

Taking Stock

Last Time

- $\bullet~\Theta,~O~{\rm and}~\Omega$
- Recursion. See recursion.
- Analyzing Recurrences

This Time

- Analyzing a simple algorithm
- The impact of data structures

A Canonical Problem

- Input: A sequence of numbers a_1, a_2, \ldots, a_n
- Output: A reordering a'_1, a'_2, \ldots, a'_n such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.
- Sorting "in place": No new memory is allocated (or at least a constant amount of memory is allocated). (The input is usually overwritten by the output as the algorithm executes.)
- Sorting "out of place": New memory must be allocated

Measuring Functions Θ, O, Ω Recurrences and RecursionSome Functions You'll See	Measuring Functions Θ, O, Ω Recurrences and RecursionSome Functions You'll See
Sample. Reverse-Out-Of-Place	Sample. Reverse-In-Place
• In this case, we allocate a new array B	• Here everything is done directly on A
<pre>public static void reverseOP(int A[]) { int n = A.length; int B[] = new int[n]; for (int j = 0; j < n; j++) { B[n-1-j] = A[j]; } System.arraycopy(B,0,A,0,n);</pre>	<pre>public static void reverseIP(int A[]) { int n = A.length; for(int j = 0; j < n/2; j++){ // Swap A[j] and A[n-j-1] int t = A[j]; A[j] = A[n-j-1]; A[n-j-1] = t;</pre>

```
}
 System.arraycopy(B,0,A,0,n);
}
```


Jeff Linderoth	IE170:Lecture 4	Jeff Linderoth	IE170:Lecture 4
Measuring Functions	Θ, O, Ω	Measuring Functions	
Recurrences and Recursion	Some Functions You'll See	Recurrences and Recursion	

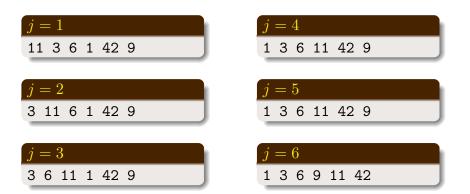
}

}

Sorting: Some Java Code

```
Example of How It Works
```

```
public static void iSortMe(int A[])
{
  for(int j = 1; j < A.length; j++) {</pre>
    int key = A[j];
    int i = j-1;
    while(i >= 0 && A[i] > key) {
      A[i+1] = A[i];
      i = i - 1;
    }
    A[i+1] = key;
  }
}
```



Is It Correct?!?

Loop Invariants

• We often use a loop invariant to prove the correctness of an algorithm

Some Functions You'll See

Measuring Functions

Recurrences and Recursi

Insertion Sort Loop Invariant

At the start of each iteration of the outer for loop (the loop indexed by j), the subarray $A[0, \ldots, j-1]$ consists of the elements originally in A[1..j-1] but in sorted order

It's Like Induction!

- Base Case: It is true prior to the first iteration of the loop
- **Maintenance:** If it is true before a loop iteration, it is true after the loop iteration
- **Termination:** Hopefully, the invariant will have a useful property when the loop terminates. In this case, it would "prove" that the array is sorted.

Jeff Linderoth	IE170:Lecture 4	Jeff Linderoth	IE170:Lecture 4
Measuring Functions		Measuring Functions	Θ, O, Ω
Recurrences and Recursion		Recurrences and Recursion	Some Functions You'll See

Q.E.D

Can We Prove This Works

- Initialization: j = 1, The subarray A[0, ..., j-1] is just A[0] which is in sorted order. Duh!
- Maintenance: The book (and we) will gloss over this a bit. The loops function is to move A[j-1], A[j-2],... one position to the right until the proper position for item j is found. Thus the subarray A[0,...,j] remains sorted (which becomes A[0,...,j-1] when the loop is incremented
- Termination: When loop exits, j = n, so the (sub)array A[0, ..., n-1] is sorted.

CountVonCount

```
public static void iSortMe(int A[])
{
  for(int j = 1; j < A.length; j++) {
    int key = A[j];
    int i = j-1;
    while(i >= 0 && A[i] > key) {
        A[i+1] = A[i];
        i = i-1;
        }
        A[i+1] = key;
    }
}
```


Measuring Functions Θ, O, Ω Recurrences and RecursionSome Functions You'll See

Analysis

- To analyze our algorithm, we need to count the number of times each command is done
- T(n): Running time of algorithm if "input size" (array size) is n
- t_j : The number of times the "while" statement is executed for item j

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=1}^{n-1} t_j + c_5 \sum_{j=1}^{n-1} (t_j - 1) + c_6 \sum_{j=1}^{n-1} (t_j - 1) + c_7 (n-1)$$

Best Case

• Let's Assume that A[i] \leq key for each j.

Measuring Functions

Recurrences and Recurs

- The array is already sorted!
- The while loop is executed only once each time: $t_j = 1$, so the running time becomes

 $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 (n-1) + c_4 (n-1) + c_7 (n-1)$

Some Functions You'll See

• This is a linear function of n: $T(n) = \Theta(n)$

Jeff Linderoth	IE170:Lecture 4	Jeff Linderoth	IE170:Lecture 4
Measuring Functions Recurrences and Recursion		Measuring Functions Recurrences and Recursion	

Worst Case

- We find A[i] > key for all elements. while loop only exits because i < 0
- In this case (since must test to see that i < 0, $t_j = j$
- In this case running time becomes

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=1}^{n-1} j + c_5 \sum_{j=1}^{n-1} (j-1) + c_6 \sum_{j=1}^{n-1} (j-1) + c_7(n-1)$$

- Aren't you glad Gauss is your friend?
- We will (?) show that this is a quadratic function of n: $T(n) = \Theta(n^2)$

Case Analysis

- We could also perform an average case analysis of this algorithm. (In this case, you would see it $T(n) = \Theta(n^2)$)
- We generally don't do this, because it is hard!

Which Function T(n) Do We Use!?

- Computer scientists are a cautious bunch, so typically we will analyze the worst case behavior.
- It does have some advantages
 - It provides an upper bound
 - For some algorithms it frequently happens

• You will be responsible for knowing how merge sort works

Sorting Exercise

• Insertion Sort

(Section 2.3)

• Merge Sort!

What is a Data Structure?

- Computers operate on tables of numbers (the data).
- Within the context of solving a given problem, this data has structure.
- Data structures are schemes for storing and manipulating data that allow us to more easily see the structure of the data.
- Data structures allow us to perform certain operations on the data more easily.
- The data structure that is most appropriate depends on how the algorithm needs to manipulate the data.

Jeff Linderoth	IE170:Lecture 4	Jeff Linderoth	IE170:Lecture 4
Measuring Functions Recurrences and Recursion		Measuring Functions Recurrences and Recursion	

Importance of Data Structures

- Specifying an algorithm completely includes specifying the data structures to be used (sometimes this is the hardest part).
- It is possible for the same basic algorithm to have several different implementations with different data structures.
- Which data structure is best depends on what operations have to be performed on the data.

Example

- Consider the two implementations of the list class that you will become intimately familiar with in lab
- An array is a simple data structure that allows us to store a sequence of numbers.
- A linked list does the same thing.
- You should know the difference? (Yes?)

A List Interface

```
public interface MyList
{
    public void add(int index, Object element);
    public boolean contains(Object element);
    public Object get(int index);
    public int indexOf(Object element);
    public Object remove(int index);
```

Comparing List Data Structures

- To compare the two data structures, we must analyze the running time of each operation.
- This table compares the running times of the operations.
- Usually list interfaces have other operations
- You will try and implement this stuff in lab

	Array	Linked List
getNumItems		
get		
add		
remove		

Next Time

}

- Back to the Master Theorem Analyzing Recurrences
- $\bullet\,$ So far, we have covered chapters 1-4 and Appendix A & B

