Taking Stock

IE170: Algorithms in Systems Engineering: _ast Time • Binary Search Trees Lecture 9 • Java Collections Interfaces: Maps • Heap != Binary Search Tree Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University his Time February 2, 2007

• Heaps

• Heap Sort

Jeff Linderoth	IE170:Lecture 9	Jeff Linderoth	IE170:Lecture 9
Heaps	Definitions	Heaps	Definitions
Heap Sort	Heap Operations	Heap Sort	Heap Operations

Heaps

- A heap is a balanced binary tree with additional structure that allows it to function efficiently as a priority queue.
- There are two types of heaps: \max and \min . In lecture, I'll stick to max

Priority Queue (Max)

- INSERT(x)
- MAXIMUM()
- x = EXTRACT-MAX()
- INCREASE-KEY(x, k)

Heaps

• Heaps are a bit like binary search trees, however, they enforce a different property

Heap Property: Children are Horrible!

• In a max-heap, the key of the parent node is always at least as big as its children:

$k(p(x)) \ge k(x) \quad \forall x \neq root$

• Children are great in min-heaps

Heaps Definitions Heap Sort Heap Operation

How to Keep the Heap Property?

• Consider a tree in which all nodes except for one have the heap property.

- We can transform this into a tree in which every node has the heap property.
- This operation is called HEAPIFY().

Heapify

HEAPIFY(x)

• Find largest of k(x), $k(\ell(x))$, k(r(x))

Heap S

- 2 If k(x) is largest, you are done
- Swap x with largest node, and call HEAPIFY() on the new subtree

Heap Operations

- Intuition behind analysis: Heap is binary tree, so ≤ lg n levels. There is a constant amount of work at each level: comparing three items and swapping two.
- \Rightarrow HEAPIFY a node in $O(\lg n)$
- Alternatively, $\operatorname{HEAPIFY}$ node of height h is O(h)
 - Height of node: number of edges on path to leaf

To Build a Heap

• By calling heapify() on each node, starting at the next to last level and working upward, we can transform an unordered binary tree into a heap.

Analysis

- O(n) calls to HEAPIFY, each of which takes $O(\lg n)$ $\Rightarrow n\lg n$
- But we can do better!

Building A Heap – Analysis

- Note that HEAPIFY really takes O(h) on a node of height h
- $\bullet~$ There aren't "too many" high nodes. In fact, there are $\leq \lceil n/(2^{h+1})\rceil$
- Total Running Time is no more than

$$\sum_{h=1}^{\lg n} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O\left(n \sum_{h=0}^{\lg n} \frac{h}{2^h}\right).$$

• Since $\sum_{h=0}^{\infty} h/2^h = 2$, running time to make a heap is O(n).

Heaps Definitions Heap Sort Heap Operations

Time for Heap Operations

Operations on a Heap

- The node with the highest key is always the root.
- To delete a record
 - Exchange its record with that of a leaf.
 - Delete the leaf.
 - Call heapify().
- To add a record
 - Create a new leaf.
 - Exchange the new record with that of the parent node if it has a higher key.
 - This is like insertion sort just move it up the path...
 - Continue to do this until all nodes have the heap property.

• Suppose the list of items to be sorted are in an array of size n

2 In the i^{th} iteration, exchange the item in position 0 with the

• Put the array in heap order as described above.

item in position n - i and call heapify().

• Note that we can change the key of a node in a similar fashion.

Jeff Linderoth	IE170:Lecture 9	Jeff Linderoth	IE170:Lecture 9
Heaps Heap Sort		Heaps Heap Sort	

Heap Sort

Next Time?

- Review, Review, Review.
 - We have covered chapters 1-4, 6, 10-11, and Appendices A and B: That's a lot!

News

- Homework due 2/5 No late homework We do review on 2/5
- Quiz on 2/7

• The heap sort algorithm is as follows.

• Why is this correct?

• What is the running time?

Heaps Heap Sort

Bear Down, Chicago Bears!

Jeff Linderoth IE170:Lecture 9