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A-Rod!
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And Now You Will Too! LU-Decomposition

LU-DECOMPOSITION(A)
1 n <« rows[L]
2 fork—1ton

@ Programming Quiz: Monday 1PM 3 do
@ A-Rod ruined my day yesterday 4
@ Therefore, | am going to crush you, just like A-Rod crushes a Joe 5
Borowski hanging slider. 6
7
8
9
10
Just KIDDING 1 1
12

13
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Uk < Qkk
for:—1ton
do

Uik, — it/ Urk

Uki < Qi
fori—k+1ton
do

for j— k+1ton

do

aij « ajj — LigUug;
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LU ~ Gaussian Elimination Recall!

@ We either have A = LU or we have MA=U, and L = M~}

. ’ @ A square matrix P is a permutation matrix if there is a single 1 in
@ Because of the special structure of M, we have a (fairly) remarkable

each row and column.

lationshi
relationship @ A square matrix whose columns all have length (norm) 1, and that
M~ = (Mp_y -+ MpMy) ™ = MMy = I are (pairwise) orthogonal is called orthogonal.
1 o If Q € R™™ is orthogonal then (by definition) Q7Q = I, so then
T _ -1
mop 1 Q=0
L=1 ms1 msz 1 @ What effect does (right)-multiplying by a permutation matrix have?
: ‘ (Shuffles Columns)
Mp1 Mpa Mps - 1 @ What effect does (left)-multiplying by a permutation matrix have?

(Shuffles Rows)

@ To make Gaussian Elimination work, we sometimes need to swap two
rows.

(k)
G = g = a?}i) Upj = a,(:;-) @ The resulting “transformation” matrix is a symmetric permutation

A matrix P

where the m; are the multipliers from Gaussian elimination!
@ So L and U can be derived directly from the elimination process:
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Zero Pivots in MA =U Does P Mess up our Triangular Solves?

@ Note that the system PAx = Pb is equivalent to the original system,
which is then equivalent to LUx = Pb.

@ We can solve the system in two steps:

@ We may need to swap rows before every iteration of the elimination
(MA=U)

® In fact, we may want to perform row exchanges o First solve the system Ly = Pb (forward substitution).

@ In Gaussian Elimination, (with row swaps), really what we end up o Then solve the system Uz = y (backward substitution).

with is @ Pb is really nothing more than a “permuted” version of b.

M, 1P, 1---MyP,M1 P A= . . .
n-1fn-l 202 v @ Typically permutation matrices P are (compactly) represented by an

@ Let's show how we can get all of the permutations “pushed” to the array m[l,...,nl.
outside, and thus show that we can think of it as just reordering the o mli]=1= Py = 1, P = 0¥j # 7[i]
rows of A one time. Leaving us with our desired factorization: ’

@ Recall: left multiply just takes linear combinations of the rows.

® PA has (i, j) entry of ar[;); and Pb has b,; in the ith position.

PA=LU
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Simple Case Specifically
@ Suppose for simplicity that A € R3*3, so Gaussian Elimination o For example,
produces:
MoyPoMPLA=U 100 1 0 0
Py = 0 0 1 M = — 1 0
e P, is orthogonal, so P P, = I, thus 2 01 0 ! 221 01
—ms3i1
MyPyM Pl A = MyPo M PLP,P A = MyNM, PP A = U. 1 00
where M = Py M, PJ My=PMPy=| —mg 1 0
—ma1 0 1

@ That is Ml has the rows and columns of M; permuted by Ps.
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In The End Why Exchange Rows?

@ We may want to exchange rows, even if the pivot element is just very

@ In General (by inserting enough reordering permutation matrices), we small in magnitude
et . ) e
& ~ @ Pivoting on small numbers can lead to a significant loss of accuracy.
MPA=U & & y
Suppose we are computing rounding to four significant digits
or o Consider the simple system:
PA=LU

4 .3 o

5 )
1
e We'll do an example here...

whose exact solution is z = (.9999, .9998)7
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I I
Puh, Puh, Puh, Pivot Partial Pivoting

@ This horrible loss of accuracy in the solution can from having a small
pivot. So let's be smarter:

@ Pivot on .0001, gives (to 4 significant digits) @ Puvot on element with the largest (magnitude) element remaining in
the column: "
(1 0\ /.000 5 n\ _( 5 7 — are mas la®1.
MAw_<—4000 1)( 0 —2000)(m2>_<—2000> gmax ;|

Whose solution is (0,1)7 % (.9999, .9998)” @ Swap rows k and ¢* at step k of the algorithm

o Vikes!l!l Computers Can Be Wrong! @ While this doesn't always eliminate numerical instability, it usually

works well.

@ We could (though using both row and column permutations),
implement a complete pivoting strategy in which the largest

remaining matrix element is used as the pivot element.

Jeff Linderoth (Lehigh University) IE170:Lecture 31 Lecture Notes 13 / 14 Jeff Linderoth (Lehigh University) IE170:Lecture 31 Lecture Notes 14 / 14

The LUP Decomposition — The “Book Way" Finding the LUP Decomposition (cont.)

@ The element aq1 is called the pivot element.

H / ! /
o Note that the above decomposition method fails whenever the pivot ® As before, we obtain L', U”, and I" and we get

element is zero. 1 0
@ In this case, we can permute the rows of A to obtain a new pivot PA = 0o P } QA (3)
element. | o . . B 1 0 1 0 a1 w? @
@ In fact, for numerical stability, it is desirable to have the pivot = 0 P vjag T 0 A — va/akl
element be as large as possible in absolute value. - . 0 T
a w
@ If no nonzero pivot is available, A is singular. = Plvjag I } { Sl PUA — v Jag) } (5)
@ This leads to the following modified factorization. - T
_ 1 0 } [ arl W } (6)
A = | v (1) | Pvfap T ]| 0 LU
o v A . [ 1 0 agl wT 7
1 0 a1 wT % | Pv/am L o U
- {v/akl I] [ 0 A —vwl/ap }
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I @4 @@
Next Time!

@ Quiz: in lab April 23!
@ Two or Three simple programming questions.
@ You will be able to use any of your own code from teh previous labs

@ You will not! be allowed to access the Internet, not even to check if
the Red Sox are beating the Yankees.
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