
Hashes
Red-Black Trees

IE170: Algorithms in Systems Engineering:
Lecture 8

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

January 31, 2007

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Taking Stock

Last Time

Hashes

(Intro to) Binary Search Trees

More on Java Collections Interfaces

lab == fun

This Time

Binary Search Trees

Java Collections Interfaces: Maps

Heaps and Heapsort

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Java Collections

Binary Search Tree

A binary search tree is a data structrue that is conceptualized
as a binary tree. (Have you read Appendix B-4 yet?)

Each node in the tree contains:

key k. (Or maybe (key, value): (k, v))
left l: Points to the left child
right r: Points to the right child
parent p: Points to the parent

Binary Search Tree Property

If y is in the left subtree of x, then k(y) ≤ k(x)

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Java Collections

Binary Search Trees

There are lots of binary trees that can satisfy this property.

It is obvious that the number of binary tree on n nodes bn is

bn =
1

n + 1

(
2n
n

)
bn =

4n

√
πn3/2

(1 + O(1/n))

And not all of these (exponentially many) are created equal.

In fact, we would like to keep our binary search trees “short”,
because most of the operations we would like to support are a
function of the height h of the tree.

Jeff Linderoth IE170:Lecture 8



Hashes
Red-Black Trees

Java Collections

Short Is Beautiful

search() takes O(h)
minimum(), maximum() also take O(h)
Slightly less obvious is that insert(), delete() also take
O(h)
Thus we would like to keep out binary search trees “short” (h
is small).

successor(x):

If right subtree is not empty: minimum(r(x))
If right subtree is empty: Walk up tree until you make the first
“right” move

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Java Collections

Sorted

We saw in the lab that the Java Tree Set allowed you to
iterate through the list in sorted order. How long does it take
to do this?

inorder-tree-walk(x)
1 if x 6= nil
2 then inorder-tree-walk(`(x))
3 print k(x)
4 inorder-tree-walk(r(x))

What is running time of this algorithm?

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Java Collections

Who’s Got Next?

If you would like to find the next largest key value, what do
you do?

Basic Idea

If node x has a right child r(x), then return
minimum(r(x)).
Otherwise, start walking up until you make the first “right”
move.

Notes that “get next smallest” behaves similarly.

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Java Collections

Insert and Delete

Inserting an element is fairly straightforward: Walk to the
bottom, and put it in.

Deleting an element is harder, but made easier by the
following fact:

Binary Search Tree Fact

If a node has two children, then its successor (next largest) has
no left child. Its predecessor (next smallest) has no right child

So to delete, splice a node x with ket k(x), splice out its
success and put it in node x′s place.

Jeff Linderoth IE170:Lecture 8



Hashes
Red-Black Trees

Java Collections

red-black Trees

red-black trees are simply a way to keep binary search trees
short. (Or balanced)

Balanced here means that no path on the tree is more than
twice as long as another path.

An implication of this is that its maximum height is 2 lg(n+1)
search(), minimum(), maximum(), all take O(lg n)
It’s implementation is complicated, so we won’t cover it

insert(): also runs in O lg(n)
delete(): runs in O lg(n)

(but it is more complicated to maintain the “red-black”
property)

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Java Collections

Map

A Map is an object that maps keys to values.

A map cannot contain duplicate keys

It models the mathematical function abstraction.

It is like a “set”, but each element now holds a (key,
value) pair.

Map Implementations

HashMap

TreeMap

LinkedHashMap

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Java Collections

Map

public interface Map<K,V> {

// Basic operations

V put(K key, V value);

V get(Object key);

V remove(Object key);

boolean containsKey(Object key);

boolean containsValue(Object value);

// Collection Views

public Set<K> keySet();

public Collection<V> values();

public Set<Map.Entry<K,V>> entrySet();

// Interface for entrySet elements

public interface Entry {

K getKey();

V getValue();

V setValue(V value);

}

}
Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Java Collections

Some Sample Java Code

public class Freq {

public static void main(String[] args) {

Map<String, Integer> m = new HashMap<String, Integer>();

// Initialize frequency table from command line

for (String a : args) {

Integer freq = m.get(a);

m.put(a, (freq == null) ? 1 : freq + 1);

}

System.out.println(m.size() + " distinct words:");

System.out.println(m);

}

}

put line is a bit tricky here: has the effect of setting the
frequency to one if the word has never been seen before or one
more than its current value if the word has already been seen.

Jeff Linderoth IE170:Lecture 8



Hashes
Red-Black Trees

Java Collections

Iterating on Maps

for (KeyType key : m.keySet())

System.out.println(key);

// Filter a map based on some property of its keys.

for (Iterator<Type> it = m.keySet().iterator(); it.hasNext(); )

if (it.next().isBogus())

it.remove();

To iterate over the pairs – you get the entryset:

for (Map.Entry<KeyType, ValType> e : m.entrySet())

System.out.println(e.getKey() + ": " + e.getValue());

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Heaps

A heap is a balanced binary tree with additional structure that
allows it to function efficiently as a priority queue.

There are two types of heaps: max and min. In lecture, I’ll
stick to max

Priority Queue (Max)

insert(x)

maximum()

x = extract-max()

increase-key(x, k)

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Heaps

Heaps are a bit like binary search trees, however, they enforce
a different property

Heap Property: Children are Horrible!

In a max-heap, the key of the parent node is always at least
as big as its children:

k(p(x)) ≥ k(x) ∀x 6= root

Children are great in min-heaps

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

How to Keep the Heap Property?

Consider a tree in which all nodes except for one have the
heap property.

We can transform this into a tree in which every node has the
heap property.

This operation is called heapify().

Jeff Linderoth IE170:Lecture 8



Hashes
Red-Black Trees

Heapify

heapify(x)
1 Find largest of k(x), k(`(x)), k(r(x))
2 If k(x) is largest, you are done

3 Swap x with largest node, and call heapify() on the new
subtree

Intuition behind analysis: Heap is binary tree, so ≤ lg n levels.
There is a constant amount of work at each level: comparing
three items and swapping two.

⇒ heapify a node in O(lg n)
Alternatively, heapify node of height h is O(h)

Jeff Linderoth IE170:Lecture 8

Hashes
Red-Black Trees

Next Time?

Finish Heaps and show how to sort with heaps: Heapsort

We have covered chapters 1-4, 6, 10-11, and Appendices A
and B: That’s a lot!

News

Homework due 2/5 – No late homework – We do review on
2/5

Quiz on 2/7

Jeff Linderoth IE170:Lecture 8


