This Time

IE170: Algorithms in Systems Engineering: Lecture 32

Jeff Linderoth
Department of Industrial and Systems Engineering Lehigh University

- A whirlwind tour of computational complexity
- You are not responsible for this material on the final, but it is stuff that I thought you might like to know.
- It is also covered in Chapter 34 of your textbook.

April 23, 2007

Computational Complexity

- The ingredients that we need to build a theory of computational complexity for problem classification are the following
(1) A class \mathcal{C} of problems to which the theory applies
(2) A (nonempty) subclass $\mathcal{E} \subseteq \mathcal{C}$ of "easy" problems
(3) A (nonempty) subclass $\mathcal{H} \subseteq \mathcal{C}$ of "hard" problems
(9) A relation \triangleleft "not more difficult than" between pairs of problems
- Our goal is just to put some definitions around this machinery
- Thm: $Q \in \mathcal{E}, P \triangleleft Q \Rightarrow P \in \mathcal{E}$
- Thm: $P \in \mathcal{H}, P \triangleleft Q \Rightarrow Q \in \mathcal{H}$

Ingredient \#1 - Problem Class \mathcal{C}

- The theory we develop applies only to decision problems
- Problems that have a "yes-no" answer.
- Opt: $\max \left\{c^{T} x \mid x \in S\right\}$
- Decision: $\exists x \in S$ such that $c^{T} x \geq k$?

Example: Hamiltonian Circuit

Instance: Graph $G=(V, E)$
Question: Does G contain a Hamiltonian Circuit?

Example: Traveling Salesperson

Instance: Graph $G=(V, E)$, Integer K
Question: Does G contain a Hamiltonian Circuit of length $\leq K$?

Ingredients \#2 and \#3

- To define "easy" and "hard", we need to make a few definitions so we can define the running time of an algorithm.
- The running time of an algorithm depends on size of the input. (Duh.)
- A time complexity function specifies, as a function of the problem size, the largest ${ }^{1}$ amount of time needed by an algorithm to solve any problem instance.
- How do we measure problem size?
- The length of the amount of information necessary to represent the problem in a reasonable encoding scheme.
- Example: TSP, $N, c_{i j}$
- Example: Knapsack: N, a_{j}, c_{j}, b
${ }^{1}$ Here is our "worst case"

Ready for (Somewhat Formal) Definitions

- Given a problem P, and algorithm A that solves P, and an instance X of problem P.
- $L(X) \equiv$ The length (in a reasonable encoding) of the instance
- $f_{A}(X) \equiv$ the number of elementary calculations required to run algorithm A on instance X
- $f_{A}^{*}(l) \equiv \max _{X}\left\{f_{A}(X): L(X)=l\right\}$ is the running time of algorithm A
- If $f_{A}^{*}(l)=O\left(l^{p}\right)$ for some positive constant integer p, A is polynomial

What is Reasonable?

- Don't be stupid (pad the input data with unnecessary information)
- Represent numbers in binary notation
- That's how computers do it anyway
- An integer $2^{n} \leq x<2^{n+1}$ can be represented by a vector $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{n}\right)$, where $x=\sum_{i=0}^{n} \delta_{i} 2^{i}$
- It requires a logarithmic number of bits to represent $x \in \mathbb{Z}$
- We always assume that numbers are rational, so they can be encoded with two integers.
- TSP on n cities with costs $c_{i j} \in \mathbb{Z}, \max _{i, j} c_{i j}=\theta$, then requires $\leq \log (n)+n^{2} \log (\theta)$ bits to represent an instance.

Jeff Linderoth (Lehigh University)
IE170:Lecture 32
ecture Notes

More Definitions

- A is strongly polynomial if $f_{A}^{*}(l)$ is bounded by a polynomial function that does not involve the data size (magnitude of numbers).
- A is weakly polynomial if it is polynomial and not strongly polynomial. The l in $O\left(l^{p}\right)$ contains terms involving $\log \theta$
- An algorithm is said to be an exponential-time algorithm if $f_{A}^{*}(l) \neq O\left(l^{p}\right)$, for any p

One Last Type of Polynomiality

- A pseudopolynomial algorithm A is one that is polynomial in the length of the data when encoded in unary.
- Unary means that we are using a one-symbol alphabet. (not binary)
- Practically, it means that A is polynomial in the parameters and the magnitude of the instance data θ - not $\log \theta$.
- Example: The Integer Knapsack Problem
- There is an $O(N b)$ algorithm for this problem, where N is the number of items and b is the size of the knapsack.
- This is not a polynomial-time algorithm
- If b is bounded by a polynomial function of n, then it is

Knapsack In More Detail

- Knapsack: N, a_{j}, c_{j}, b
- For an instance of Knapsack X, what is the length of the input $L(X)$?
- What are the numbers c_{j}, a_{j}, b ? Assume they are rational.
- So they can be expressed as the ratio of two integers.
- Assume $a_{j} \leq b$
- $\theta=\max _{j \in N} c_{j}$
- $L(X)=\log N+(2 N+2) \log b+2 N \log \theta$
- Is $N b=O(L(X))$?
- $\exists p \in \mathbb{Z}$ such that $N b \leq((2 N+2) \log b)^{p}$?
- No!
- Note if $N b$ replaced by $N \log b$, then Yes!

The problem class $\mathcal{N} \mathcal{P}$

- $\mathcal{N P} \neq$ "Non-polynomial"
- $\mathcal{N P} \equiv$ the class of decision problems that can be solved in polynomial time on a non-deterministic Turing machine.
- What the Heck!!?!?!?!?!??!?!?!??
- $\mathcal{N P} \approx$ the class of decision problems with the property that for every instance for which the answer is "yes", there is a short certificate
- The certificate is your "proof" that what you are telling me is the truth

$\mathcal{N} \mathcal{P}$: Examples

Example: Hamiltonian Circuit

Instance: Graph $G=(V, E)$
Question: Does G contain a Hamiltonian Circuit?

- You say the answer is "Yes". I say "prove it."
- You give me the a set of edges $E^{\prime} \subseteq E$. I check as follows:
(1) Does the degree of each node of $G^{\prime}=\left(V, E^{\prime}\right)=2$? If not, then return no, else go to 2 .
- This takes time $\leq O\left(|V|^{2}\right)$.
(2) Is $G^{\prime}=\left(V, E^{\prime}\right)$ connected. If so, return yes, otherwise return no.
- This takes time $O\left(\left|E^{\prime}\right|\right)$
- The checking algorithm takes $O\left(|V|^{2}+\left|E^{\prime}\right|\right)$ time, so it is polynomial. It returns yes if and only if the set of edges E^{\prime} defines a Hamiltonian Circuit in G, so Hamiltonian Circuit $\in \mathcal{N} \mathcal{P}$.

$\mathcal{N P}$: Examples

$\mathcal{N} \mathcal{P}$: Examples

Example: Complement of Hamiltonian Circuit

Instance: Graph $G=(V, E)$
Question: Does G not contain a Hamiltonian Circuit?

- You say the answer is "Yes". I say "prove it."
- Equivalently, you say that the answer to Hamiltonian Circuit on G is no.
- You give me... ?
- Careful: Will your answer suffice for all graphs G ?
- What you really are giving would be a characterization of what graphs are not Hamiltonian: G is not Hamiltonian if and only if Your Answer.
- No one knows!

Jeff Linderoth (Lehigh University)

The Class co- $\mathcal{N P}$

co- $\mathcal{N P}$, More examples

LP

$\exists x \in \mathbb{R}_{+}^{n}$ such that $A x \leq b, c^{T} x \geq K$?
(1) You say "no." I say "prove it."
(2) You give me What?
(3) Hint: (x, π) is optimal if and only if
$A x \leq b, x \geq 0, \pi^{T} A \geq c, \pi \geq 0, c^{T} x=b^{T} \pi$
(9) $\exists \pi \in \mathbb{R}^{m}$ such that $\pi^{T} A \geq c, \pi \geq 0, \pi^{T} b<K \Rightarrow \nexists x \in \mathbb{R}^{n}$ such that $A x \leq b, x \geq 0, c^{T} x \geq K$
(6) Is π a short certificate?

The Class \mathcal{P}

- \mathcal{P} is the class of problems for which there exists a polynomial algorithm.
- $\mathcal{P} \in \mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}:$ Why?
- It is a (very significant) open question as to whether $\mathcal{P}=\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N P}$.
- There are (very few) problems in $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$ but not (known) to be in \mathcal{P}.
- LP
- PRIMES
- Approximating the shortest and closest vector in a lattice to within factor of \sqrt{n}

Where are we?

- We have our class(es) of problems $\mathcal{P}, \mathcal{N} \mathcal{P}$, co- $\mathcal{N} \mathcal{P}$
- We know class of "easy" problems. (Problems in \mathcal{P})
- We need our class of "hard" problems.
- We need our relation "not (significantly) more difficult than" ($\triangleleft)$
- For this we need the concept of problem reductions.

Polynomial Reduction

- If problems $P, Q \in \mathcal{N} \mathcal{P}$, and if an instance of P can be converted in polynomial time to an instance of Q, then P is polynomially reducible to Q.
- This is the "not (substantially) more difficult than" relation that we want to use.
- We will write this as $P \triangleleft Q$

The "Hard Problems" - Class NPC

- We want to ask the question-What are the hardest problems in $\mathcal{N P}$?
- We'll call this class of problems $\mathcal{N} \mathcal{P C}$, " $\mathcal{N} \mathcal{P}$-Complete".
- Using the definitions we have made, we would like to say that if $P \in \mathcal{N P \mathcal { C }}$, then $Q \in \mathcal{N P} \Rightarrow Q \triangleleft P$
- If $P \in \mathcal{N} \mathcal{P}$ and we can convert in polynomial time every other problem $Q \in \mathcal{N} \mathcal{P}$ to P, then P is in this sense the "hardest" problem in $\mathcal{N P}$. $P \in \mathcal{N P C}$
- Is it obvious that such problems exist?
- No! - We'll come to this later...
- Thm: $Q \in \mathcal{P}, P \triangleleft Q \Rightarrow P \in \mathcal{P}$
- Thm: $P \in \mathcal{N} \mathcal{P C}, P \triangleleft Q \Rightarrow Q \in \mathcal{N P C}$
$\mathcal{P}=\mathcal{N} \mathcal{P} ?$
- We've seen lots of problems in \mathcal{P}, and we've seen some problems (today) in $\mathcal{N P}$.
- We know that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$.
- Have we seen any problems in $\mathcal{N} \mathcal{P} \backslash \mathcal{P}$?
- Do such problems exist?
- No one knows for sure!
- If you can answer this, you will one million dollars!
- www.claymath.org/Millennium_Prize_Problems/P_vs_NP/
- I will also give you an $\mathrm{A}+++++++++++$ in the class if you write my name on the paper. :-)

The Satisfiability Problem

- This is the first problem to be shown to be $N P$-complete.
- The problem is described by
- a finite set $N=\{1, \ldots, n\}$ (the literals), and
- m pairs of subsets of $N, C_{i}=\left(C_{i}^{+}, C_{i}^{-}\right)$(the clauses).
- An instance is feasible if the set

$$
\left\{x \in \mathbb{B}^{n} \mid \sum_{j \in C_{i}^{+}} x_{j}+\sum_{j \in C_{i}^{-}}\left(1-x_{j}\right) \geq 1 \forall i=1, \ldots, m\right\}
$$

is nonempty.

- This problem is in $\mathcal{N P}$. Why?
- In 1971, Cook defined the class $\mathcal{N P}$ and showed that satisfiability was NP-complete.

Proving $\mathcal{N} \mathcal{P}$-completeness

- Once we know that satisfiability is $\mathcal{N} \mathcal{P}$-complete, we can use this to prove other problems are $\mathcal{N} \mathcal{P}$-complete using the "reduction theorem":
- $P \in \mathcal{N P C}, P \triangleleft Q \Rightarrow Q \in \mathcal{N P C}$

How to Win \$1M

- Here's a hint
- Thm: If $P \cap \mathcal{N} \mathcal{P C} \neq \emptyset \Rightarrow \mathcal{P}=\mathcal{N} \mathcal{P}$
- Proof: Let $Q \in \mathcal{P} \cap \mathcal{N P C}$ and take $R \in \mathcal{N P}$.
- $R \triangleleft Q$
- $Q \in \mathcal{P}, R \triangleleft Q \Rightarrow R \in \mathcal{P}$
- $\mathcal{N} \mathcal{P} \subseteq \mathcal{P} \Rightarrow \mathcal{P}=\mathcal{N} \mathcal{P}$

QUITE ENOUGH DONE

- To prove $\mathcal{P}=\mathcal{N} \mathcal{P}$, you only need to find a polynomial algorithm for any problem that has shown to be $\mathcal{N} \mathcal{P}$-complete
- How good are you at Minesweeper? :-)
- http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm
- In practice, it is true that most problem known to be in \mathcal{P} are "easy" to solve.
- This is because most known polynomial time algorithms are of relatively low order.
- It seems very unlikely that $\mathcal{P}=\mathcal{N} \mathcal{P}$
- Although all NP-complete problems are "equivalent" in theory, they are not in practice.
- TSP vs. QAP
- TSP—Solved instances of size ≈ 25000
- QAP-Solved instances of size ≈ 30

Jeff Linderoth (Lehigh University)

Assignment Problem

- Given: set $N=\{1,2, \ldots, n\}$, costs $c_{i j} \in \mathbb{Z}_{+} \forall(i, j) \in(N \times N)$
- Question: Does \exists a permutation Π of N such that $\sum_{i \in N} c_{i \pi(i)} \geq Q$

More Problems in \mathcal{P}

- Given: $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}$.
- Question: Does $\exists x \in \mathbb{R}_{+}^{n}$ such that $A x \leq b, c^{T} x \geq K$?
- \mathcal{P} is the class of problems for which there exists a polynomial algorithm.
- $\mathcal{P} \in \mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}:$ Why?
- Some problems in \mathcal{P}

Matching

- Given: Graph $G=(V, E), k \in \mathbb{Z}$
- Question: Does \exists a matching M in G with $|M| \geq k$. A matching is a subset of edges such that no two edges share a common endpoint). More mathy: $(i, j) \in M \Rightarrow(i, k) \notin M \forall k \neq j$.

Jeff Linderoth (Lenigh University) Classes and Certificates $\mathcal{N P}$-Complete Problems
More Problems in \mathcal{P}

Longest Path in a DAG

- Given: A directed acyclic graph $G=(N, A)$, lengths $\ell_{a} \in \mathbb{Z} \forall a \in A$
- Question: Does \exists a path P in G such that $\sum_{a \in P} \ell_{a} \geq K$?

The Line Between \mathcal{P} and $\mathcal{N} \mathcal{P C}$

The line between these two classes is very thin!

- Shortest Path (with non-negative edge weights) is in \mathcal{P}.
- Longest Path (with non-negative edge weights) is in $\mathcal{N P} \mathcal{C}$
- A graph $G=(V, E)$ is Hamiltonian if and only if there is a walk in G that traverses each vertex $v \in V$ exactly once
- A graph $G=(V, E)$ is Eulerian if and only if there is is a walk in G that traverses each edge $e \in E$ exactly once

Thin Line

- Hamiltonian Circuit $\in \mathcal{N} \mathcal{P C}$
- Eulerian Circuit $\in \mathcal{P}$

```
Example: Hamiltonian Circuit
```

Example: Hamiltonian Circuit
Instance: Graph G=(V,E)
Instance: Graph G=(V,E)
Question: Does G}\mathrm{ contain a Hamiltonian Circuit?

```
Question: Does G}\mathrm{ contain a Hamiltonian Circuit?
```

```
Example: Eulerian Circuit
```

Example: Eulerian Circuit
Instance: Graph G=(V,E)
Instance: Graph G=(V,E)
Question: Does G contain a Eulerian Circuit?

```
Question: Does G contain a Eulerian Circuit?
```


Weird Stuff

Chinese Postman

- Given: Undirected graph $G=(V, E), w_{e} \in \mathbb{Z}_{+} \forall e \in E, B \in \mathbb{Z}$
- Question: Does \exists a cycle in G traversing each edge at least once whose total weight is $\leq B$?

Chinese Postman $\in \mathcal{P}$

Weird Stuff

Directed Chinese Postman

- Given: Directed Graph $G=(N, A), w_{a} \in \mathbb{Z}_{+} \forall a \in A, B \in \mathbb{Z}$
- Question: Does \exists a cycle in G traversing each arc at least once whose total weight is $\leq B$?

Directed Chinese Postman $\in \mathcal{P}$

Mixed Chinese Postman

- Given: Mixed Graph $G=(V, A \cup E), w_{e} \in \mathbb{Z}_{+} \forall e \in(A \cup E), B \in \mathbb{Z}$
- Question: Does \exists a cycle in G traversing each edge and each arc at least once whose total weight is $\leq B$?

Mixed Chinese Postman $\in \mathcal{N} \mathcal{P C}$

That Thin, Thin Line
Next Time!

- Consider a 0-1 matrix A an integer k defining the decision problem

$$
\exists\left\{x \in \mathbb{B}^{n} \mid A x \leq e, e^{T} x \geq k\right\} ?
$$

- If we limit the number of nonzero entries in each column to 2 , then this problem is known to be in \mathcal{P}.
- What is this problem?
- If we allow the number of nonzero entries in each column to be 3 , then this problem is $\mathcal{N} \mathcal{P}$-complete!
- If we allow at most one ' 1 ' per row, the problem is in \mathcal{P}
- If we allow two ' 1 's per row, it is in $\mathcal{N P C}$
- Begin Review Sessions

