
Divide-And-Conquer
Data Structures

IE170: Algorithms in Systems Engineering:
Lecture 7

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

January 29, 2007

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Taking Stock

Last Time

Master Theorem Practice

Some Sorting Algs

Beginning of Java Collections Interfaces

This Time

Hashes

Trees and Binary Search Trees

More on Java Collections Interfaces

lab == fun

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Master Theorem

The Java Collections Interfaces

In the remainder of the class, we will be using the Java
Collections Interface: http://java.sun.com/docs/books/
tutorial/collections/TOC.html

Important: Most of what I will say only works if you set the
“code level” to Java 5.0 in eclipse!

Preferences, Java Compiler: Set this to ≥ 5.0

The interfaces form a hierarchy:

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Master Theorem

(A subset of) the Collections Interface

public interface Collection<E> extends Iterable<E> {

// Basic operations

int size();

boolean isEmpty();

boolean contains(Object element);

boolean add(E element); //optional

boolean remove(Object element); //optional

Iterator<E> iterator();

// Array operations

Object[] toArray();

<T> T[] toArray(T[] a);

}

Jeff Linderoth IE170:Lecture 7



Divide-And-Conquer
Data Structures

Master Theorem

Set

A Set is a Collection that cannot contain duplicate elements.

It models the mathematical set abstraction.

The Set interface contains only methods inherited from
Collection and adds the restriction that duplicate elements are
prohibited.

Set is still an interface. There are 3 implementations of Set in
Java.

HashSet
TreeSet
LinkedHashSet

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Master Theorem

Hash?

No, Cheech. A hash table is a data structure in which we can
“look up” (or search) for an element efficiently.

The expected time to search for an element in a has table in
O(1). (Worst case time in Θ(n)).
Think of a hash table as an array

With a regular array, we find the element whose “key” is j in
position j of the array. j = 17; val = a[j]; .

This is called direct addressing and it takes O(1) on your
regular ol’ random access computer.

This form of direct addressing works when we can afford to
have an array with one position for every possible key

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Master Theorem

More on Hash

In a hash table the number of keys stored is small relative to
the number of possible keys

A hash table is an array. Given a key k, we don’t use k as the
index into the array – rather, we have a hash function h, and
we use h(k) as an index into the array.

Given a “universe” of keys K.

Think of K as all the words in a dictionary, for example

h : K → {0, 1, . . . m− 1}, so that h(k) gets mapped to an
integer between 0 and m− 1 for every k ∈ K

We say that k hashes to h(k)

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Master Theorem

Example

This look great. However, what happens if h(k1) = h(k2) for
k1 6= k2?

Two keys hash to the same value. The elements collide

This is typically handled by chaining

Instead of storing a key k (or later key value pair (k, v)) at
every position in the array, we store a linked list of keys.

Example:

Jeff Linderoth IE170:Lecture 7



Divide-And-Conquer
Data Structures

Master Theorem

A (Fairly) Obvious point

BAD hash function. h(k) = 3.

If all keys hash to the same value, then looking up a key takes
Θ(n). (Since it is just a list).

We would like a hash function to be “random” in the sense
that a key k is equally likely to has into any of the m slots in
the hash table (array).

If we have such a function, then we can show that the average
time required to search for a key is Θ(1 + n

m)
When hashing keys that are not numbers, you must convert
them to numbers, e.g.:

beer = −142 + 24 + 53 + 52 + 181 = 42.

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Master Theorem

Average Hash Search Time

The number of elements to be searched is 1 more than the
number of elements that appear before x in x′s list. Assuming
we insert items into the list at the beginning, then this is the
number of elements that were inserted after x.

By definition: P(h(ki) = h(kj)) = 1
m

Let Xij be indicator random variable that is equal to one if
and only if h(ki) = h(kj)
Then just compute:

E

 1
n

n∑
i=1

1 +
n∑

j=i+1

Xij

 .

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Master Theorem

Hash Functions

Modular Hash Function

Let m be (roughly) the size of your hash table:

h(k) = k modm

Good choice of m: A prime number not too close to an
exact power of 2

Multiplicative Hash Function

h(k) = bm(kA mod1)c
Multiply key k by A, take fractional part, and multiply by m

If m = 2p this can be done very fast with bit shifting

A ≈ φ = (
√

5− 1)/2 seems a good value

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Master Theorem

Back to the Java Collections

So now you know what a Java HashSet is.

A LinkedHashSet is a HashSet that also keeps track of the
order in which elements were inserted.

(Think of laying a linked list on top of the Hash Table)

A TreeSet stores its elements in a alertred-black tree.

In order to understand red-black trees, we must know about
binary search trees.

Hash table is “good” at insert(), search(), delete().
But what if you also want to support (efficiently) minimum(),
maximum()

Jeff Linderoth IE170:Lecture 7



Divide-And-Conquer
Data Structures

Java Collections

Trees

A tree is a set of items organized into a hierarchical structure
(think of a family tree).

When organized in this way, we call the items nodes.

Each node has a single designated parent and one or more
children.

There is a single designated node, called the root, with no
parent.

Any node with no children is called a leaf.

Any node with children is called internal.

A tree in which all nodes have 2 or fewer children is called a
binary tree.

Storing a list of items in a tree structure allows us to represent
additional relationships among the items in the list.

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Binary Tree Data Structures

To store a tree of keys k, or maybe (key, value) pairs: (k, v),
we need a data structure supporting three basic operations

left l: Points to the left child
right r: Points to the right child
parent p: Points to the parent

This allows us to traverse the tree and perform other
operations on it.

The level of a node in the tree is the number of recursive calls
to parent() needed to reach the root.

The depth of the tree is the maximum level of any of its
nodes.

A balanced tree is one in which all leaves are at levels k or
k − 1, where k is the depth of the tree.

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Data Structures for Storing Trees

Array

The root is stored in position 0.

The children of the node in position i are stored in
positions 2i + 1 and 2i + 2.

This determines a unique storage location for every node in
the tree and makes it easy to find a node’s parent and
children.

Using an array, the basic operations can be performed very
efficiently.

If the tree is unbalanced or dynamic, a linked list may be
better.

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Data Structures for Storing Trees

Linked List

In a linked list, each item is stored along with explicit
pointers to its parent and children.

This allows for easy addition and deletion of nodes from
the tree.

Jeff Linderoth IE170:Lecture 7



Divide-And-Conquer
Data Structures

Java Collections

Binary Search Tree

A binary search tree is a data structrue that is conceptualized
as a binary tree, but has one additional property:

Binary Search Tree Property

If y is in the left subtree of x, then k(y) ≤ k(x)

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Binary Search Trees

There are lots of binary trees that can satisfy this property.

It is obvious that the number of binary tree on n nodes bn is

bn =
1

n + 1

(
2n
n

)
bn =

4n

√
πn3/2

(1 + O(1/n))

And not all of these (exponentially many) are created equal.

In fact, we would like to keep our binary search trees “short”,
because most of the operations we would like to support are a
function of the height h of the tree.

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Short Is Beautiful

search() takes O(h)
minimum(), maximum() also take O(h)
Slightly less obvious is that insert(), delete() also take
O(h)
Thus we would like to keep out binary search trees “short” (h
is small).

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Operations

successor(x)

How would I know “next biggest” element?

If right subtree is not empty: minimum(r(x))
If right subtree is empty: Walk up tree until you make the
first “right” move

insert(x)

Just walk down the tree and put it in. It will go “at the
bottom”

Jeff Linderoth IE170:Lecture 7



Divide-And-Conquer
Data Structures

Java Collections

delete()

If 0 or 1 child, deletion is fairly easy

If 2 children, deletion is made easier by the following fact:

Binary Search Tree Property

If a node has 2 children, then

its successor will not have a left child
its predecessor will not have a right child

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

red-black Trees

red-black trees are simply a way to keep binary search trees
short. (Or balanced)

Balanced here means that no path on the tree is more than
twice as long as another path.

An implication of this is that its maximum height is 2 lg(n+1)
search(), minimum(), maximum(), all take O(lg n)
It’s implementation is complicated, so we won’t cover it

insert(): also runs in O lg(n)
delete(): runs in O lg(n)

(but it is more complicated to maintain the “red-black”
property)

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Back to the Java Collections

red-black trees remain sorted

You don’t really have any control over the order in which
things will appear in a HashSet

If you care about that – you should use a LinkedHashSet,
which lays a linked list on top of the HashSet

In general, Sets are not for ordered collections of items, for
that, you should use a list

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Lists

A List is an ordered Collection (sometimes called a sequence).

Lists may contain duplicate elements.

In addition to the operations inherited from Collection, the
List interface includes operations for the following:

Positional access: manipulate elements based on their
numerical position in the list
Search: searches for a specified object in the list and returns
its numerical position

Jeff Linderoth IE170:Lecture 7



Divide-And-Conquer
Data Structures

Java Collections

(Subset of) List Interface

public interface List<E> extends Collection<E> {

// Positional access

E get(int index);

E set(int index, E element); //optional

boolean add(E element); //optional

void add(int index, E element); //optional

E remove(int index); //optional

// Search

int indexOf(Object o);

int lastIndexOf(Object o);

// Iteration

ListIterator<E> listIterator();

ListIterator<E> listIterator(int index);

}

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Java List Implementations

Two List Implementations

1 ArrayList: which is usually the better-performing

2 LinkedList: offers better performance under certain
circumstances, (i.e. if lots of add/remove in the middle if
the list)

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

Java Lists have extended iterators

public interface ListIterator<E> extends Iterator<E> {
boolean hasNext();
E next();
boolean hasPrevious();
E previous();
int nextIndex();
int previousIndex();
void remove(); //optional
void set(E e); //optional
void add(E e); //optional

}

Jeff Linderoth IE170:Lecture 7

Divide-And-Conquer
Data Structures

Java Collections

List Stuff

ListIterator<E> listIterator(): gives iterator at
beginning

ListIterator<E> listIterator(int index): gives
iterator at specified index

The index refers to the element that would be returned by an
initial call to next()

The cursor is always between two elements:

the one that would be returned by a call to previous()
the one that would be returned by a call to next()

The n + 1 valid index values correspond to the n + 1 gaps
between elements, from the gap before the first element to
the gap after the last one.

Jeff Linderoth IE170:Lecture 7



Divide-And-Conquer
Data Structures

Java Collections

Next Time

A bit on Java Collection Map Interface

Move on to Heaps (Chapter 6)

We have covered chapters 1-4, 10-11, and Appendices A and
B

News

New Homework Posted!

Let’s have a little quiz on 2/7

Homework is due 2/5: No late homework accepted. (I need
to hand out solutions and discuss in class on 2/5).

Jeff Linderoth IE170:Lecture 7


