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This Time

A whirlwind tour of computational complexity

You are not responsible for this material on the final, but it is stuff
that I thought you might like to know.

It is also covered in Chapter 34 of your textbook.
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Ingredients of Complexity

Computational Complexity

The ingredients that we need to build a theory of computational
complexity for problem classification are the following

1 A class C of problems to which the theory applies
2 A (nonempty) subclass E ⊆ C of “easy” problems
3 A (nonempty) subclass H ⊆ C of “hard” problems
4 A relation C “not more difficult than” between pairs of problems

Our goal is just to put some definitions around this machinery

Thm: Q ∈ E , P C Q ⇒ P ∈ E
Thm: P ∈ H, P C Q ⇒ Q ∈ H
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Ingredient #1: Problems Decision Problems

Ingredient #1 — Problem Class C

The theory we develop applies only to decision problems

Problems that have a “yes-no” answer.

Opt: max{cT x | x ∈ S}
Decision: ∃x ∈ S such that cT x ≥ k?

Example: Hamiltonian Circuit

Instance: Graph G = (V,E)
Question: Does G contain a Hamiltonian Circuit?

Example: Traveling Salesperson

Instance: Graph G = (V,E), Integer K
Question: Does G contain a Hamiltonian Circuit of length ≤ K?
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Ingredient #1: Problems Decision Problems

Ingredients #2 and #3

To define “easy” and “hard”, we need to make a few definitions so we
can define the running time of an algorithm.

The running time of an algorithm depends on size of the input.
(Duh.)

A time complexity function specifies, as a function of the problem
size, the largest1 amount of time needed by an algorithm to solve any
problem instance.

How do we measure problem size?

The length of the amount of information necessary to represent the
problem in a reasonable encoding scheme.
Example: TSP, N, cij

Example: Knapsack: N, aj , cj , b

1Here is our “worst case”
Jeff Linderoth (Lehigh University) IE170:Lecture 32 Lecture Notes 5 / 48

Ingredient #1: Problems Decision Problems

What is Reasonable?

Don’t be stupid (pad the input data with unnecessary information)

Represent numbers in binary notation.

That’s how computers do it anyway

An integer 2n ≤ x < 2n+1 can be represented by a vector
(δ0, δ1, . . . , δn), where x =

∑n
i=0 δi2i

It requires a logarithmic number of bits to represent x ∈ Z
We always assume that numbers are rational, so they can be encoded
with two integers.

TSP on n cities with costs cij ∈ Z, maxi,j cij = θ, then requires
≤ log(n) + n2 log(θ) bits to represent an instance.
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Ingredient #1: Problems Polynomiality

Ready for (Somewhat Formal) Definitions

Given a problem P , and algorithm A that solves P , and an instance
X of problem P .

L(X) ≡ The length (in a reasonable encoding) of the instance
fA(X) ≡ the number of elementary calculations required to run
algorithm A on instance X.
f∗A(l) ≡ maxX{fA(X) : L(X) = l} is the running time of algorithm A

If f∗A(l) = O(lp) for some positive constant integer p, A is polynomial
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Ingredient #1: Problems Polynomiality

More Definitions

A is strongly polynomial if f∗A(l) is bounded by a polynomial function
that does not involve the data size (magnitude of numbers).

A is weakly polynomial if it is polynomial and not strongly
polynomial. The l in O(lp) contains terms involving log θ

An algorithm is said to be an exponential-time algorithm if
f∗A(l) 6= O(lp), for any p
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Ingredient #1: Problems Polynomiality

One Last Type of Polynomiality

A pseudopolynomial algorithm A is one that is polynomial in the
length of the data when encoded in unary.

Unary means that we are using a one-symbol alphabet. (not binary)

Practically, it means that A is polynomial in the parameters and the
magnitude of the instance data θ—not log θ.

Example: The Integer Knapsack Problem

There is an O(Nb) algorithm for this problem, where N is the number
of items and b is the size of the knapsack.
This is not a polynomial-time algorithm
If b is bounded by a polynomial function of n, then it is
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Ingredient #1: Problems Polynomiality

Knapsack In More Detail

Knapsack: N, aj , cj , b

For an instance of Knapsack X, what is the length of the input L(X)?

What are the numbers cj , aj , b? Assume they are rational.

So they can be expressed as the ratio of two integers.
Assume aj ≤ b
θ = maxj∈N cj

L(X) = log N + (2N + 2) log b + 2N log θ

Is Nb = O(L(X))?

∃p ∈ Z such that Nb ≤ ((2N + 2) log b)p?
No!
Note if Nb replaced by N log b, then Yes!
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Classes and Certificates NP

The problem class NP

NP 6= “Non-polynomial”

NP ≡ the class of decision problems that can be solved in polynomial time
on a non-deterministic Turing machine.

What the Heck!!?!?!?!?!?!?!?!?

NP ≈ the class of decision problems with the property that for every
instance for which the answer is “yes”, there is a short certificate

The certificate is your “proof” that what you are telling me is the truth

Jeff Linderoth (Lehigh University) IE170:Lecture 32 Lecture Notes 11 / 48

Classes and Certificates NP

NP : Examples

Example: Hamiltonian Circuit

Instance: Graph G = (V,E)
Question: Does G contain a Hamiltonian Circuit?

You say the answer is “Yes”. I say “prove it.”

You give me the a set of edges E′ ⊆ E. I check as follows:
1 Does the degree of each node of G′ = (V,E′) = 2? If not, then return

no, else go to 2.

This takes time ≤ O(|V |2).
2 Is G′ = (V,E′) connected. If so, return yes, otherwise return no.

This takes time O(|E′|)

The checking algorithm takes O(|V |2 + |E′|) time, so it is
polynomial. It returns yes if and only if the set of edges E′ defines a
Hamiltonian Circuit in G, so Hamiltonian Circuit ∈ NP.
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Classes and Certificates NP

NP : Examples

Example: Complement of Hamiltonian Circuit

Instance: Graph G = (V,E)
Question: Does G not contain a Hamiltonian Circuit?

You say the answer is “Yes”. I say “prove it.”

Equivalently, you say that the answer to Hamiltonian Circuit on G is
no.

You give me... ?

Careful: Will your answer suffice for all graphs G?
What you really are giving would be a characterization of what graphs
are not Hamiltonian: G is not Hamiltonian if and only if Your Answer.

No one knows!
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Classes and Certificates NP

NP : Examples

Example: 0-1IP

∃x ∈ Bn such that Ax ≤ b, cT x ≥ K?

1 You say the answer is “Yes”. I say “prove it.”

2 You give me the vector x: This is a “short certificate”

3 The 0-1 vector x can be checked such that Ax ≤ b, cT x ≥ K?
4 If A ∈ Rm×n, this takes time O(mn2)
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Classes and Certificates co-NP

The Class co-NP

Example: 0-1IP

6 ∃x ∈ Bn such that Ax ≤ b, cT x ≥ K?

1 You say “no.” I say “prove it.”

2 You give me what? Is this a short (polynomial length) certificate?
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Classes and Certificates co-NP

co-NP , More examples

LP

∃x ∈ Rn
+ such that Ax ≤ b, cT x ≥ K?

1 You say “no.” I say “prove it.”

2 You give me What?

3 Hint: (x, π) is optimal if and only if
Ax ≤ b, x ≥ 0, πT A ≥ c, π ≥ 0, cT x = bT π

4 ∃π ∈ Rm such that πT A ≥ c, π ≥ 0, πT b < K ⇒6 ∃x ∈ Rn such that
Ax ≤ b, x ≥ 0, cT x ≥ K

5 Is π a short certificate?
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Classes and Certificates P

The Class P

P is the class of problems for which there exists a polynomial
algorithm.

P ∈ NP ∩ co-NP: Why?

NP co−NP

P

It is a (very significant) open question
as to whether P = NP ∩ co-NP.

There are (very few) problems in
NP ∩ co-NP but not (known) to be in
P.

LP
PRIMES
Approximating the shortest and
closest vector in a lattice to within a
factor of

√
n
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Classes and Certificates P

Where are we?

We have our class(es) of problems P,NP, co-NP
We know class of “easy” problems. (Problems in P)

We need our class of “hard” problems.

We need our relation “not (significantly) more difficult than” (C)
For this we need the concept of problem reductions.
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Classes and Certificates Polynomial Reductions

Polynomial Reduction

If problems P,Q ∈ NP, and if an instance of P can be converted in
polynomial time to an instance of Q, then P is polynomially reducible
to Q.

This is the “not (substantially) more difficult than” relation that we
want to use.
We will write this as P C Q
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Classes and Certificates NP-Complete Problems

The “Hard Problems”—Class NPC

We want to ask the question—What are the hardest problems in
NP?

We’ll call this class of problems NPC, “NP-Complete”.

Using the definitions we have made, we would like to say that if
P ∈ NPC, then Q ∈ NP ⇒ Q C P

If P ∈ NP and we can convert in polynomial time every other problem
Q ∈ NP to P , then P is in this sense the “hardest” problem in NP.
P ∈ NPC

Is it obvious that such problems exist?

No! – We’ll come to this later...

Thm: Q ∈ P, P C Q ⇒ P ∈ P
Thm: P ∈ NPC, P C Q ⇒ Q ∈ NPC
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Classes and Certificates NP-Complete Problems

P = NP?

We’ve seen lots of problems in P, and we’ve seen some problems
(today) in NP.

We know that P ⊆ NP.

Have we seen any problems in NP \ P?

Do such problems exist?
No one knows for sure!

If you can answer this, you will one million dollars!

www.claymath.org/Millennium Prize Problems/P vs NP/

I will also give you an A+++++++++++ in the class if you write
my name on the paper. :-)
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Classes and Certificates NP-Complete Problems

The Satisfiability Problem

This is the first problem to be shown to be NP -complete.

The problem is described by

a finite set N = {1, . . . , n} (the literals), and
m pairs of subsets of N , Ci = (C+

i , C−
i ) (the clauses).

An instance is feasible if the setx ∈ Bn |
∑

j∈C+
i

xj +
∑

j∈C−i

(1− xj) ≥ 1 ∀i = 1, . . . ,m


is nonempty.

This problem is in NP. Why?

In 1971, Cook defined the class NP and showed that satisfiability was
NP-complete.
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Classes and Certificates NP-Complete Problems

Proving NP-completeness

Once we know that satisfiability is NP-complete, we can use this to
prove other problems are NP-complete using the “reduction
theorem”:

P ∈ NPC, P C Q ⇒ Q ∈ NPC
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Classes and Certificates NP-Complete Problems

How to Win $1M

Here’s a hint

Thm: If P ∩NPC 6= ∅ ⇒ P = NP
Proof: Let Q ∈ P ∩NPC and take R ∈ NP.
R C Q
Q ∈ P, R C Q ⇒ R ∈ P
NP ⊆ P ⇒ P = NP

quite enough done

To prove P = NP, you only need to find a polynomial algorithm for
any problem that has shown to be NP-complete

How good are you at Minesweeper? :-)

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm
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Classes and Certificates NP-Complete Problems

Theory versus Practice

In practice, it is true that most problem known to be in P are “easy”
to solve.

This is because most known polynomial time algorithms are of
relatively low order.

It seems very unlikely that P = NP
Although all NP-complete problems are “equivalent” in theory, they
are not in practice.

TSP vs. QAP

TSP—Solved instances of size ≈ 25000
QAP—Solved instances of size ≈ 30
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Classes and Certificates NP-Complete Problems

Some “Easy” problems—Class P

P is the class of problems for which there exists a polynomial
algorithm.

P ∈ NP ∩ co-NP: Why?

Some problems in P

Matching

Given: Graph G = (V,E), k ∈ Z
Question: Does ∃ a matching M in G with |M | ≥ k. A matching
is a subset of edges such that no two edges share a common
endpoint). More mathy: (i, j) ∈ M ⇒ (i, k) 6∈ M ∀k 6= j.
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Classes and Certificates NP-Complete Problems

More Problems in P

LP

Given: A ∈ Qm×n, b ∈ Qm, c ∈ Qn.

Question: Does ∃x ∈ Rn
+ such that Ax ≤ b, cT x ≥ K?

Assignment Problem

Given: set N = {1, 2, . . . , n}, costs cij ∈ Z+∀(i, j) ∈ (N ×N)
Question: Does ∃ a permutation Π of N such that∑

i∈N ciπ(i) ≥ Q
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Classes and Certificates NP-Complete Problems

More Problems in P

Longest Path in a DAG

Given: A directed acyclic graph G = (N,A), lengths
`a ∈ Z ∀a ∈ A

Question: Does ∃ a path P in G such that
∑

a∈P `a ≥ K?
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Classes and Certificates NP-Complete Problems

The Line Between P and NPC

The line between these two classes is very thin!

Shortest Path (with non-negative edge weights) is in P.

Longest Path (with non-negative edge weights) is in NPC

A graph G = (V,E) is Hamiltonian if and only if there is a walk in G
that traverses each vertex v ∈ V exactly once

A graph G = (V,E) is Eulerian if and only if there is is a walk in G
that traverses each edge e ∈ E exactly once
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Classes and Certificates NP-Complete Problems

Thin Line

Example: Hamiltonian Circuit

Instance: Graph G = (V,E)
Question: Does G contain a Hamiltonian Circuit?

Example: Eulerian Circuit

Instance: Graph G = (V,E)
Question: Does G contain a Eulerian Circuit?

Hamiltonian Circuit ∈ NPC
Eulerian Circuit ∈ P
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Classes and Certificates NP-Complete Problems

Weird Stuff

Chinese Postman

Given: Undirected graph G = (V,E), we ∈ Z+∀e ∈ E,B ∈ Z
Question: Does ∃ a cycle in G traversing each edge at least once
whose total weight is ≤ B?

Chinese Postman ∈ P
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Classes and Certificates NP-Complete Problems

Weird Stuff

Directed Chinese Postman

Given: Directed Graph G = (N,A), wa ∈ Z+∀a ∈ A,B ∈ Z
Question: Does ∃ a cycle in G traversing each arc at least once
whose total weight is ≤ B?

Directed Chinese Postman ∈ P
Mixed Chinese Postman

Given: Mixed Graph G = (V,A∪E), we ∈ Z+∀e ∈ (A∪E), B ∈ Z
Question: Does ∃ a cycle in G traversing each edge and each arc
at least once whose total weight is ≤ B?

Mixed Chinese Postman ∈ NPC

Jeff Linderoth (Lehigh University) IE170:Lecture 32 Lecture Notes 32 / 48



Classes and Certificates NP-Complete Problems

That Thin, Thin Line

Consider a 0-1 matrix A an integer k defining the decision problem

∃ {x ∈ Bn |Ax ≤ e, eT x ≥ k}?

If we limit the number of nonzero entries in each column to 2, then
this problem is known to be in P.

What is this problem?

If we allow the number of nonzero entries in each column to be 3,
then this problem is NP-complete!

If we allow at most one ’1’ per row, the problem is in P
If we allow two ’1’s per row, it is in NPC
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Classes and Certificates NP-Complete Problems

Next Time!

Begin Review Sessions
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