
IE170: Algorithms in Systems Engineering: Lecture 33

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

April 25, 2007

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 1 / 34

What We’ve Learned – Part One

1 Summation Formulae, Induction and Bounding

2 How to compare functions: o, ω, O, Ω,Θ
3 How to count the running time of algorithms

4 How to solve recurrences that occur when we do (3)
5 Data Structures

Hash
Binary Search Trees
Heaps

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 2 / 34

What We’ve Learned – Part Deux

Dynamic Programming (15.[1,3])

Greedy Algorithms (16.[1,2])

Graphs and Search (22.*)

Spanning Trees (23.*)

(Single Source) Shortest Paths (24.[1,2,3])

(All Pairs) Shortest Paths (25.[1,2])

Max Flow (26.[1,2,3])

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 3 / 34

Stuff To Know: EVERYTHING!

DP and Greedy

Develop (and potentially solve small) problems via DP

Activity Selection (or related problems): Greedy Works

Graphs

BFS, DFS, and Analysis.

Classifying edges in directed and undirected graphs

Topological Sorting

Finding Strongly Connected Components

Spanning Trees

Kruskal’s Algorithm (and analysis)

Prim’s Algorithm (and analysis)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 4 / 34

More Stuff To Know...

Single Source Shortest Paths

Distance Labels and Relax

Path Relaxation Property

Bellman-Ford Algorithm

How to do it
When (Why?) it works
Analysis

SSSP Dag

How to do it
When (Why?) it works
Analysis

Dijkstra’s Algorithm

How to do it
When (Why?) it works
Analysis

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 5 / 34

Even More Stuff To Know...

All Pairs Shortest Paths

Analogue to Matrix Multiplication

Floyd-Warshall

How to do it?
When (Why?) it works?
Analysis

Flows

What is a flow?

What is a cut?

What is MFMC Theorem?

How to create residual graph Gf?

How to do Augmenting Paths algorithm (Ford Fulkerson/Edmonds
Karp)

Analysis

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 6 / 34

What We’ve Learned, Part Trois

Matrix Review.

Linear (in)dependence, positive definiteness, singularity, range,
null-space, etc.

Matrix manipulation: Matrix Multiplication

Solving Triangular Systems

Cholesky Factorization (Least Squares)

Gaussian Elimination

Relationship to LU-factorization

PA = LU

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 7 / 34

O, Ω, Θ definitions

Θ(g) = {f : ∃ c1, c2, n0 > 0 such that
c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}

Ω(g) = {f | ∃ constants c, n0 > 0 s.t. 0 ≤ cg(n) ≤ f(n) ∀n ≥ n0}

O(g) = {f | ∃ constants c, n0 > 0 s.t. f(n) ≤ cg(n) ∀n ≥ n0}

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 8 / 34

o, ω Notation

f ∈ o(g)⇔ lim
n→∞

f(n)
g(n)

= 0

f ∈ ω(g)⇔ g ∈ o(f)⇔ lim
n→∞

f(n)
g(n)

=∞

f ∈ Θ(g)⇔ lim
n→∞

f(n)
g(n)

= c

f ∈ o(g)⇒ f ∈ O(g) \Θ(g).
f ∈ ω(g)⇒ f ∈ O(g) \Θ(g).
f ∈ Θ(g)⇔ g ∈ Θ(f)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 9 / 34

Remember This!

The Upshot!

f ∈ O(g) is like “f ≤ g,”

f ∈ Ω(g) is like “f ≥ g,”

f ∈ o(g) is like “f < g,”

f ∈ ω(g) is like “f > g,” and

f ∈ Θ(g) is like “f = g.”

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 10 / 34

Functions

Polynomials f of degree k are in Θ(nk).
Exponential functions always grow faster than polynomials

Polylogarithmic functions always grow more slowly than polynomials.

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 11 / 34

Count ’em Up

You should be able to look at a short code module, and write down
how many times each line is done.

Like the InsertionSort, MergeSort, and Towers of Hanoi examples in
class.

If the algorithm is recursive, you should be able to look at the
recurrence and compute its running time

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 12 / 34

Analyzing Recurrences

Deep Thoughts

To understand recursion, we must first understand recursion

General methods for analyzing recurrences

Substitution
Master Theorem

When we analyze a recurrence, we may not get or need an exact
answer, only an asymptotic one

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 13 / 34

The Master Theorem

Most recurrences that we will be interested in are of the form

T (n) =

{
Θ(1) n = 1
aT (n/b) + f(n) n > 1

The Master Theorem tells us how to analyze recurrences of this form.

If f ∈ O(nlogb a−ε), for some constant ε > 0, then T ∈ Θ(nlogb a).
If f ∈ Θ(nlogb a), then T ∈ Θ(nlogb a lg n).
If f ∈ Ω(nlogb a+ε), for some constant ε > 0, and if af(n/b) ≤ cf(n)
for some constant c < 1 and n > n0, then T ∈ Θ(f).

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 14 / 34

More on Hash

In a hash table the number of keys stored is small relative to the
number of possible keys

A hash table is an array. Given a key k, we don’t use k as the index
into the array – rather, we have a hash function h, and we use h(k)
as an index into the array.

Given a “universe” of keys K.

Think of K as all the words in a dictionary, for example

h : K → {0, 1, . . . m− 1}, so that h(k) gets mapped to an integer
between 0 and m− 1 for every k ∈ K

We say that k hashes to h(k)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 15 / 34

Storing Binary Trees

Array

The root is stored in position 0.

The children of the node in position i are stored in positions 2i + 1
and 2i + 2.

This determines a unique storage location for every node in the
tree and makes it easy to find a node’s parent and children.

Using an array, the basic operations can be performed very
efficiently.

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 16 / 34

Binary Search Tree

A binary search tree is a data structrue that is conceptualized as a
binary tree, but has one additional property:

Binary Search Tree Property

If y is in the left subtree of x, then k(y) ≤ k(x)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 17 / 34

Short Is Beautiful

search() takes O(h)
minimum(), maximum() also take O(h)
Slightly less obvious is that insert(), delete() also take O(h)
Thus we would like to keep out binary search trees “short” (h is
small).

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 18 / 34

Sorted

We saw in the lab that the Java Tree Set allowed you to iterate
through the list in sorted order. How long does it take to do this?

inorder-tree-walk(x)
1 if x 6= nil
2 then inorder-tree-walk(`(x))
3 print k(x)
4 inorder-tree-walk(r(x))

What is running time of this algorithm?

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 19 / 34

Operations

successor(x)

How would I know “next biggest” element?

If right subtree is not empty: minimum(r(x))
If right subtree is empty: Walk up tree until you make the first
“right” move

insert(x)

Just walk down the tree and put it in. It will go “at the bottom”

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 20 / 34

delete()

If 0 or 1 child, deletion is fairly easy

If 2 children, deletion is made easier by the following fact:

Binary Search Tree Property

If a node has 2 children, then

its successor will not have a left child
its predecessor will not have a right child

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 21 / 34

Heaps

Heaps are a bit like binary search trees, however, they enforce a
different property

Heap Property: Children are Horrible!

In a max-heap, the key of the parent node is always at least as big
as its children:

k(p(x)) ≥ k(x) ∀x 6= root

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 22 / 34

Heapify

heapify(x)
1 Find largest of k(x), k(`(x)), k(r(x))
2 If k(x) is largest, you are done

3 Swap x with largest node, and call heapify() on the new subtree

⇒ heapify a node in O(lg n)
Alternatively, heapify node of height h is O(h)
Building a heap out of an array of size n takes O(n)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 23 / 34

Operations on a Heap

The node with the highest key is always the root.

To delete a record

Exchange its record with that of a leaf.
Delete the leaf.
Call heapify().

To add a record

Create a new leaf.
Exchange the new record with that of the parent node if it has a higher
key.
This is like insertion sort – just move it up the path...
Continue to do this until all nodes have the heap property.
Note that we can change the key of a node in a similar fashion.

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 24 / 34

Time for Heap Operations

Create O(n)
maximum Θ(1)
heapify O(lg n), or O(h)

extract-max O(lg n)
heap-increase-key O(lg n)

insert O(lg n)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 25 / 34

Heap Sort

Suppose the list of items to be sorted are in an array of size n

The heap sort algorithm is as follows.
1 Put the array in heap order as described above.
2 In the ith iteration, exchange the item in position 0 with the item in

position n− i and call heapify().

What is the running time? Θ(n lg n)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 26 / 34

Dynamic Programming

Dynamic Programming in a Nutshell

1 Characterize the structure of an optimal solution

2 Recursively define the value of an optimal solution

3 Compute the value of an optimal solution “from the bottum up”

4 Construct optimal solution (if required)

Examples

Assembly Line Balancing

Lot Sizing

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 27 / 34

Assembly Line Balancing

Let fi(j) be the fastest time to get through
Sij ∀i = 1, 2 ∀j = 1, 2, . . . n

f∗ = min(f1(n) + x1, f2(n) + x2)
f1(1) = e1 + a11

f2(1) = e2 + a21

f1(j) = min(f1(j − 1) + a1j , f2(j − 1) + t2,j−1 + a1j)
f2(j) = min(f2(j − 1) + a2j , f1(j − 1) + t1,j−1 + a2j)

Lot Sizing

Let ft(s): be the minimum cost of meeting demands from
t, t + 1, . . . T (t until the end) if s units are in inventory at the
beginning of period t

ft(s) = min
x∈0,1,2,...

{ct(x) + ht(s + x− dt) + ft+1(s + x− dt)}.

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 28 / 34

Greedy

Greedy is not always optimal!

But it sometimes works:

Activity Selection

Let Sij ⊆ A be the set of activities that start after activity i needs
to finish and before activity j needs to start:

Sij
def= {k ∈ S | fi ≤ sk, fk ≤ sj}

Let’s assume that we have sorted the activities such that

f1 ≤ f2 ≤ · · · ≤ fn

Schedule jobs in S0,n+1

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 29 / 34

cij be the size of a maximum-sized subset of mutually compatible
jobs in Sij .

If Sij = ∅, then cij = 0
If Sij 6= ∅, then cij = cik + 1 + ckj for some k ∈ Sij . We pick the
k ∈ Sij that maximizes the number of jobs:

cij =
{

0 if Sij = ∅
maxk∈Sij

cik + ckj + 1 if Sij 6= ∅

Note we need only check i < k < j

To Solve Sij

1 Choose m ∈ Sij with the earliest finish time. The Greedy Choice

2 Then solve problem on jobs Smj

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 30 / 34

Graphs!

Adjacency List, Adjacency Matrix

Breadth First Search

Depth First Search

BFS

Input: Graph G = (V,E), source node s ∈ V

Output: d(v), distance (smallest # of edges) from s to v ∀v ∈ V

Output: π(v), predecessor of v on the shortest path from s to v

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 31 / 34

BFS

BFS(V,E, s)
1 for each u in V \ {s}
2 do d(u)←∞
3 π(u)← nil
4 d[s]← 0
5 Q← ∅
6 add(Q, s)
7 while Q 6= ∅
8 do u← poll(Q)
9 for each v in Adj[u]

10 do if d[v] =∞
11 then d[v]← d[u] + 1
12 π[v] = u
13 add(Q, v)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 32 / 34

DFS

DFS

Input: Graph G = (V,E)
Output: Two timestamps for each node d(v), f(v),
Output: π(v), predecessor of v

not on shortest path necessarily

dfs(V,E)
1 for each u in V
2 do color(u)← green
3 π(u)← nil
4 time← 0
5 for each u in V
6 do if color[u] = green
7 then dfs-visit(u)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 33 / 34

DFS (Visit Node—Recursive)

dfs-visit(u)
1 color(u)← yellow
2 d[u]← time++

3 for each v in Adj[u]
4 do if color[v] = green
5 then π[v]← u
6 dfs-visit(v)
7
8 color(u)← red
9 f [u] = time++

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 34 / 34

Classifying Edges in the DFS Tree

Given a DFS Tree Gπ, there are four type of edges (u, v)

1 Tree Edges: Edges in Eπ. These are found by exploring (u, v) in the
DFS procedure

2 Back Edges: Connect u to an ancestor v in a DFS tree

3 Forward Edges: Connect u to a descendent v in a DFS tree

4 Cross Edges: All other edges. They can be edges in the same DFS
tree, or can cross trees in the DFS forest Gπ

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 35 / 34

Modifying DFS to Classify Edges

DFS can be modified to classify edges as it encounters them...

Classify e = (u, v) based on the color of v when e is first explored...

green: Indicates Tree Edge

yellow: Indicates Back Edge

red: Indicates Forward or Cross Edge

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 36 / 34

Stuff You Can Do with DFS

Topological Sort: The Whole Algorithm

1 DFS search the graph

2 List vertices in order of decreasing finishing time

Strongly Connected Components

1 Call DFS(G) to topologically sort G

2 Compute GT

3 Call DFS(GT) but consider vertices in topologically sorteded order
(from G)

4 Vertices in each tree of depth-first forest for SCC

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 37 / 34

Spanning Tree

Kruskal’s Algorithm

1 Start with each vertex being its own component

2 Merge two components into one by choosing the light edge that
connects them

3 Scans the set of edges in increasing order of weight

Prim’s Algorithm

Builds one tree, so A is always a tree

Let VA be the set of vertices on which A is incident

Start from an arbitrary root r

At each step find a light edge crossing the cut (VA, V \ VA)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 38 / 34

Kruskal’s Algorithm

kruskal(V,E, w)
1 A← ∅
2 for each v in V
3 do make-set(v)
4 sort(E,w)
5 for each (u, v) in (sorted) E
6 do if Find-Set(u) 6= Find-Set(v)
7 then A← A ∪ {(u, v)}
8 Union(u, v)return A

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 39 / 34

Pseudocode for Prim

Prim(V,E, w, r)
1 Q← ∅
2 for each u ∈ V
3 do key[u]←∞
4 π[u]← nilInsert(Q, u)
5 key[r] = 0
6 while Q 6= ∅
7 do u← Extract-Min(Q)
8 for each v ∈ Adj[u]
9 do if v ∈ Q and wuv < key[v]

10 then π[v]← u
11 key[v] = wuv

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 40 / 34

Shortest Paths

(Single Source) shortest-path algorithms produce a label:
d[v] = δ(s, v).
Initially d[v] =∞, reduces as the algorithm goes, so always
d[v] ≥ δ(s, v)
Also produce labels π[v], predecessor of v on a shortest path from s.

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 41 / 34

Relax!

The algorithms work by improving (lowering) the shortest path
estimate d[v]
This operation is called relaxing an edge (u, v)
Can we improve the shortest-path estimate for v by going through u
and taking (u, v)?

Relax(u, v, w)
1 if d[v] > d[u] + wuv

2 then d[v]← d[u] + wuv

3 π[v]← u

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 42 / 34

Lemma, Lemma, Lemma

Path Relaxation Property

Let P = {v0, v1, . . . vk} be a shortest path from s = v0 to vk. If the
edges (v0, v1), (v1, v2), (vk−1, vk) are relaxed in that order, (there can
be other relaxations in-between), then d[vk] = δ(s, vk)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 43 / 34

Bellman-Ford Algorithm

Works with Negative-Weight Edges

Returns true is there are no negative-weight cycles reachable from s,
false otherwise

Bellman-Ford(V,E, w, s)
1 Init-Single-Source(V, s)
2 for i← 1 to |V | − 1
3 do for each (u, v) in E
4 do Relax(u, v, w)
5 for each (u, v) in E
6 do if d[v] > d[u] + wuv

7 then return False
8
9 return True

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 44 / 34

SSSP Dag

DAG-Shortest-Paths(V,E, s, w)
1 Init-Single-Source(V, s)
2 topologically sort the vertices
3 for each u in topologically sortedV
4 do for each v ∈ Adj[u]
5 do RELAX(u, v, w)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 45 / 34

Dijkstra

Dijkstra(V,E, w, s)
1 Init-Single-Source(V, s)
2 S ← ∅
3 Q← V
4 while Q 6= ∅
5 do u← Extract-Min(Q)
6 S ← S ∪ {u}
7 for each v ∈ Adj[u]
8 do Relax(u, v, w)

Dijkstra’s Algorithm Runs in O(E lg V), with a binary heap
implementation.

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 46 / 34

All Pairs Shortest Paths

The output of an all pairs shortest path algorithm is a matrix
D = (d)ij , where dij = δ(i, j)

DP: `
(m)
ij be the shortest path from i ∈ V to j ∈ V that uses ≤ m

edges

`
(m)
ij = min

1≤k≤n
(`(m−1)

ik + wkj)

Extend(L,W)
1 create (n× n) matrix L′

2 for i← 1 to n
3 do for j ← 1 to n
4 do `′

ij ←∞
5 for k ← 1 to n
6 do `′

ij ← min(`′
ij , `ik + wkj)

This is just like matrix
multiplication.

We can speed this up.

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 47 / 34

Floyd Warshall

Floyd-Warshall Labels: Let d
(k)
ij be the shortest path from i to j such

that all intermediate vertices are in the set {1, 2, . . . , k}.
This simple obervation, immediately suggests a DP recursion

d
(k)
ij =

{
wij k = 0
min(dk−1

ij , dk−1
ik + dk−1

kj) k ≥ 1

We look for D(n) = (d)(n)
ij

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 48 / 34

Floyd-Warshall

Floyd-Warshall(W)
1 D(0) = W
2 for k ← 1 to n
3 do for i← 1 to n
4 do for j ← 1 to n

5 do d
(k)
ij ← min(dk−1

ij , d
(k−1)
ik + d

(k−1)
kj)

6 return D(n)

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 49 / 34

Flows

A net flow is a function f : V × V → R|V |×|V | that satisfies three
conditions:

1 Capacity Constraints:

0 ≤ f(u, v) ≤ c(u, v)

2 Skew Symmetry:

f(u, v) = −f(v, u) ∀u ∈ V, v ∈ V

3 Flow Conservation:∑
v∈V

f(u, v) = 0 ∀u ∈ V \ {s, t}

The Maximum Flow Problem

Given G = (V,E). source node s ∈ V , sink node t ∈ V , edge capacities
c. Find a flow whose value is maximum.

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 50 / 34

Phlow Phacts

For any cut (S, T), f(S, T) = |f |
Residual capacity of arcs given flow:

cf (u, v) def= c(u, v)− f(u, v) ≥ 0.

Give flow f , we can create a residual network from the flow.
Gf = (V,Ef), with

Ef
def= {(u, v) ∈ V × V | cf (u, v) > 0},

so that each edge in the residual network can admit a positive flow.

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 51 / 34

Max-Flow Min-Cut Theorem

The following statements are equivalent

1 f is a maximum flow

2 f admits no augmenting path. (No (s, t) path in residual network)

3 |f | = c(S, T) for some cut (S, T)

Ford-Fulkerson(V,E, c, s, t)
1 for i← 1 to n
2 do f [u, v]← f [v, u]← 0
3 while ∃ augmenting path P in Gf

4 do augment f by cf (P)

Analysis of this? Do better algorithms exist?

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 52 / 34

What I Think is Important

1 I’d be especially happy if you could deduce the (worst-case) running
time of an algorithm given the Pseudocost or the Java code.

2 Know about the Data Structures

Hash
Heap
Binary Search Tree

3 Other than that, know how to “do” all of the algorithms

BFS, DFS
Kruskal, Prim
Bellman-Ford, Floyd-Warshell, Dijkstra
Max Flow (Augmenting Path)
Cholesky, PA = LU

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 53 / 34

Left To Do

Lab 12 – Least squares and homework assignment – Due @ 12PM on
May 4.

Final Exam: Sunday May 6 – 8AM –11AM. 360 Packard Lab. I’ll
bring the donuts.

You will be allowed One cheat sheet. You can write on one side of
8.5× 11 inch paper.
(Aside: Please don’t waste all your time looking things up on your
cheat sheet.)
No calculators will be allowed.

No Class on Friday. Please (if you can) attend Dr. Kelly Gaither’s
Talk:

Rausch Bizness College: Room 91
www.lehigh.edu/computing/hpc/hpcday/2007

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 54 / 34

(For the most part), I really enjoyed teaching this class.

You helped make my last semester here an enjoyable one

Free Lunch – Jim and Greg! (See me after class to arrange time...)

I’ll be traveling next week, but please send email if you have
questions!

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 55 / 34

