I Hate A-Rod!

IE170: Algorithms in Systems Engineering: Lecture 31

Department of Industrial and Systems Engineering
Lehigh University
April 20, 2007

And Now You Will Too!

- Programming Quiz: Monday 1PM
- A-Rod ruined my day yesterday
- Therefore, I am going to crush you, just like A-Rod crushes a Joe Borowski hanging slider.

LU-Decomposition

LU-Decomposition (A)
$n \leftarrow \operatorname{rows}[L]$
for $k \leftarrow 1$ to n
do
$u_{k k} \leftarrow a_{k k}$
for $i \leftarrow 1$ to n
do
$\ell_{i k} \leftarrow a_{i k} / u_{k k}$
$u_{k i} \leftarrow a_{k i}$
for $i \leftarrow k+1$ to n
do
for $j \leftarrow k+1$ to n
do
$a_{i j} \leftarrow a_{i j}-\ell_{i k} u_{k j}$

$\mathrm{LU} \approx$ Gaussian Elimination

- We either have $A=L U$ or we have $M A=U$, and $L=M^{-1}$
- Because of the special structure of M, we have a (fairly) remarkable relationship

$$
\begin{aligned}
M^{-1}= & \left(M_{n-1} \cdots M_{2} M_{1}\right)^{-1}=M_{1}^{-1} M_{2}^{-1} \cdots=L \\
L & =\left(\begin{array}{ccccc}
1 & & & & \\
m_{21} & 1 & & & \\
m_{31} & m_{32} & 1 & & \\
\vdots & & \ddots & & \\
m_{n 1} & m_{n 2} & m_{n 3} & \cdots & 1
\end{array}\right)
\end{aligned}
$$

where the $m_{i k}$ are the multipliers from Gaussian elimination!

- So L and U can be derived directly from the elimination process:

$$
\ell_{i k}=m_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \quad u_{k j}=a_{k j}^{(k)}
$$

- We may need to swap rows before every iteration of the elimination
- In fact, we may want to perform row exchanges
- In Gaussian Elimination, (with row swaps), really what we end up

$$
M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{1} A=U
$$

- Let's show how we can get all of the permutations "pushed" to the outside, and thus show that we can think of it as just reordering the rows of A one time. Leaving us with our desired factorization:

Zero Pivots in $M A=U$

 $(M A=U)$ with is $P A=L U$
Recall!

- A square matrix P is a permutation matrix if there is a single 1 in each row and column.
- A square matrix whose columns all have length (norm) 1 , and that are (pairwise) orthogonal is called orthogonal.
- If $Q \in \mathbb{R}^{n \times n}$ is orthogonal then (by definition) $Q^{T} Q=I$, so then $Q^{T}=Q^{-1}$.
- What effect does (right)-multiplying by a permutation matrix have? (Shuffles Columns)
- What effect does (left)-multiplying by a permutation matrix have? (Shuffles Rows)
- To make Gaussian Elimination work, we sometimes need to swap two rows.
- The resulting "transformation" matrix is a symmetric permutation matrix P

Does P Mess up our Triangular Solves?

- Note that the system $P A x=P b$ is equivalent to the original system, which is then equivalent to $L U x=P b$.
- We can solve the system in two steps:
- First solve the system $L y=P b$ (forward substitution).
- Then solve the system $U x=y$ (backward substitution).
- $P b$ is really nothing more than a "permuted" version of b.
- Typically permutation matrices P are (compactly) represented by an array $\pi[1, \ldots, n]$.
- $\pi[i]=1 \Rightarrow P_{i, \pi[i]}=1, P_{i j}=0 \forall j \neq \pi[i]$
- Recall: left multiply just takes linear combinations of the rows.
- $P A$ has (i, j) entry of $a_{\pi[i], j}$ and $P b$ has $b_{\pi[i]}$ in the $i^{\text {th }}$ position.

Simple Case

- Suppose for simplicity that $A \in \mathbb{R}^{3 \times 3}$, so Gaussian Elimination produces:

$$
M_{2} P_{2} M_{1} P_{1} A=U
$$

- P_{2} is orthogonal, so $P_{2}^{T} P_{2}=I$, thus

$$
M_{2} P_{2} M_{1} P_{1} A=M_{2} P_{2} M_{1} P_{2}^{T} P_{2} P_{1} A=M_{2} \hat{M}_{1} P_{2} P_{1} A=U .
$$

where $\hat{M}_{1}=P_{2} M_{1} P_{2}^{T}$

- That is \hat{M}_{1} has the rows and columns of M_{1} permuted by P_{2}.
- In General (by inserting enough reordering permutation matrices), we

In The End

 get$$
\hat{M} P A=U
$$

or

$$
P A=L U
$$

with $L=\hat{M}^{-1}$

- We'll do an example here...
- For example,

$$
\begin{gathered}
P_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad M_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-m_{21} & 1 & 0 \\
-m_{31} & 0 & 1
\end{array}\right) \\
\hat{M}_{1}=P_{2} M_{1} P_{2}^{T}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-m_{31} & 1 & 0 \\
-m_{21} & 0 & 1
\end{array}\right)
\end{gathered}
$$

Why Exchange Rows?

- We may want to exchange rows, even if the pivot element is just very small in magnitude.
- Pivoting on small numbers can lead to a significant loss of accuracy. Suppose we are computing rounding to four significant digits
- Consider the simple system:

$$
A x=\left(\begin{array}{cc}
.0001 & .5 \\
.4 & .3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{.5}{.1}
$$

whose exact solution is $x=(.9999, .9998)^{T}$

Puh, Puh, Puh, Pivot

- Pivot on .0001, gives (to 4 significant digits)

$$
M A x=\left(\begin{array}{cc}
1 & 0 \\
-4000 & 1
\end{array}\right)\left(\begin{array}{cc}
.0001 & .5 \\
0 & -2000
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{.5}{-2000}
$$

Whose solution is $(0,1)^{T} \neq(.9999, .9998)^{T}$

- Yikes!!!! Computers Can Be Wrong!

Partial Pivoting

- This horrible loss of accuracy in the solution can from having a small pivot. So let's be smarter:
- Puvot on element with the largest (magnitude) element remaining in the column:

$$
\ell^{*}=\arg \max _{i \geq k}\left|a_{i k}^{(k)}\right| .
$$

- Swap rows k and ℓ^{*} at step k of the algorithm
- While this doesn't always eliminate numerical instability, it usually works well.
- We could (though using both row and column permutations), implement a complete pivoting strategy in which the largest remaining matrix element is used as the pivot element.

The LUP Decomposition - The "Book Way"

- The element a_{11} is called the pivot element.
- Note that the above decomposition method fails whenever the pivot element is zero.
- In this case, we can permute the rows of A to obtain a new pivot element.
- In fact, for numerical stability, it is desirable to have the pivot element be as large as possible in absolute value.
- If no nonzero pivot is available, A is singular.
- This leads to the following modified factorization.

$$
\begin{align*}
Q A & =\left[\begin{array}{cc}
a_{k 1} & w^{T} \\
v & A^{\prime}
\end{array}\right] \tag{1}\\
& =\left[\begin{array}{cc}
1 & 0 \\
v / a_{k 1} & I
\end{array}\right]\left[\begin{array}{cc}
a_{k 1} & w^{T} \\
0 & A^{\prime}-v w^{T} / a_{k 1}
\end{array}\right]
\end{align*}
$$

Next Time!

- Quiz: in lab April 23!
- Two or Three simple programming questions.
- You will be able to use any of your own code from teh previous labs
- You will not! be allowed to access the Internet, not even to check if the Red Sox are beating the Yankees.

