What We've Learned - Part One

IE170: Algorithms in Systems Engineering: Lecture 33

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

April 25, 2007

- Summation Formulae, Induction and Bounding
- **2** How to compare functions: $o, \omega, O, \Omega, \Theta$
- I How to count the running time of algorithms
- 4 How to solve recurrences that occur when we do (3)
- Oata Structures
 - Hash
 - Binary Search Trees
 - Heaps

Jeff Linderoth (Lehigh University)	IE170:Lecture 33	Lecture Notes 1 / 34	Jeff Linderoth (Lehigh University)	IE170:Lecture 33	Lecture Notes 2 / 34

What We've Learned – Part Deux

- Dynamic Programming (15.[1,3])
- Greedy Algorithms (16.[1,2])
- Graphs and Search (22.*)
- Spanning Trees (23.*)
- (Single Source) Shortest Paths (24.[1,2,3])
- (All Pairs) Shortest Paths (25.[1,2])
- Max Flow (26.[1,2,3])

Stuff To Know: EVERYTHING!

DP and Greedy

- Develop (and potentially solve small) problems via DP
- Activity Selection (or related problems): Greedy Works

Graphs

- BFS, DFS, and Analysis.
- Classifying edges in directed and undirected graphs
- Topological Sorting
- Finding Strongly Connected Components

Spanning Trees

- Kruskal's Algorithm (and analysis)
- Prim's Algorithm (and analysis)

Z

More Stuff To Know...

Single Source Shortest Paths	All Pairs Shortest Paths
• Distance Labels and RELAX	 Analogue to Matrix Multiplication
 Path Relaxation Property 	 Floyd-Warshall
 Bellman-Ford Algorithm How to do it When (Why?) it works 	How to do it?When (Why?) it works?Analysis
Analysis	Flows
 SSSP Dag 	• What is a flow?
• How to do it	 What is a cut?
When (Why?) it worksAnalysis	What is MFMC Theorem?
 Dijkstra's Algorithm 	• How to create residual graph G_f ?
How to do itWhen (Why?) it works	 How to do Augmenting Paths algorithm (Ford Fulkerson/Edmonds Karp)
Analysis	Analysis

Jeff Linderoth (Lehigh University)	IE170:Lecture 33	Lecture Notes 5 / 34	Jeff Linderoth (Lehigh University)	IE170:Lecture 33	Lecture Notes 6 / 34

What We've Learned, Part Trois

O, Ω, Θ definitions

Even More Stuff To Know...

- Matrix Review.
 - Linear (in)dependence, positive definiteness, singularity, range, null-space, etc.
- Matrix manipulation: Matrix Multiplication
- Solving Triangular Systems
- Cholesky Factorization (Least Squares)
- Gaussian Elimination
 - $\bullet~$ Relationship to LU-factorization
- $\bullet \ PA = LU$

 $\Theta(g) = \{f : \exists c_1, c_2, n_0 > 0 \text{ such that} \\ c_1g(n) \le f(n) \le c_2g(n) \ \forall n \ge n_0\}$

 $\Omega(g) = \{ f \mid \exists \text{ constants } c, n_0 > 0 \text{ s.t. } 0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$

 $O(g) = \{ f \mid \exists \text{ constants } c, n_0 > 0 \text{ s.t. } f(n) \le cg(n) \forall n \ge n_0 \}$

$$\begin{array}{rcl} f & \in & o(g) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \\ \\ f & \in & \omega(g) \Leftrightarrow g \in o(f) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \\ \\ f & \in & \Theta(g) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \end{array}$$

 ∞

•
$$f \in o(g) \Rightarrow f \in O(g) \setminus \Theta(g)$$
.

•
$$f \in \omega(g) \Rightarrow f \in O(g) \setminus \Theta(g)$$

•
$$f \in \Theta(g) \Leftrightarrow g \in \Theta(f)$$

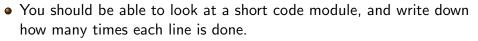
The Upshot! • $f \in O(g)$ is like " $f \leq g$," • $f \in \Omega(g)$ is like " $f \geq g$," • $f \in o(g)$ is like "f < g," • $f \in \omega(g)$ is like "f > g," and

• $f \in \Theta(g)$ is like "f = g."

Functions

Count 'em Up

- Polynomials f of degree k are in $\Theta(n^k)$.
- Exponential functions always grow faster than polynomials
- Polylogarithmic functions always grow more slowly than polynomials.



- Like the InsertionSort, MergeSort, and Towers of Hanoi examples in class.
- If the algorithm is recursive, you should be able to look at the recurrence and compute its running time

Analyzing Recurrences

The Master Theorem

Deep Thoughts

To understand recursion, we must first understand recursion

- General methods for analyzing recurrences
 - Substitution
 - Master Theorem
- When we analyze a recurrence, we may not get or need an exact answer, only an asymptotic one

• Most recurrences that we will be interested in are of the form

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ aT(n/b) + f(n) & n > 1 \end{cases}$$

- The Master Theorem tells us how to analyze recurrences of this form.
- If $f \in O(n^{\log_b a \epsilon})$, for some constant $\epsilon > 0$, then $T \in \Theta(n^{\log_b a})$.
- If $f \in \Theta(n^{\log_b a})$, then $T \in \Theta(n^{\log_b a} \lg n)$.
- If $f \in \Omega(n^{\log_b a + \epsilon})$, for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and $n > n_0$, then $T \in \Theta(f)$.

More on Hash

- In a hash table the number of keys stored is small relative to the number of possible keys
- A hash table is an array. Given a key k, we don't use k as the index into the array rather, we have a hash function h, and we use h(k) as an index into the array.
- Given a "universe" of keys K.
 - Think of ${\boldsymbol{K}}$ as all the words in a dictionary, for example
- $h: K \to \{0, 1, \dots m-1\}$, so that h(k) gets mapped to an integer between 0 and m-1 for every $k \in K$
- We say that k hashes to h(k)

Storing Binary Trees

Array

- The root is stored in position 0.
- The children of the node in position i are stored in positions 2i + 1and 2i + 2.
- This determines a unique storage location for every node in the tree and makes it easy to find a node's parent and children.
- Using an array, the basic operations can be performed very efficiently.

Binary Search Tree

Binary Search Tree Property

If y is in the left subtree of x, then $k(y) \le k(x)$

• A binary search tree is a data structrue that is conceptualized as a binary tree, but has one additional property:

Short Is Beautiful

- SEARCH() takes O(h)
- MINIMUM(), MAXIMUM() also take O(h)
- Slightly less obvious is that INSERT(), DELETE() also take O(h)
- Thus we would like to keep out binary search trees "short" (*h* is small).

Sorted

• We saw in the lab that the Java Tree Set allowed you to iterate through the list in sorted order. How long does it take to do this?

INORDER-TREE-WALK(x)

- 1 if $x \neq \text{NIL}$
- 2 then INORDER-TREE-WALK $(\ell(x))$
- 3 print k(x)
- 4 INORDER-TREE-WALK(r(x))
- What is running time of this algorithm?

Operations

SUCCESSOR(x)

- How would I know "next biggest" element?
- If right subtree is not empty: MINIMUM(r(x))
- If right subtree is empty: Walk up tree until you make the first "right" move

$\operatorname{INSERT}(x)$

• Just walk down the tree and put it in. It will go "at the bottom"

DELETE()

Heaps

- If 0 or 1 child, deletion is fairly easy
- If 2 children, deletion is made easier by the following fact:

Binary Search Tree Property

- If a node has 2 children, then
 - its successor will not have a left child
 - its predecessor will not have a right child

• Heaps are a bit like binary search trees, however, they enforce a different property

Heap Property: Children are Horrible!

• In a max-heap, the key of the parent node is always at least as big as its children:

 $k(p(x)) \geq k(x) \quad \forall x \neq root$

Heapify

HEAPIFY(x)

- Find largest of k(x), $k(\ell(x))$, k(r(x))
- **2** If k(x) is largest, you are done
- **③** Swap x with largest node, and call HEAPIFY() on the new subtree
- \Rightarrow HEAPIFY a node in $O(\lg n)$
- Alternatively, HEAPIFY node of height h is O(h)
- Building a heap out of an array of size n takes O(n)

Operations on a Heap

- The node with the highest key is always the root.
- To delete a record
 - Exchange its record with that of a leaf.
 - Delete the leaf.
 - Call heapify().
- To add a record
 - Create a new leaf.
 - Exchange the new record with that of the parent node if it has a higher key.
 - This is like insertion sort just move it up the path...
 - Continue to do this until all nodes have the heap property.
 - Note that we can change the key of a node in a similar fashion.

Heap 3	Sort
--------	------

CREATE	O(n)
MAXIMUM	$\Theta(1)$
HEAPIFY	$O(\lg n)$, or $O(h)$
EXTRACT-MAX	$O(\lg n)$
HEAP-INCREASE-KEY	$O(\lg n)$
INSERT	$O(\lg n)$

- $\bullet\,$ Suppose the list of items to be sorted are in an array of size n
- The heap sort algorithm is as follows.
 - O Put the array in heap order as described above.
 - 2 In the i^{th} iteration, exchange the item in position 0 with the item in position n i and call heapify().
- What is the running time? $\Theta(n \lg n)$

Jeff Linderoth (Lehigh University)	E170:Lecture 33	Lecture Notes	25 / 34	Jeff Linderoth (Lehigh University)	IE170:Lecture 33	Lecture Notes	26 / 34
Dynamic Programming				Assembly Line Balancing • Let $f_i(j)$ be the faste $S_{ij} \ \forall i = 1, 2 \ \forall j = 1,$			
 Dynamic Programming in a Nutshell Characterize the structure of an optimal solution Recursively define the value of an optimal solution Compute the value of an optimal solution "from the bottum up" Construct optimal solution (if required) 			$f^* = \min(f_1(n) + x_1, f_2(n) + x_2)$ $f_1(1) = e_1 + a_{11}$ $f_2(1) = e_2 + a_{21}$ $f_1(j) = \min(f_1(j-1) + a_{1j}, f_2(j-1) + t_{2,j-1} + a_{1j})$ $f_2(j) = \min(f_2(j-1) + a_{2j}, f_1(j-1) + t_{1,j-1} + a_{2j})$				
ExamplesAssembly Line BalancingLot Sizing					imum cost of meeting de the end) if <i>s</i> units are in		

$$f_t(s) = \min_{x \in 0, 1, 2, \dots} \{ c_t(x) + h_t(s + x - d_t) + f_{t+1}(s + x - d_t) \}.$$

K

Greedy

- Greedy is not always optimal!
- But it sometimes works:

Activity Selection

 Let S_{ij} ⊆ A be the set of activities that start after activity i needs to finish and before activity j needs to start:

$$S_{ij} \stackrel{\text{def}}{=} \{k \in S \mid f_i \le s_k, f_k \le s_j\}$$

• Let's assume that we have sorted the activities such that

$$f_1 \le f_2 \le \dots \le f_r$$

• Schedule jobs in $S_{0,n+1}$

- c_{ij} be the size of a maximum-sized subset of mutually compatible jobs in S_{ij} .
- If $S_{ij} = \emptyset$, then $c_{ij} = 0$
- If $S_{ij} \neq \emptyset$, then $c_{ij} = c_{ik} + 1 + c_{kj}$ for some $k \in S_{ij}$. We pick the $k \in S_{ij}$ that maximizes the number of jobs:

$$c_{ij} = \begin{cases} 0 & \text{if } S_{ij} = \emptyset\\ \max_{k \in S_{ij}} c_{ik} + c_{kj} + 1 & \text{if } S_{ij} \neq \emptyset \end{cases}$$

 $\bullet\,$ Note we need only check i < k < j

To Solve S_{ij}

- Choose $m \in S_{ij}$ with the earliest finish time. The Greedy Choice
- **2** Then solve problem on jobs S_{mj}

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 29 / 34	Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 30 / 34
Graphs!	BFS
 Adjacency List, Adjacency Matrix Breadth First Search Depth First Search Method Search Input: Graph G = (V, E), source node s ∈ V Output: d(v), distance (smallest # of edges) from s to v ∀v ∈ V Output: π(v), predecessor of v on the shortest path from s to v 	$BFS(V, E, s)$ 1 for each u in $V \setminus \{s\}$ 2 do $d(u) \leftarrow \infty$ 3 $\pi(u) \leftarrow NIL$ 4 $d[s] \leftarrow 0$ 5 $Q \leftarrow \emptyset$ 6 $ADD(Q, s)$ 7 while $Q \neq \emptyset$ 8 do $u \leftarrow POLL(Q)$ 9 for each v in $Adj[u]$ 10 do if $d[v] = \infty$ 11 then $d[v] \leftarrow d[u] + 1$ 12 $\pi[v] = u$ 13 $ADD(Q, v)$

DFS

DFS • Input: Graph G = (V, E)DFS-VISIT(u)• Output: Two timestamps for each node d(v), f(v), $color(u) \leftarrow \text{YELLOW}$ 1 • Output: $\pi(v)$, predecessor of v2 $d[u] \leftarrow time + +$ • not on shortest path necessarily for each v in Adj[u]3 do if color[v] = GREEN4 DFS(V, E)then $\pi[v] \leftarrow u$ 5 for each u in V1 6 DFS-VISIT(v)**do** $color(u) \leftarrow GREEN$ 2 7 $\pi(u) \leftarrow \text{NIL}$ 3 8 $color(u) \leftarrow \text{RED}$ 4 $time \leftarrow 0$ $f[u] = time^{++}$ 9 for each u in V5 do if color[u] = GREEN6 then DFS-VISIT(u)7 Jeff Linderoth (Lehigh University) IE170:Lecture 33 Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 33 / 34 Lecture Notes

Classifying Edges in the DFS Tree

Modifying DFS to Classify Edges

DFS (Visit Node—Recursive)

Given a DFS Tree G_{π} , there are four type of edges (u, v)

- Tree Edges: Edges in E_{π} . These are found by exploring (u, v) in the DFS procedure
- **2** Back Edges: Connect u to an ancestor v in a DFS tree
- **③** Forward Edges: Connect u to a descendent v in a DFS tree
- **Cross Edges**: All other edges. They *can* be edges in the same DFS tree, or can cross trees in the DFS forest G_{π}

- DFS can be modified to classify edges as it encounters them...
- Classify e = (u, v) based on the color of v when e is first explored...
- GREEN: Indicates Tree Edge
- **YELLOW:** Indicates Back Edge
- **RED**: Indicates Forward or Cross Edge

Stuff You Can Do with DFS

Topological Sort: The Whole Algorithm	Kruskal's Algorithm
 DFS search the graph 	Start with each vertex being its own component
 Dis scale in egraph 2 List vertices in order of decreasing finishing time 	Ø Merge two components into one by choosing the light edge that connects them
Strongly Connected Components	Scans the set of edges in increasing order of weight
• Call $DFS(G)$ to topologically sort G	Prim's Algorithm
2 Compute G^T	 Builds one tree, so A is always a tree
Scall DFS(G ^T) but consider vertices in topologically sorteded order (from G)	• Let V_A be the set of vertices on which A is incident
Vertices in each tree of depth-first forest for SCC	• Start from an arbitrary root <i>r</i>
	• At each step find a light edge crossing the cut $(V_A, V \setminus V_A)$

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 37 / 34 38 / 34

Kruskal's Algorithm

KRUSKAL(V, E, w) $A \leftarrow \emptyset$ 1 for each v in V2 **do** MAKE-SET(v)3 SORT(E, w)4 for each (u, v) in (sorted) E5 do if FIND-SET $(u) \neq$ FIND-SET(v)6

7 **then**
$$A \leftarrow A \cup \{(u, v)\}$$

UNION(u, v)return A 8

Pseudocode for Prim

Spanning Tree

PRIM(V, E, w, r)1 $Q \leftarrow \emptyset$ for each $u \in V$ 2 **do** $key[u] \leftarrow \infty$ 3 $\pi[u] \leftarrow \text{NILINSERT}(Q, u)$ 5 key[r] = 0while $Q \neq \emptyset$ **do** $u \leftarrow \text{Extract-Min}(Q)$ for each $v \in Adj[u]$ 8 9 do if $v \in Q$ and $w_{uv} < key[v]$ then $\pi[v] \leftarrow u$ 10 $key[v] = w_{uv}$ 11

4

6

7

40

Shortest Paths

- (Single Source) shortest-path algorithms produce a label: $d[v] = \delta(s, v).$
- $\bullet~\mbox{Initially}~d[v]=\infty,$ reduces as the algorithm goes, so always $d[v]\geq \delta(s,v)$
- Also produce labels $\pi[v]$, predecessor of v on a shortest path from s.

Relax!

 $\operatorname{ReLAX}(u, v, w)$

1 **if** $d[v] > d[u] + w_{uv}$

- The algorithms work by improving (lowering) the shortest path estimate d[v]
- This operation is called relaxing an edge (u, v)
- Can we improve the shortest-path estimate for v by going through u and taking (u, v)?

2 3

Lemma, Lemma, Lemma

Path Relaxation Property

Bellman-Ford Algorithm

then $d[v] \leftarrow d[u] + w_{uv}$

 $\pi[v] \leftarrow u$

- Works with Negative-Weight Edges
- Returns true is there are no negative-weight cycles reachable from *s*, false otherwise

Bellman-Ford(V, E, w, s)

- 1 INIT-SINGLE-SOURCE(V, s)
- 2 for $i \leftarrow 1$ to |V| 1
- 3 do for each (u, v) in E
- 4 do $\operatorname{Relax}(u, v, w)$
- 5 for each (u, v) in E
- 6 **do if** $d[v] > d[u] + w_{uv}$
- 7 then return *False*

8

9 return True

Let $P = \{v_0, v_1, \dots, v_k\}$ be a shortest path from $s = v_0$ to v_k . If the

edges (v_0, v_1) , (v_1, v_2) , (v_{k-1}, v_k) are relaxed in that order, (there can

be other relaxations in-between), then $d[v_k] = \delta(s, v_k)$

SSSP Dag

- DAG-SHORTEST-PATHS(V, E, s, w)
- 1 INIT-SINGLE-SOURCE(V, s)
- 2 topologically sort the vertices
- 3 for each u in topologically sorted V
- 4 do for each $v \in Adj[u]$
- 5 **do** $\operatorname{RELAX}(u, v, w)$

Dijkstra

Dijkstra(V, E, w, s)

- 1 INIT-SINGLE-SOURCE(V, s)
- $2 \quad S \leftarrow \emptyset$
- 3 $Q \leftarrow V$
- 4 while $Q \neq \emptyset$
- 5 **do** $u \leftarrow \text{Extract-Min}(Q)$
- $\mathsf{6} \qquad S \leftarrow S \cup \{u\}$
- 7 for each $v \in Adj[u]$
- 8 do $\operatorname{Relax}(u, v, w)$
- Dijkstra's Algorithm Runs in $O(E \lg V)$, with a binary heap implementation.

All Pairs Shortest Paths

- The output of an all pairs shortest path algorithm is a matrix $D=(d)_{ij},$ where $d_{ij}=\delta(i,j)$
- \bullet DP: $\ell_{ij}^{(m)}$ be the shortest path from $i \in V$ to $j \in V$ that uses $\leq m$ edges

$$\ell_{ij}^{(m)} = \min_{1 \le k \le n} (\ell_{ik}^{(m-1)} + w_{kj})$$

• This is just like matrix

• We can speed this up.

multiplication.

 $\operatorname{Extend}(L, W)$

- 1 create $(n \times n)$ matrix L'
- 2 for $i \leftarrow 1$ to n
- 3 do for $j \leftarrow 1$ to n
- 4 **do** $\ell'_{ij} \leftarrow \infty$
- 5 for $k \leftarrow 1$ to n
- 6 **do** $\ell'_{ij} \leftarrow \min(\ell'_{ij}, \ell_{ik} + w_{kj})$

- Floyd Warshall
 - Floyd-Warshall Labels: Let $d_{ij}^{(k)}$ be the shortest path from i to j such that all intermediate vertices are in the set $\{1, 2, \ldots, k\}$.
 - This simple obervation, immediately suggests a DP recursion

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & k = 0\\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & k \ge 1 \end{cases}$$

IE170:Lecture 33

• We look for $D^{(n)} = (d)_{ij}^{(n)}$

Floyd-Warshall

FLOYD-WARSHALL(W) 1 $D^{(0)} = W$ 2 for $k \leftarrow 1$ to n3 do for $i \leftarrow 1$ to n4 do for $j \leftarrow 1$ to n5 do $d_{ij}^{(k)} \leftarrow \min(d_{ij}^{k-1}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ 6 return $D^{(n)}$

Flows

- A net flow is a function $f: V \times V \to \mathbb{R}^{|V| \times |V|}$ that satisfies three conditions:
- Capacity Constraints:

$$0 \le f(u,v) \le c(u,v)$$

Skew Symmetry:

$$f(u,v) = -f(v,u) \ \forall u \in V, v \in V$$

• Flow Conservation:

The Maximum Flow Problem

$$\sum_{v \in V} f(u,v) = 0 \ \forall u \in V \setminus \{s,t\}$$

Given G = (V, E). source node $s \in V$, sink node $t \in V$, edge capacities

Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 49 / 34 Jeff Linderoth (Lehigh University) IE170:Lecture 33 Lecture Notes 50 / 34

Phlow Phacts

- For any cut (S,T), f(S,T) = |f|
- Residual capacity of arcs given flow:

$$c_f(u,v) \stackrel{\text{def}}{=} c(u,v) - f(u,v) \ge 0.$$

• Give flow f , we can create a residual network from the flow. $G_f = (V, E_f) \text{, with}$

$$E_f \stackrel{\text{def}}{=} \{(u,v) \in V \times V \mid c_f(u,v) > 0\}$$

so that each edge in the residual network can admit a positive flow.

Max-Flow Min-Cut Theorem

The following statements are equivalent

c. Find a flow whose value is maximum.

- f is a maximum flow
- **2** f admits no augmenting path. (No (s,t) path in residual network)

FORD-FULKERSON(V, E, c, s, t)

- 1 for $i \leftarrow 1$ to n
- 2 **do** $f[u,v] \leftarrow f[v,u] \leftarrow 0$
- 3 while \exists augmenting path P in G_f
- 4 **do** augment f by $c_f(P)$

Analysis of this? Do better algorithms exist?

What I Think is Important

- I'd be especially happy if you could deduce the (worst-case) running time of an algorithm given the Pseudocost or the Java code.
- Know about the Data Structures
 - Hash
 - Heap
 - Binary Search Tree
- Other than that, know how to "do" all of the algorithms
 - BFS, DFS
 - Kruskal, Prim
 - Bellman-Ford, Floyd-Warshell, Dijkstra
 - Max Flow (Augmenting Path)
 - $\bullet \ {\rm Cholesky}, \ PA=LU$

Left To Do

- Lab 12 Least squares and homework assignment Due @ 12PM on May 4.
- Final Exam: Sunday May 6 8AM –11AM. 360 Packard Lab. I'll bring the donuts.
 - You will be allowed One cheat sheet. You can write on one side of 8.5×11 inch paper.
 - (Aside: Please don't waste all your time looking things up on your cheat sheet.)
 - No calculators will be allowed.
- No Class on Friday. Please (if you can) attend Dr. Kelly Gaither's Talk:
 - Rausch Bizness College: Room 91
 - www.lehigh.edu/computing/hpc/hpcday/2007

- (For the most part), I really enjoyed teaching this class.
- You helped make my last semester here an enjoyable one
- Free Lunch Jim and Greg! (See me after class to arrange time...)
- I'll be traveling next week, but please send email if you have questions!

