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Solving Linear Systems

Last time we learned about how to solve systems Ax = b, when A
was symmetric and positive-definite.

The key was to factor the matrix into two triangular matrices A = LU

In the case that A is spd, then we can always do this, and in fact
U = LT .

What if A is not spd?

The workhorse in this case is the LU-decomposition

LU-decomposition is very related to (the well-known) Gaussian
elimination, a fact we will try to make clear today...
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Gaussian Elimination

An example for today. Let’s solve it...

x1 + x2 + 2x3 = 3
2x1 + 3x2 + x3 = 2
3x1 − x2 − x3 = 6

Subtract twice first equation from the second
Subtract 3 times the first equation from the third
Then add 4 times second equation to the third

You’ve made a triangular system!

What were the matrices that produce this?

Jeff Linderoth (Lehigh University) IE170:Lecture 30 Lecture Notes 3 / 18

Elementary Dear Watson!

We reduced the columns by taking linear combinations of the rows of
the matrix.

This implies that the reduction process can be thought of as a
multiplication of A on the left by some matrix

What does the matrix look like?

It is an elementary matrix of the form

E = I − uvT

In fact, it’s a special form of an elementary matrix: It will be a unit
lower triangular matrix with multipliers only in one column
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The Elimination Matrix

Let’s find a matrix M1 that reduces the first column of A.

M1 =


1
−m21 1
−m31 1 1

...
...

. . .

−mn1 0 0 · · · 1


By our properties of matrix multiplication, this matrix

Leaves the first row of A alone
Takes −m21 times the first row, adds the second row, and puts this in
the second row of the new matrix M1A
Takes −m31 times the first row of A, adds the third row, and puts this
in the third row of the new matrix M1A
(And So On...)
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The UpShot

To eliminate the first column, we want

mi1 =
ai1

a11

Note: These were exactly the multipliers we used in our simple
example

a11 is called the pivot element, and this reduction only works if the
pivot element is 6= 0
Next time: What happens if pivot element is 0 (or small)
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Let’s Carry On

M1A =


a11 a12 · · · a1n

0 a
(2)
22 · · · a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 · · · a

(2)
nn


To reduce the second column, we would like a matrix

M1 =


1
0 1
0 −m32 1
...

...
. . .

0 −mn2 0 · · · 1



Jeff Linderoth (Lehigh University) IE170:Lecture 30 Lecture Notes 7 / 18

Matrix Effect

Again, the matrix M2 will...

Leave first row of M1A unchanged in M2M1A
Leave second row of M1A unchanged M2M1A
Take −m32 times second row + third row in M2M1A

Lather Rinse Repeat

Repeat this n− 1 times

In the end, we get Mn−1 · · ·M2M1A = U

Fact: The product of unit lower triangular matrices is unit lower
triangular

So in the end we have MA = U , with M unit lower triangular,
and U upper traiangular

This process is known as Gaussian Elimination, and the matrix M
is known as the product form of the LU factorization
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Finding LU Directly

Here is a recursive method for finding the LU factorization

We’ll divide the matrix A into four pieces:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 (1)

=
[

a11 wT

v A′

]
(2)

Next, we’ll use use row operations to change v into the zero vector
and record the operations in another matrix.
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Finding the LU Decomposition (cont.)

By simple multiplication, you can verify the following factorization of
A:

A =
[

a11 wT

v A′

]
(3)

=
[

1 0
v/a11 I

] [
a11 wT

0 A′ − vwT /a11

]
(4)

We can show that if A is nonsingular, then so is A′ − vwT /a11.

So we can recursively call the method to factor the (n− 1)× (n− 1)
matrix A′ − vwT /a11.

Applying this recursion n times yields the desired factorization
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Finding the LU Decomposition (cont.)

To see how to get the factorization from the recursive application of
the algorithm, we have the following.

A =
[

1 0
v/a11 I

] [
a11 wT

0 A′ − vwT /a11

]
(5)

=
[

1 0
v/a11 I

] [
a11 wT

0 L′U ′

]
(6)

=
[

1 0
v/a11 L′

] [
a11 wT

0 U ′

]
(7)

This shows how to obtain the factorization recursively.

This can also be done iteratively and “in place.”
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The Algorithm

LU-Decomposition(A)
1 n← rows[L]
2 for k ← 1 to n
3 do
4 ukk ← akk

5 for i← 1 to n
6 do
7 `ik ← aik/ukk

8 uki ← aki

9 for i← k + 1 to n
10 do
11 for j ← k + 1 to n
12 do
13 aij ← aij − `ikukj
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LU ≈ Gaussian Elimination

We either have A = LU or we have MA = U

M is unit lower triangular, and in fact the inverse of a unit lower
triangular matrix is unit lower-triangular, so A = M−1U , and since
the elements of L and U are unique, it must be that L = M−1

Because of the special structure of M , we have a (fairly) remarkable
relationship
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LU ≈ Gaussian Elimination

The relationship is the following:

M−1 = (Mn−1 · · ·M2M1)−1 = M−1
1 M−1

2 · · · = L

L =


1

m21 1
m31 m32 1

...
. . .

mn1 mn2 mn3 · · · 1


where the mik are the multipliers from Gaussian elimination!

So L and U can be derived directly from the elimination process:

`ik = mik =
a

(k)
ik

a
(k)
kk

ukj = a
(k)
kj
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