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Taking Stock

Last Time

In-Place, Out-of-Place

Count Von Count

Worst Case Analysis

The world’s easiest lab :-)

This Time

Divide-and-Conquer

The Master-Theorem
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Divide and Conquer

A Simple Three Part Plan

1 Divide: the problem into a number of subproblems

2 Conquer: the subproblems by solving them recursively. (If
subproblems are small enough, you solve them by “brute
force.” (constant time).

3 Combine: the subproblem solutions to give a solution to
the original problem
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The Towers of Hanoi

An old famous puzzle mathematical puzzle

It consists of three pegs, and a number of disks of different
sizes which can slide onto any peg.

The puzzle starts with the disks neatly stacked in order of size
on one peg, smallest at the top, thus making a conical shape.

The objective of the game is to move the entire stack to
another peg
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That’s a Bit Too Easy

Three Rules

1 Only one disk may be moved at a time.

2 Each move consists of taking the upper disk from one of
the pegs and sliding it onto another peg, on top of the
other disks that may already be present on that peg.

3 No disk may be placed on top of a smaller disk.
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The Legend

At the beginning of the universe, three posts and 64 disks
were created.

An a secret monestary, monks have been moving these disks
according to the rules of the puzzle.

When the puzzle is completed, the world will end!

Who Says I Don’t Teach You Anything Important?

After today, we will know when the world will end!
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How clever are you?

Label the pegs A,B, C

Number the disks 1 (smallest), n (largest)

To move n disks from A to B

1 Move n− 1 disks from A to C. This leaves the nth disk
alone on peg A;

2 Move the nth disk from A to B

3 Move n− 1 disks from C to B so they sit on the nth disk.

This is a (canonical) example of a recursive algorithm: To do
steps 1 and 3, just do the same algorithm, but for a problem
of size n− 1
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Another explanation

Move disk 1 to peg B

Move disk 2 to peg C

Move disk 1 from B to C, so it sits on 2

(You now have 2 disks stacked correctly on peg C, peg B is
empty again)

Move disk 3 to peg B

repeat the first 3 steps above to move 1 & 2 to sit on top of 3
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Here it is in Java

public void hanoy(char a, char b, char c, int n)
{

if (n==1) {
moveit(1, a, b);

}
else {
hanoy(a, c, b, n-1);
moveit(n, a, b);
hanoy(c, b, a, n-1);

}
}

Also posted on course web site
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Count Von Count

Running Time of Towers of Hanoi Algorithm

T (n) =

{
Θ(1) if n = 1
T (n− 1) + Θ(1) + T (n− 1) if n > 1
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Merge Sort

Another sorting algorithm (that is very practical for your daily
life) is based on recursion

It is called Merge Sort and sorts the elements of a (sub)-array
A[p . . . r] in the following manner:

Merge-Sort(A, p, r)
1 if p < r
2 then q ← b(p + r)/2c
3 Merge-Sort(A, p, q)
4 Merge-Sort(A, q + 1, r)
5 Merge(A, p, q, r)
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Can you merge in linear time?

The method Merge(A, p, q, r) takes sorted subarrays
A[p . . . q] and A[q + 1, . . . r] and merges them into one sorted
array

How long does this take to do?

Let’s Have Some Fun!

Merge Sort

Insertion Sort

Selection Sort

Bubble Sort
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CountVonCount

Running Time of Merge-Sort

T (n) =

{
Θ(1) if n = 1
2T (n/2) + Θ(n) if n > 1
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Analyzing Recurrences

Deep Thoughts

To understand recursion, we must first understand recursion

General methods for analyzing recurrences

Substitution: You learned this already
Master Theorem
Generating Functions: You won’t learn this here

Note that when we analyze a recurrence, we may not get or
need an exact answer, only an asymptotic one

We may prove the running time is in O(f) or Θ(f)
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Good Stuff

If you are only concerned about the asymptotic behavior of a
recurrence, then

1 You can ignore floors and ceilings: (Asymptotic behavior
doesn’t care if you round down or up)

2 We assume that all algorithms run in Θ(1) (Constant time) for
a small enough fixed input size n. This makes the base case of
induction easy.
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The Master Theorem

Most recurrences that we will be interested in are of the form

T (n) =

{
Θ(1) n = 1
aT (n/b) + f(n) n > 1

The Master Theorem tells us how to analyze recurrences of
this form.

If f ∈ O(nlogb a−ε), for some constant ε > 0, then
T ∈ Θ(nlogb a).
If f ∈ Θ(nlogb a), then T ∈ Θ(nlogb a lg n).
If f ∈ Ω(nlogb a+ε), for some constant ε > 0, and if
af(n/b) ≤ cf(n) for some constant c < 1 and n > n0, then
T ∈ Θ(f).

How do we interpret this?
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Using the Master Theorem: Merge Sort

T (n) =

{
1 n = 1
2T (n/2) + n n > 1

We can analyze these using the Master Theorem.

T (n) = O(n lg n)
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Towers of Hanoi

T (n) =

{
Θ(1) if n = 1
T (n− 1) + Θ(1) + T (n− 1) if n > 1

We cannot analyze this using the Master Theorem

Let’s use guessing to establish that T (n) = 2n = 1

264 − 1 = 1.8847× 1019. I

If the monks more one disk per second, this is 584.9 billion
years. This is about 42 times older than the best estimate of
the universe’s current age.
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The Call Stack

The call stack of a program keeps track of the current
sequence of function calls.

When a new function call is made, data for the current one is
saved on the call stack.

When a function call returns, it returns to the next function
on the top of the stack.

The stack depth is the maximum number of functions on the
stack at any one time.

In a recursive program, the stack depth can be very large.

This can create memory problems, even for simple recursive
programs.

There is also an overhead associated with each function call.
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Next Time?

Some more on the Master Theorem

Some Data Structures

Java implementations of data structures
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