This Time

IE170: Algorithms in Systems Engineering: Lecture 32

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

April 23, 2007

- A whirlwind tour of computational complexity
- You are not responsible for this material on the final, but it is stuff that I thought you might like to know.
- It is also covered in Chapter 34 of your textbook.

Computational Complexity

- The ingredients that we need to build a theory of computational complexity for problem classification are the following
 - A class C of problems to which the theory applies
 - **2** A (nonempty) subclass $\mathcal{E} \subseteq \mathcal{C}$ of "easy" problems
 - **③** A (nonempty) subclass $\mathcal{H} \subseteq \mathcal{C}$ of "hard" problems
 - **(**) A relation \lhd "not more difficult than" between pairs of problems
- Our goal is just to put some definitions around this machinery
 - Thm: $Q \in \mathcal{E}, P \lhd Q \Rightarrow P \in \mathcal{E}$
 - Thm: $P \in \mathcal{H}, P \lhd Q \Rightarrow Q \in \mathcal{H}$

Ingredient #1 — Problem Class C

- The theory we develop applies only to decision problems
- Problems that have a "yes-no" answer.
 - Opt: $\max\{c^T x \mid x \in S\}$
 - Decision: $\exists x \in S$ such that $c^T x \ge k$?

Example: Hamiltonian Circuit

Instance: Graph G = (V, E)**Question:** Does G contain a Hamiltonian Circuit?

Example: Traveling Salesperson

Instance: Graph G = (V, E), Integer K Question: Does G contain a Hamiltonian Circuit of length $\leq K$?

Ingredient #1: Problems Decision Problems

Ingredients #2 and #3

- To define "easy" and "hard", we need to make a few definitions so we can define the running time of an algorithm.
- The running time of an algorithm depends on size of the input. (Duh.)
- A time complexity function specifies, as a function of the problem size, the largest¹ amount of time needed by an algorithm to solve any problem instance.
- How do we measure problem size?
 - The length of the amount of information necessary to represent the problem in a *reasonable* encoding scheme.
 - Example: TSP, N, c_{ij}
 - Example: Knapsack: N, a_j, c_j, b

What is Reasonable?

- Don't be stupid (pad the input data with unnecessary information)
- Represent numbers in binary notation.
 - That's how computers do it anyway
- An integer $2^n \le x < 2^{n+1}$ can be represented by a vector $(\delta_0, \delta_1, \dots, \delta_n)$, where $x = \sum_{i=0}^n \delta_i 2^i$
- It requires a *logarithmic* number of bits to represent $x \in \mathbb{Z}$
- We always assume that numbers are *rational*, so they can be encoded with two integers.
- TSP on *n* cities with costs $c_{ij} \in \mathbb{Z}$, $\max_{i,j} c_{ij} = \theta$, then requires $\leq \log(n) + n^2 \log(\theta)$ bits to represent an instance.

Ready for (Somewhat Formal) Definitions

- Given a problem *P*, and algorithm *A* that solves *P*, and an instance *X* of problem *P*.
 - $L(X)\equiv$ The length (in a reasonable encoding) of the instance
 - $f_A(X) \equiv$ the number of elementary calculations required to run algorithm A on instance X.
 - $f_A^*(l) \equiv \max_X \{ f_A(X) : L(X) = l \}$ is the running time of algorithm A
- If $f_A^*(l) = O(l^p)$ for some positive constant integer p, A is polynomial

More Definitions

- A is strongly polynomial if $f_A^*(l)$ is bounded by a polynomial function that does not involve the data size (magnitude of numbers).
- A is weakly polynomial if it is polynomial and not strongly polynomial. The l in $O(l^p)$ contains terms involving $log \theta$
- An algorithm is said to be an exponential-time algorithm if $f^*_A(l) \neq O(l^p),$ for any p

Ingredient #1: Problems Polynomiality

One Last Type of Polynomiality

- A *pseudopolynomial algorithm* A is one that is polynomial in the length of the data when encoded in *unary*.
 - Unary means that we are using a one-symbol alphabet. (not binary)
- Practically, it means that A is polynomial in the parameters and the magnitude of the instance data θ —not $\log \theta$.
- Example: The Integer Knapsack Problem
 - There is an O(Nb) algorithm for this problem, where N is the number of items and b is the size of the knapsack.
 - This is not a polynomial-time algorithm
 - If b is bounded by a polynomial function of n, then it is

Knapsack In More Detail

- Knapsack: N, a_i, c_i, b
- For an instance of **Knapsack** X, what is the length of the input L(X)?
- What are the numbers c_i, a_i, b ? Assume they are *rational*.
 - So they can be expressed as the ratio of two integers.
 - Assume $a_i \leq b$
 - $\theta = \max_{i \in N} c_i$
 - $L(X) = \log N + (2N+2)\log b + 2N\log \theta$
- Is Nb = O(L(X))?
 - $\exists p \in \mathbb{Z}$ such that $Nb < ((2N+2)\log b)^p$?
 - No!
 - Note if Nb replaced by $N \log b$, then **Yes!**

The problem class \mathcal{NP}

- $\mathcal{NP} \neq$ "Non-polynomial"
- $\mathcal{NP} \equiv$ the class of decision problems that can be solved in polynomial time on a non-deterministic Turing machine.
- $\mathcal{NP} \approx$ the class of decision problems with the property that for every instance for which the answer is "ves", there is a short certificate
- The certificate is your "proof" that what you are telling me is the truth

\mathcal{NP} : Examples

Example: Hamiltonian Circuit

Instance: Graph G = (V, E)**Question:** Does G contain a Hamiltonian Circuit?

- You say the answer is "Yes". I say "prove it."
- You give me the a set of edges $E' \subseteq E$. I check as follows:
 - **O** Does the degree of each node of G' = (V, E') = 2? If not, then return **no**, else go to 2.
 - This takes time $< O(|V|^2)$.
 - 2 Is G' = (V, E') connected. If so, return yes, otherwise return no.
 - This takes time O(|E'|)
- The checking algorithm takes $O(|V|^2 + |E'|)$ time, so it is polynomial. It returns **yes** if and only if the set of edges E' defines a Hamiltonian Circuit in G, so Hamiltonian Circuit $\in \mathcal{NP}$.

Classes and Certificates \mathcal{NP}

\mathcal{NP} : Examples

Example: Complement of Hamiltonian Circuit

Instance: Graph G = (V, E)**Question:** Does *G* not contain a Hamiltonian Circuit?

- You say the answer is "Yes". I say "prove it."
- Equivalently, you say that the answer to Hamiltonian Circuit on G is **no**.
- You give me... ?
 - Careful: Will your answer suffice for *all* graphs *G*?
 - What you really are giving would be a *characterization* of what graphs are *not* Hamiltonian: *G* is *not* Hamiltonian if and only if Your Answer.
- No one knows!

Example: 0-1IP

 \mathcal{NP} : Examples

$\exists x \in \mathbb{B}^n$ such that $Ax \leq b, c^T x \geq K$?

- You say the answer is "Yes". I say "prove it."
- **2** You give me the vector x: This is a "short certificate"
- **③** The 0-1 vector x can be checked such that $Ax \leq b, c^T x \geq K$?

Jeff Linderoth (Lehigh University)	IE170:Lecture 32		Lecture Notes 13 / 48		Jeff Linderoth (Lehigh University) IE170:Led		cture 32 Lecture No	Lecture Notes	s 14 / 48
	Classes and Certificates	co- \mathcal{NP}			C	Classes and Certificates	co- \mathcal{NP}		

The Class co- \mathcal{NP}

co- \mathcal{NP} , More examples

Example: 0-1IP

 $\not\exists x \in \mathbb{B}^n$ such that $Ax \leq b, c^T x \geq K$?

- You say "no." I say "prove it."
- You give me what? Is this a short (polynomial length) certificate?

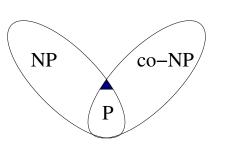
 $\exists x \in \mathbb{R}^n_+$ such that $Ax \leq b, c^T x \geq K$?

- You say "no." I say "prove it."
- 2 You give me What?
- $\begin{array}{l} \textcircled{\bullet} \quad \exists \pi \in \mathbb{R}^m \text{ such that } \pi^T A \geq c, \pi \geq 0, \pi^T b < K \Rightarrow \not\exists x \in \mathbb{R}^n \text{ such that } Ax \leq b, x \geq 0, c^T x \geq K \end{array}$
- Is π a short certificate?

Classes and Certificates

The Class \mathcal{P}

- ${\mathcal P}$ is the class of problems for which there exists a polynomial algorithm.
- $\mathcal{P} \in \mathcal{NP} \cap \text{co-}\mathcal{NP}$: Why?



- It is a (very significant) open question as to whether $\mathcal{P} = \mathcal{NP} \cap \text{co-}\mathcal{NP}$.
- There are (very few) problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ but not (known) to be in \mathcal{P} .
 - LP
 - PRIMES
 - Approximating the shortest and closest vector in a lattice to within factor of \sqrt{n}

- We have our class(es) of problems $\mathcal{P}, \mathcal{NP}, \text{co-}\mathcal{NP}$
- We know class of "easy" problems. (Problems in \mathcal{P})
- We need our class of "hard" problems.

Where are we?

- We need our relation "not (significantly) more difficult than" (\triangleleft)
 - For this we need the concept of problem reductions.

Polynomial Reduction

want to use.

• We will write this as $P \lhd Q$

The "Hard Problems"—Class \mathcal{NPC}

- We want to ask the question—What are the hardest problems in $\mathcal{NP}?$
 - \bullet We'll call this class of problems $\mathcal{NPC},\ ``\mathcal{NP}\text{-Complete''}$.
- Using the definitions we have made, we would like to say that if $P \in \mathcal{NPC}$, then $Q \in \mathcal{NP} \Rightarrow Q \lhd P$
 - If $P \in \mathcal{NP}$ and we can convert in polynomial time *every* other problem $Q \in \mathcal{NP}$ to P, then P is in this sense the "hardest" problem in \mathcal{NP} . $P \in \mathcal{NPC}$
- Is it obvious that such problems exist?
 - No! We'll come to this later...
- Thm: $Q \in \mathcal{P}, P \lhd Q \Rightarrow P \in \mathcal{P}$
- Thm: $P \in \mathcal{NPC}, P \lhd Q \Rightarrow Q \in \mathcal{NPC}$

to Q.

• If problems $P, Q \in \mathcal{NP}$, and if an instance of P can be converted in

polynomial time to an instance of Q, then P is polynomially reducible

• This is the "not (substantially) more difficult than" relation that we

Classes and Certificates \mathcal{NP} -Complete Problems

$\mathcal{P} = \mathcal{N}\mathcal{P}$?

- We've seen lots of problems in \mathcal{P} , and we've seen some problems (today) in \mathcal{NP} .
- We know that $\mathcal{P} \subseteq \mathcal{NP}$.
- Have we seen any problems in $\mathcal{NP}\setminus \mathcal{P}?$
 - Do such problems exist?
 - No one knows for sure!
- If you can answer this, you will one million dollars!
- www.claymath.org/Millennium_Prize_Problems/P_vs_NP/
- I will also give you an A+++++++++ in the class if you write my name on the paper. :-)

The Satisfiability Problem

- $\bullet\,$ This is the first problem to be shown to be $NP\mbox{-}{\rm complete}.$
- The problem is described by
 - a finite set $N = \{1, \ldots, n\}$ (the *literals*), and
 - m pairs of subsets of N, $C_i = (C_i^+, C_i^-)$ (the *clauses*).
- An instance is feasible if the set

$$\left\{ x \in \mathbb{B}^n \mid \sum_{j \in C_i^+} x_j + \sum_{j \in C_i^-} (1 - x_j) \ge 1 \ \forall i = 1, \dots, m \right\}$$

is nonempty.

- This problem is in \mathcal{NP} . Why?
- $\bullet\,$ In 1971, Cook defined the class \mathcal{NP} and showed that satisfiability was NP-complete.

Jeff Linderoth (Lehigh University)	IE170:Lecture 32		Lecture Notes	21 / 48	Jeff Linderoth (Lehigh University)	IE170:Lecture 32		Lecture Notes	22 / 48
	Classes and Certificates	$\mathcal{NP} ext{-}Complete$ Probl	lems		CI	asses and Certificates	$\mathcal{NP} ext{-}Complete$ Proble	ms	
				LL. τ. \Λ/! Φ1ΝΛ					

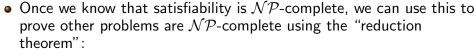
Proving \mathcal{NP} -completeness

How to Win \$1M

- Here's a hint
- Thm: If $P \cap \mathcal{NPC} \neq \emptyset \Rightarrow \mathcal{P} = \mathcal{NP}$
 - Proof: Let $Q \in \mathcal{P} \cap \mathcal{NPC}$ and take $R \in \mathcal{NP}$.
 - $\bullet \ R \lhd Q$
 - $\bullet \ Q \in \mathcal{P}, R \lhd Q \Rightarrow R \in \mathcal{P}$
 - $\mathcal{NP} \subseteq \mathcal{P} \Rightarrow \mathcal{P} = \mathcal{NP}$

QUITE ENOUGH DONE

- To prove $\mathcal{P} = \mathcal{NP}$, you only need to find a polynomial algorithm for any problem that has shown to be \mathcal{NP} -complete
 - How good are you at Minesweeper? :-)
 - http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm



 $\bullet \ P \in \mathcal{NPC}, P \lhd Q \Rightarrow Q \in \mathcal{NPC}$

Classes and Certificates \mathcal{NP} -Complete Problems

Theory versus Practice

Some "Easy" problems—Class $\mathcal P$

- In practice, it is true that most problem known to be in P are "easy" to solve.
- This is because most known polynomial time algorithms are of relatively low order.
- It seems very unlikely that $\mathcal{P} = \mathcal{NP}$
- Although all NP-complete problems are "equivalent" in theory, they are not in practice.
- TSP vs. QAP
 - TSP—Solved instances of size ≈ 25000
 - QAP—Solved instances of size ≈ 30

- \mathcal{P} is the class of problems for which there exists a polynomial algorithm.
- $\mathcal{P} \in \mathcal{NP} \cap \text{co-}\mathcal{NP}$: Why?
- Some problems in \mathcal{P}

Matching

- Given: Graph $G = (V, E), k \in \mathbb{Z}$
- Question: Does ∃ a matching M in G with |M| ≥ k. A matching is a subset of edges such that no two edges share a common endpoint). More mathy: (i, j) ∈ M ⇒ (i, k) ∉ M ∀k ≠ j.

LP

- Given: $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$.
- Question: Does $\exists x \in \mathbb{R}^n_+$ such that $Ax \leq b, c^T x \geq K$?

Assignment Problem

- Given: set $N = \{1, 2, \dots, n\}$, costs $c_{ij} \in \mathbb{Z}_+ \forall (i, j) \in (N \times N)$
- Question: Does \exists a permutation Π of N such that $\sum_{i \in N} c_{i\pi(i)} \ge Q$

Longest Path in a DAG

- Given: A directed acyclic graph G = (N, A), lengths $\ell_a \in \mathbb{Z} \ \forall a \in A$
- Question: Does \exists a path P in G such that $\sum_{a \in P} \ell_a \ge K$?

Classes and Certificates NP-Complete Problems

The Line Between $\mathcal P$ and \mathcal{NPC}

Thin Line

The line between these two classes is very thin!

- Shortest Path (with non-negative edge weights) is in \mathcal{P} .
- \bullet Longest Path (with non-negative edge weights) is in \mathcal{NPC}
- A graph G = (V, E) is Hamiltonian if and only if there is a walk in G that traverses each vertex $v \in V$ exactly once
- A graph G = (V, E) is Eulerian if and only if there is is a walk in G that traverses each edge $e \in E$ exactly once

Example: Hamiltonian Circuit

Instance: Graph G = (V, E)**Question:** Does G contain a Hamiltonian Circuit?

Example: Eulerian Circuit

Instance: Graph G = (V, E)**Question:** Does G contain a Eulerian Circuit?

- Hamiltonian Circuit $\in \mathcal{NPC}$
- Eulerian Circuit $\in \mathcal{P}$

Jeff Linderoth (Lehigh University) IE170:Lecture 32 L Classes and Certificates \mathcal{NP} -Complete Problems	Lecture Notes 29 / 48	Jeff Linderoth (Lehigh University) IE170:Lecture 32 Lecture Notes 30 / 48 Classes and Certificates \mathcal{NP} -Complete Problems					
Weird Stuff		Weird Stuff					
Chinese Postman • Given: Undirected graph $G = (V, E), w_e \in \mathbb{Z}_+ \forall e \in E, E$	$B \in \mathbb{Z}$	 Directed Chinese Postman Given: Directed Graph G = (N, A), w_a ∈ Z₊∀a ∈ A, B ∈ Z Question: Does ∃ a cycle in G traversing each arc at least once whose total weight is ≤ B? 					
• Question: Does \exists a cycle in G traversing each edge at I	east once	Directed Chinese Postman $\in \mathcal{P}$ Mixed Chinese Postman					
whose total weight is $\leq B$?							
$Chinese\;Postman\in\mathcal{P}$		• Given: Mixed Graph $G = (V, A \cup E), w_e \in \mathbb{Z}_+ \forall e \in (A \cup E), B \in \mathbb{Z}$					
		 Question: Does ∃ a cycle in G traversing each edge and each arc at least once whose total weight is ≤ B? 					
	C C C C C C C C C C C C C C C C C C C	$Mixed \ Chinese \ Postman \in \mathcal{NPC}$					

That Thin, Thin Line

 $\bullet\,$ Consider a 0-1 matrix A an integer k defining the decision problem

Classes and Certificates *NP*-Complete Problems

 $\exists \{x \in \mathbb{B}^n \mid Ax \le e, e^T x \ge k\}?$

- If we limit the number of nonzero entries in each column to 2, then this problem is known to be in \mathcal{P} .
 - What is this problem?
- If we allow the number of nonzero entries in each column to be 3, then this problem is \mathcal{NP} -complete!
- ullet If we allow at most one '1' per row, the problem is in ${\cal P}$
- If we allow two '1's per row, it is in \mathcal{NPC}

Jeff Linderoth (Lehigh University)

IE170:Lecture 32

Lecture Notes 33 / 48 Jeff Linderoth (Lehigh University)

IE170:Lecture 32

• Begin Review Sessions

Classes and Certificates *NP*-Complete Problems

Next Time!