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I Hate A-Rod!
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And Now You Will Too!

Programming Quiz: Monday 1PM

A-Rod ruined my day yesterday

Therefore, I am going to crush you, just like A-Rod crushes a Joe
Borowski hanging slider.

Just Kidding
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LU-Decomposition

LU-Decomposition(A)
1 n← rows[L]
2 for k ← 1 to n
3 do
4 ukk ← akk

5 for i← 1 to n
6 do
7 `ik ← aik/ukk

8 uki ← aki

9 for i← k + 1 to n
10 do
11 for j ← k + 1 to n
12 do
13 aij ← aij − `ikukj
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LU ≈ Gaussian Elimination

We either have A = LU or we have MA = U , and L = M−1

Because of the special structure of M , we have a (fairly) remarkable
relationship

M−1 = (Mn−1 · · ·M2M1)−1 = M−1
1 M−1

2 · · · = L

L =


1

m21 1
m31 m32 1

...
. . .

mn1 mn2 mn3 · · · 1


where the mik are the multipliers from Gaussian elimination!

So L and U can be derived directly from the elimination process:

`ik = mik =
a

(k)
ik

a
(k)
kk

ukj = a
(k)
kj
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Recall!

A square matrix P is a permutation matrix if there is a single 1 in
each row and column.

A square matrix whose columns all have length (norm) 1, and that
are (pairwise) orthogonal is called orthogonal.

If Q ∈ Rn×n is orthogonal then (by definition) QT Q = I, so then
QT = Q−1.

What effect does (right)-multiplying by a permutation matrix have?
(Shuffles Columns)

What effect does (left)-multiplying by a permutation matrix have?
(Shuffles Rows)

To make Gaussian Elimination work, we sometimes need to swap two
rows.

The resulting “transformation” matrix is a symmetric permutation
matrix P
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Zero Pivots in MA = U

We may need to swap rows before every iteration of the elimination
(MA = U)

In fact, we may want to perform row exchanges

In Gaussian Elimination, (with row swaps), really what we end up
with is

Mn−1Pn−1 · · ·M2P2M1P1A = U

Let’s show how we can get all of the permutations “pushed” to the
outside, and thus show that we can think of it as just reordering the
rows of A one time. Leaving us with our desired factorization:
PA = LU

Jeff Linderoth (Lehigh University) IE170:Lecture 31 Lecture Notes 7 / 14

Does P Mess up our Triangular Solves?

Note that the system PAx = Pb is equivalent to the original system,
which is then equivalent to LUx = Pb.

We can solve the system in two steps:

First solve the system Ly = Pb (forward substitution).
Then solve the system Ux = y (backward substitution).

Pb is really nothing more than a “permuted” version of b.

Typically permutation matrices P are (compactly) represented by an
array π[1, . . . , n].
π[i] = 1⇒ Pi,π[i] = 1, Pij = 0∀j 6= π[i]
Recall: left multiply just takes linear combinations of the rows.

PA has (i, j) entry of aπ[i],j and Pb has bπ[i] in the ith position.
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Simple Case

Suppose for simplicity that A ∈ R3×3, so Gaussian Elimination
produces:

M2P2M1P1A = U

P2 is orthogonal, so P T
2 P2 = I, thus

M2P2M1P1A = M2P2M1P
T
2 P2P1A = M2M̂1P2P1A = U.

where M̂1 = P2M1P
T
2

That is M̂1 has the rows and columns of M1 permuted by P2.
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Specifically

For example,

P2 =

 1 0 0
0 0 1
0 1 0

 M1 =

 1 0 0
−m21 1 0
−m31 0 1



M̂1 = P2M1P
T
2 =

 1 0 0
−m31 1 0
−m21 0 1


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In The End

In General (by inserting enough reordering permutation matrices), we
get

M̂PA = U

or
PA = LU

with L = M̂−1

We’ll do an example here...
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Why Exchange Rows?

We may want to exchange rows, even if the pivot element is just very
small in magnitude.

Pivoting on small numbers can lead to a significant loss of accuracy.
Suppose we are computing rounding to four significant digits

Consider the simple system:

Ax =
(

.0001 .5
.4 .3

) (
x1

x2

)
=

(
.5
.1

)
whose exact solution is x = (.9999, .9998)T
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Puh, Puh, Puh, Pivot

Pivot on .0001, gives (to 4 significant digits)

MAx =
(

1 0
−4000 1

) (
.0001 .5

0 −2000

) (
x1

x2

)
=

(
.5

−2000

)
Whose solution is (0, 1)T 6= (.9999, .9998)T

Yikes!!!! Computers Can Be Wrong!
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Partial Pivoting

This horrible loss of accuracy in the solution can from having a small
pivot. So let’s be smarter:

Puvot on element with the largest (magnitude) element remaining in
the column:

`∗ = arg max
i≥k
|a(k)

ik |.

Swap rows k and `∗ at step k of the algorithm

While this doesn’t always eliminate numerical instability, it usually
works well.

We could (though using both row and column permutations),
implement a complete pivoting strategy in which the largest
remaining matrix element is used as the pivot element.
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The LUP Decomposition – The “Book Way”

The element a11 is called the pivot element.

Note that the above decomposition method fails whenever the pivot
element is zero.

In this case, we can permute the rows of A to obtain a new pivot
element.

In fact, for numerical stability, it is desirable to have the pivot
element be as large as possible in absolute value.

If no nonzero pivot is available, A is singular.

This leads to the following modified factorization.

QA =
[

ak1 wT

v A′

]
(1)

=
[

1 0
v/ak1 I

] [
ak1 wT

0 A′ − vwT /ak1

]
(2)
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Finding the LUP Decomposition (cont.)

As before, we obtain L′, U ′, and P ′ and we get

PA =
[

1 0
0 P ′

]
QA (3)

=
[

1 0
0 P ′

] [
1 0

v/ak1 I

] [
ak1 wT

0 A′ − vwT /ak1

]
(4)

=
[

1 0
P ′v/ak1 I

] [
ak1 wT

0 P ′(A′ − vwT /ak1)

]
(5)

=
[

1 0
P ′v/ak1 I

] [
ak1 wT

0 L′U ′

]
(6)

=
[

1 0
P ′v/ak1 L′

] [
ak1 wT

0 U ′

]
(7)
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Next Time!

Quiz: in lab April 23!

Two or Three simple programming questions.

You will be able to use any of your own code from teh previous labs

You will not! be allowed to access the Internet, not even to check if
the Red Sox are beating the Yankees.
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