
Divide-And-Conquer
Recurrences and Recursion

IE170: Algorithms in Systems Engineering:
Lecture 6

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

January 26, 2007

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Towers of Hanoi
Merge Sort

Taking Stock

Last Time

Divide-and-Conquer

The Master-Theorem

When the World Will End

This Time

Master Theorem Practice

Some Sorting Algs.

Data Structures

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Towers of Hanoi
Merge Sort

The Master Theorem

If recurrence has the form

T (n) =

{
Θ(1) n = 1
aT (n/b) + f(n) n > 1

The Master Theorem tells us how to analyze it:

If f ∈ O(nlogb a−ε), for some constant ε > 0, then
T ∈ Θ(nlogb a).
If f ∈ Θ(nlogb a), then T ∈ Θ(nlogb a lg n).
If f ∈ Ω(nlogb a+ε), for some constant ε > 0, and if
af(n/b) ≤ cf(n) for some constant c < 1 and n > n0, then
T ∈ Θ(f).

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Towers of Hanoi
Merge Sort

Some More Examples...

Here we will do a couple examples of the master theorem

Also I will show you a little trick (substitution) that can come
in handy – especially if you have

√
·

Not Fun!

Homework 2.2-1: and prove that it has that form.

Do all of 4.1

Jeff Linderoth IE170:Lecture 6



Divide-And-Conquer
Recurrences and Recursion

Towers of Hanoi
Merge Sort

Fun!

Simple Sorting Algorithms:

Merge Sort:

Divide the list into smaller pieces. Sort the small pieces.
Then merge together sorted lists.

Insertion Sort:

Insert item j into A[0 . . . j − 1]
Selection Sort

Find jth smallest element and put it in A[j]
Bubble sort:

Start at end of array: If A[j] < A[j − 1], swap them

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

The Java Collections Interfaces

In the remainder of the class, we will be using the Java
Collections Interface: http://java.sun.com/docs/books/
tutorial/collections/TOC.html

Important: Most of what I will say only works if you set the
“code level” to Java 5.0 in eclipse!

The interfaces form a hierarchy:

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

(A subset of) the Collections Interface

public interface Collection<E> extends Iterable<E> {

// Basic operations

int size();

boolean isEmpty();

boolean contains(Object element);

boolean add(E element); //optional

boolean remove(Object element); //optional

Iterator<E> iterator();

// Array operations

Object[] toArray();

<T> T[] toArray(T[] a);

}

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Traversing Collections

Use for-each construct:

for (Object o : collection)
System.out.println(o);

Use an iterator. (Can remove() items with iterator

for(Iterator<String> i= words.iterator(); i.hasNext(); ){
System.out.println(i.next());

}

hasNext(): returns true if the iteration has more elements,

next(): returns the next element in the iteration.

remove(): removes the last element that was returned by
next from the underlying Collection.

Jeff Linderoth IE170:Lecture 6



Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Converting to Array

Sometimes you need to convert a collection to an array:
Object[] a = c.toArray();

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Set

A Set is a Collection that cannot contain duplicate elements.

It models the mathematical set abstraction.

The Set interface contains only methods inherited from
Collection and adds the restriction that duplicate elements are
prohibited.

Set is still an interface. There are 3 implementations of Set in
Java.

HashSet
TreeSet
LinkedHashSet

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Hash?

No, Cheech. A hash table is a data structure in which we can
“look up” (or search) for an element efficiently.

The expected time to search for an element in a has table in
O(1). (Worst case time in Θ(n)).
Think of a hash table as an array

With a regular array, we find the element whose “key” is j in
position j of the array. j = 17; val = a[j]; .

This is called direct addressing and it takes O(1) on your
regular ol’ random access computer.

This form of direct addressing works when we can afford to
have an array with one position for every possible key

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

More on Hash

In a hash table the number of keys stored is small relative to
the number of possible keys

A hash table is an array. Given a key k, we don’t use k as the
index into the array – rather, we have a hash function h, and
we use h(k) as an index into the array.

Given a “universe” of keys K.

Think of K as all the words in a dictionary, for example

h : K → {0, 1, . . . m− 1}, so that h(k) gets mapped to an
integer between 0 and m− 1 for every k ∈ K

We say that k hashes to h(k)

Jeff Linderoth IE170:Lecture 6



Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Example

This look great. However, what happens if h(k1) = h(k2) for
k1 6= k2?

Two keys hash to the same value. The element collide

This is typically handled by chaining

Instead of storing a key k (or later key value pair (k, v)) at
every position in the array, we store a linked list of keys.

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

A (Fairly) Obvious point

BAD hash function. h(k) = 3.

If all keys hash to the same value, then looking up a key takes
Θ(n). (Since it is just a list).

We would like a hash function to be “random” in the sense
that a key k is equally likely to has into any of the m slots in
the hash table (array).

If have have such a function, then we can show that the time
required to search for a key is Θ(1 + n

m)
When hashing keys that are not numbers, you must convert
them to numbers.

beer = −142 + 24 + 53 + 52 + 181 = 42.

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Back to the Java Collections

So Now you know what a Java HashSet is.

A LinkedHashSet is a HashSet that also keeps track of the
order in which elements were inserted.

(Think of laying a linked list on top of the Hash Table)

A TreeSet stores its elements in a alertred-black tree.

In order to understand red-black trees, we must know about
binary search trees.

Hash table is “good” at insert(), search(), delete().
But what if you also want to support (efficiently) minimum(),
maximum()

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Binary Search Tree

A binary search tree is a data structrue that is conceptualized
as a binary tree. (Have you read Appendix B-4 yet?)

Each node in the tree contains:

key k. (Or maybe (key, value): (k, v))
left l: Points to the left child
right r: Points to the right child
parent p: Points to the parent

Binary Search Tree Property

If y is in the left subtree of x, then k(y) ≤ k(x)

Jeff Linderoth IE170:Lecture 6



Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Binary Search Trees

There are lots of binary trees that can satisfy this property.

It is obvious that the number of binary tree on n nodes bn is

bn =
1

n + 1

(
2n
n

)
bn =

4n

√
πn3/2

(1 + O(1/n))

And not all of these (exponentially many) are created equal.

In fact, we would like to keep our binary search trees “short”,
because most of the operations we would like to support are a
function of the height h of the tree.

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Short Is Beautiful

search() takes O(h)
minimum(), maximum() also take O(h)
Slightly less obvious is that insert(), delete() also take
O(h)
Thus we would like to keep out binary search trees “short” (h
is small).

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

red-black Trees

red-black trees are simply a way to keep binary search trees
short. (Or balanced)

Balanced here means that no path on the tree is more than
twice as long as another path.

An implication of this is that its maximum height is 2 lg(n+1)
search(), minimum(), maximum(), all take O(lg n)
It’s implementation is complicated, so we won’t cover it

insert(): also runs in O lg(n)
delete(): runs in O lg(n)

(but it is more complicated to maintain the “red-black”
property)

Jeff Linderoth IE170:Lecture 6

Divide-And-Conquer
Recurrences and Recursion

Master Theorem
Master Theorem Doesn’t Always Work!

Next Time?

More on data structures and Java collections

The greatest lab ever

Small News

Let’s have a little quiz on 2/7

Jeff Linderoth IE170:Lecture 6


