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Everyone Gets an A!

Go Bears!
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Taking Stock

Last Time

Θ, O and Ω
Recursion. See recursion.

Analyzing Recurrences

This Time

Analyzing a simple algorithm

The impact of data structures
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A Canonical Problem

Example: The Sorting Problem

Input: A sequence of numbers a1, a2, . . . , an

Output: A reordering a′1, a
′
2, . . . , a

′
n such that

a′1 ≤ a′2 ≤ · · · ≤ a′n.

Sorting “in place”: No new memory is allocated (or at least a
constant amount of memory is allocated). (The input is
usually overwritten by the output as the algorithm executes.)

Sorting “out of place”: New memory must be allocated
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Sample. Reverse-Out-Of-Place

In this case, we allocate a new array B

public static void reverseOP(int A[])
{
int n = A.length;
int B[] = new int[n];
for (int j = 0; j < n; j++) {
B[n-1-j] = A[j];

}
System.arraycopy(B,0,A,0,n);

}
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Sample. Reverse-In-Place

Here everything is done directly on A

public static void reverseIP(int A[])
{
int n = A.length;
for(int j = 0; j < n/2; j++){
// Swap A[j] and A[n-j-1]
int t = A[j];
A[j] = A[n-j-1];
A[n-j-1] = t;

}
}
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Sorting: Some Java Code

public static void iSortMe(int A[])
{
for(int j = 1; j < A.length; j++) {
int key = A[j];
int i = j-1;
while(i >= 0 && A[i] > key) {
A[i+1] = A[i];
i = i-1;

}
A[i+1] = key;

}
}
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Example of How It Works

j = 1
11 3 6 1 42 9

j = 2
3 11 6 1 42 9

j = 3
3 6 11 1 42 9

j = 4
1 3 6 11 42 9

j = 5
1 3 6 11 42 9

j = 6
1 3 6 9 11 42
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Is It Correct?!?

We often use a loop invariant to prove the correctness of an
algorithm

Insertion Sort Loop Invariant

At the start of each iteration of the outer for loop (the loop
indexed by j), the subarray A[0, . . . , j−1] consists of the elements
originally in A[1..j − 1] but in sorted order
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Loop Invariants

It’s Like Induction!

Base Case: It is true prior to the first iteration of the loop

Maintenance: If it is true before a loop iteration, it is true
after the loop iteration

Termination: Hopefully, the invariant will have a useful
property when the loop terminates. In this case, it would
“prove” that the array is sorted.
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Can We Prove This Works

Initialization: j = 1, The subarray A[0, . . . , j − 1] is just A[0]
which is in sorted order. Duh!

Maintenance: The book (and we) will gloss over this a bit.
The loops function is to move A[j − 1], A[j − 2], . . . one
position to the right until the proper position for item j is
found. Thus the subarray A[0, . . . , j] remains sorted (which
becomes A[0, . . . , j − 1] when the loop is incremented

Termination: When loop exits, j = n, so the (sub)array
A[0, . . . , n− 1] is sorted.

q.e.d
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CountVonCount

public static void iSortMe(int A[])
{
for(int j = 1; j < A.length; j++) {
int key = A[j];
int i = j-1;
while(i >= 0 && A[i] > key) {

A[i+1] = A[i];
i = i-1;

}
A[i+1] = key;

}
}
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Analysis

To analyze our algorithm, we need to count the number of
times each command is done

T (n): Running time of algorithm if “input size” (array size) is
n

tj : The number of times the “while” statement is executed
for item j

T (n) = c1n + c2(n− 1) + c3(n− 1) + c4

n−1∑
j=1

tj

+ c5

n−1∑
j=1

(tj − 1) + c6

n−1∑
j=1

(tj − 1) + c7(n− 1)
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Best Case

Let’s Assume that A[i] ≤ key for each j.

The array is already sorted!

The while loop is executed only once each time: tj = 1, so
the running time becomes

T (n) = c1n+c2(n−1)+c3(n−1)+c4(n−1)+c4(n−1)+c7(n−1)

This is a linear function of n: T (n) = Θ(n)
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Worst Case

We find A[i] > key for all elements. while loop only exits
because i < 0
In this case (since must test to see that i < 0, tj = j

In this case running time becomes

T (n) = c1n + c2(n− 1) + c3(n− 1) + c4

n−1∑
j=1

j

+ c5

n−1∑
j=1

(j − 1) + c6

n−1∑
j=1

(j − 1) + c7(n− 1)

Aren’t you glad Gauss is your friend?

We will (?) show that this is a quadratic function of n:
T (n) = Θ(n2)
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Case Analysis

We could also perform an average case analysis of this
algorithm. (In this case, you would see it T (n) = Θ(n2))
We generally don’t do this, because it is hard!

Which Function T (n) Do We Use!?

Computer scientists are a cautious bunch, so typically we
will analyze the worst case behavior.

It does have some advantages

It provides an upper bound
For some algorithms it frequently happens
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Sorting Exercise

Insertion Sort

Merge Sort!

You will be responsible for knowing how merge sort works
(Section 2.3)
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What is a Data Structure?

Computers operate on tables of numbers (the data).

Within the context of solving a given problem, this data has
structure.

Data structures are schemes for storing and manipulating data
that allow us to more easily see the structure of the data.

Data structures allow us to perform certain operations on the
data more easily.

The data structure that is most appropriate depends on how
the algorithm needs to manipulate the data.
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Importance of Data Structures

Specifying an algorithm completely includes specifying the
data structures to be used (sometimes this is the hardest
part).

It is possible for the same basic algorithm to have several
different implementations with different data structures.

Which data structure is best depends on what operations have
to be performed on the data.
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Example

Consider the two implementations of the list class that you
will become intimately familiar with in lab

An array is a simple data structure that allows us to store a
sequence of numbers.

A linked list does the same thing.

You should know the difference? (Yes?)
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A List Interface

public interface MyList
{
public void add(int index, Object element);
public boolean contains(Object element);
public Object get(int index);
public int indexOf(Object element);
public Object remove(int index);

}
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Comparing List Data Structures

To compare the two data structures, we must analyze the
running time of each operation.

This table compares the running times of the operations.

Usually list interfaces have other operations

You will try and implement this stuff in lab

Array Linked List
getNumItems
get
add
remove
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Next Time

Back to the Master Theorem – Analyzing Recurrences

So far, we have covered chapters 1-4 and Appendix A & B
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