Solving Linear Systems

IE170: Algorithms in Systems Engineering: Lecture 30

Jeff Linderoth
Department of Industrial and Systems Engineering Lehigh University

April 18, 2007

- Last time we learned about how to solve systems $A x=b$, when A was symmetric and positive-definite.
- The key was to factor the matrix into two triangular matrices $A=L U$
- In the case that A is SPD, then we can always do this, and in fact $U=L^{T}$ 。
- What if A is not SPD?
- The workhorse in this case is the LU-decomposition
- LU-decomposition is very related to (the well-known) Gaussian elimination, a fact we will try to make clear today...

Gaussian Elimination

- An example for today. Let's solve it...

$$
\begin{array}{r}
x_{1}+x_{2}+2 x_{3}=3 \\
2 x_{1}+3 x_{2}+x_{3}=2 \\
3 x_{1}-x_{2}-x_{3}=6
\end{array}
$$

- Subtract twice first equation from the second
- Subtract 3 times the first equation from the third
- Then add 4 times second equation to the third
- You've made a triangular system!
- What were the matrices that produce this?

Elementary Dear Watson!

- We reduced the columns by taking linear combinations of the rows of the matrix.
- This implies that the reduction process can be thought of as a multiplication of A on the left by some matrix
- What does the matrix look like?
- It is an elementary matrix of the form

$$
E=I-u v^{T}
$$

- In fact, it's a special form of an elementary matrix: It will be a unit lower triangular matrix with multipliers only in one column

The Elimination Matrix

- Let's find a matrix M_{1} that reduces the first column of A.

$$
M_{1}=\left(\begin{array}{ccccc}
1 & & & & \\
-m_{21} & 1 & & & \\
-m_{31} & 1 & 1 & & \\
\vdots & \vdots & \ddots & & \\
-m_{n 1} & 0 & 0 & \cdots & 1
\end{array}\right)
$$

- By our properties of matrix multiplication, this matrix
- Leaves the first row of A alone
- Takes $-m_{21}$ times the first row, adds the second row, and puts this in the second row of the new matrix $M_{1} A$
- Takes $-m_{31}$ times the first row of A, adds the third row, and puts this in the third row of the new matrix $M_{1} A$
- (And So On...)

Let's Carry On

$$
M_{1} A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22}^{(2)} & \cdots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n 2}^{(2)} & \cdots & a_{n n}^{(2)}
\end{array}\right)
$$

- To reduce the second column, we would like a matrix

$$
M_{1}=\left(\begin{array}{ccccc}
1 & & & & \\
0 & 1 & & & \\
0 & -m_{32} & 1 & & \\
\vdots & \vdots & \ddots & & \\
0 & -m_{n 2} & 0 & \cdots & 1
\end{array}\right)
$$

The UpShot

- To eliminate the first column, we want

$$
m_{i 1}=\frac{a_{i 1}}{a_{11}}
$$

- Note: These were exactly the multipliers we used in our simple example
- a_{11} is called the pivot element, and this reduction only works if the pivot element is $\neq 0$
- Next time: What happens if pivot element is 0 (or small)

Matrix Effect

- Again, the matrix M_{2} will...
- Leave first row of $M_{1} A$ unchanged in $M_{2} M_{1} A$
- Leave second row of $M_{1} A$ unchanged $M_{2} M_{1} A$
- Take $-m_{32}$ times second row + third row in $M_{2} M_{1} A$

Lather Rinse Repeat

- Repeat this $n-1$ times
- In the end, we get $M_{n-1} \cdots M_{2} M_{1} A=U$
- Fact: The product of unit lower triangular matrices is unit lower triangular
- So in the end we have $M A=U$, with M unit lower triangular, and U upper traiangular
- This process is known as Gaussian Elimination, and the matrix M is known as the product form of the LU factorization

Finding LU Directly

- Here is a recursive method for finding the LU factorization
- We'll divide the matrix A into four pieces:

$$
\begin{align*}
A & =\left[\begin{array}{c|ccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\hline a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \tag{1}\\
& =\left[\begin{array}{cc}
a_{11} & w^{T} \\
v & A^{\prime}
\end{array}\right] \tag{2}
\end{align*}
$$

- Next, we'll use use row operations to change v into the zero vecto acty and record the operations in another matrix.

Finding the LU Decomposition (cont.)

- By simple multiplication, you can verify the following factorization of A:

$$
\begin{align*}
A & =\left[\begin{array}{cc}
a_{11} & w^{T} \\
v & A^{\prime}
\end{array}\right] \tag{3}\\
& =\left[\begin{array}{cc}
1 & 0 \\
v / a_{11} & I
\end{array}\right]\left[\begin{array}{cc}
a_{11} & w^{T} \\
0 & A^{\prime}-v w^{T} / a_{11}
\end{array}\right] \tag{4}
\end{align*}
$$

- We can show that if A is nonsingular, then so is $A^{\prime}-v w^{T} / a_{11}$.
- So we can recursively call the method to factor the $(n-1) \times(n-1)$ matrix $A^{\prime}-v w^{T} / a_{11}$.
- Applying this recursion n times yields the desired factorization

Finding the LU Decomposition (cont.)

- To see how to get the factorization from the recursive application of the algorithm, we have the following.

$$
\begin{align*}
A & =\left[\begin{array}{cc}
1 & 0 \\
v / a_{11} & I
\end{array}\right]\left[\begin{array}{cc}
a_{11} & w^{T} \\
0 & A^{\prime}-v w^{T} / a_{11}
\end{array}\right] \tag{5}\\
& =\left[\begin{array}{cc}
1 & 0 \\
v / a_{11} & I
\end{array}\right]\left[\begin{array}{cc}
a_{11} & w^{T} \\
0 & L^{\prime} U^{\prime}
\end{array}\right] \tag{6}\\
& =\left[\begin{array}{cc}
1 & 0 \\
v / a_{11} & L^{\prime}
\end{array}\right]\left[\begin{array}{cc}
a_{11} & w^{T} \\
0 & U^{\prime}
\end{array}\right] \tag{7}
\end{align*}
$$

- This shows how to obtain the factorization recursively.
- This can also be done iteratively and "in place."

The Algorithm

```
LU-Decomposition \((A)\)
\(n \leftarrow \operatorname{rows}[L]\)
for \(k \leftarrow 1\) to \(n\)
do
\(u_{k k} \leftarrow a_{k k}\)
    for \(i \leftarrow 1\) to \(n\)
        do
            \(\ell_{i k} \leftarrow a_{i k} / u_{k k}\)
            \(u_{k i} \leftarrow a_{k i}\)
        for \(i \leftarrow k+1\) to \(n\)
        do
            for \(j \leftarrow k+1\) to \(n\)
            do
                \(a_{i j} \leftarrow a_{i j}-\ell_{i k} u_{k j}\)
```

$\mathrm{LU} \approx$ Gaussian Elimination

$\mathrm{LU} \approx$ Gaussian Elimination

- The relationship is the following:

$$
M^{-1}=\left(M_{n-1} \cdots M_{2} M_{1}\right)^{-1}=M_{1}^{-1} M_{2}^{-1} \cdots=L
$$

$$
L=\left(\begin{array}{ccccc}
1 & & & & \\
m_{21} & 1 & & & \\
m_{31} & m_{32} & 1 & & \\
\vdots & & \ddots & & \\
m_{n 1} & m_{n 2} & m_{n 3} & \cdots & 1
\end{array}\right)
$$

where the $m_{i k}$ are the multipliers from Gaussian elimination!

- So L and U can be derived directly from the elimination process:

$$
\ell_{i k}=m_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \quad u_{k j}=a_{k j}^{(k)}
$$

