth IE170:Lecture 3

Next Time

Homework is due!

Simple Sorting and Its Analysis

Three Hours of Fun-Filled Lab

Go Bears!

Jeff Linderoth IE170:Lecture 3


