Solving Linear Systems

Last time we learned about how to solve systems Ax = b, when A
was symmetric and positive-definite.
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The key was to factor the matrix into two triangular matrices A = LU
Jeff Linderoth

In the case that A is SPD, then we can always do this, and in fact
U=1L"T.
What if A is not SPD?
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) The workhorse in this case is the LU-decomposition
April 18, 2007

LU-decomposition is very related to (the well-known) Gaussian
elimination, a fact we will try to make clear today...
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Gaussian Elimination

Elementary Dear Watson!

@ An example for today. Let's solve it...

T+ 2o+ 213 = 3 @ We reduced the columns by taking linear combinations of the rows of

201 + 39 + 23 = the matrix.

3 . @ This implies that the reduction process can be thought of as a
Ty — T2 —x3 =

multiplication of A on the left by some matrix

@ What does the matrix look like?
e Subtract twice first equation from the second
e Subtract 3 times the first equation from the third
e Then add 4 times second equation to the third E—=1T—uw’

@ It is an elementary matrix of the form

@ You've made a triangular system!
@ In fact, it's a special form of an elementary matrix: It will be a unit

lower triangular matrix with multipliers only in one column

@ What were the matrices that produce this?
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The Elimination Matrix The UpShot

@ Let's find a matrix M7 that reduces the first column of A.

1 @ To eliminate the first column, we want
—ma91 1
a
]\41 — —ma31 1 1 mi1 = 4
. } ail
—my; 00 - 1 @ Note: These were exactly the multipliers we used in our simple

example

® By our properties of matrix multiplication, this matrix @ a1 is called the pivot element, and this reduction only works if the

o Leaves the first row of A alone pivot element is 7& 0

o Takes —myo; times the first row, adds the second row, and puts this in
the second row of the new matrix M; A
o Takes —mg; times the first row of A, adds the third row, and puts this

in the third row of the new matrix M; A
e (And So On...)

@ Next time: What happens if pivot element is 0 (or small)
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Let's Carry On Matrix Effect

@ Again, the matrix M will...

ail a2 - Gin o Leave first row of M7 A unchanged in MsM; A
0 a(2) o a(2) o Leave second row of My A unchanged MsM; A
22 2n e Take —mss times second row + third row in MyM; A

M A =

; ) o
0 a1(12) ang Lather Rinse Repeat

@ To reduce the second column, we would like a matrix ® Repeat this n — 1 times
@ In the end, we get M,,_1--- MoM{A=U
1 @ Fact: The product of unit lower triangular matrices is unit lower
0 1 triangular
My = 0 _T_n32 1 @ So in the end we have M A = U, with M unit lower triangular,
: : . and U upper traiangular
0 —mpz 0 -1 @ This process is known as Gaussian Elimination, and the matrix M @
is known as the product form of the LU factorization
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Finding LU Directly

@ Here is a recursive method for finding the LU factorization

o We'll divide the matrix A into four pieces:

(a1 |az - an
azi | az2 - a
A = ! (1)
| Qnl | Gn2 Gnn
= @)
v A

@ Next, we'll use use row operations to change v into the zero vecto
and record the operations in another matrix.
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Finding the LU Decomposition (cont.)

@ By simple multiplication, you can verify the following factorization of

A:

ail UJT
v A

= Lo 1)1

(3)

A Z}U;T/an } ()

@ We can show that if A is nonsingular, then so is A" — va/au.

@ So we can recursively call the method to factor the (n — 1) x (n — 1)

matrix A" —vw’ /ay;.

@ Applying this recursion n times yields the desired factorization
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Finding the LU Decomposition (cont.)

@ To see how to get the factorization from the recursive application of
the algorithm, we have the following.

o [ 1 0 ail wT

A = | v/an I] { 0 A —vwl/ap } (%)
[ 0 a;; wt
o i v/an I :| |: 0 L/U/ :| (6)
o [ 1 0 aijl wT
| v/an L’] [ 0o U } (7)

@ This shows how to obtain the factorization recursively.

@ This can also be done iteratively and “in place.”
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The Algorithm

LU-DECOMPOSITION(A)
1 n <« rows[L]
2 fork—1ton

3 do
4 Ukk < Qkk
5 fori—1ton
6 do
7 Uik, — it/ Urk
8 Ui < Ak
9 fori—k+1ton
10 do
11 forj — k+1ton
12 do
13 Qjj < Ajj — Eikukj
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LU ~ Gaussian Elimination LU ~ Gaussian Elimination

@ The relationship is the following:

—1 -1 —1as—1
M7 =(Mp—q---MeMy) =M My ---=1L
@ We either have A = LU or we have M A =U 1
@ M is unit lower triangular, and in fact the inverse of a unit lower ma1 1
triangular matrix is unit lower-triangular, so A = M ~'U, and since L= m31 M3 1
the elements of L and U are unique, it must be that L = M ! : _
@ Because of the special structure of M, we have a (fairly) remarkable Mpl Mp2 Mp3z -+ 1
relationshi - . C
P where the m; are the multipliers from Gaussian elimination!
@ So L and U can be derived directly from the elimination process:
(k)
a:
k (k)
== =
Ok
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