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Today’s Outline

About this class

About me
Say Cheese
Quiz Number 0

Integer Programs

Why would you possibly care?
First Definitions
Modeling: Our first integer programs
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Class Overview

Meeting Times: Monday-Wednesday 5:30–6:50

Office Hours:

Monday 8AM–9AM
Wednesday 7–8PM
By Appointment (8-4879).

Course HomePage:

http://www.lehigh.edu/~jtl3/teaching/ie418
I will try to post (draft) outlines of lecture notes there before
class.

Syllabus dates are more than somewhat tentative
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Course Details

Learning is better if you participate.
I will call on you during class. (Gasp!)
Sitting in or Auditing (Why!)

Six or Seven Problem Sets
Can work (and writeup) in groups of two.
The lowest score will count only 50% as much as the others in
determining your homework average score.
Don’t be late! 10% Grade penalty for every late day.
Most problem sets consist of computational assignment, so if
you are computer illerate, you may want to pair with someone
who is not.

Mid Term Exam
Planning an in-class exam

Final Exam
Planning a take-home exam
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Grading

I don’t view grades in (elective) graduate courses as very
important.

You should be here because you want to be here, and you
should learn because you want to learn.

Nevertheless, they make me assign grades. Therefore...

50% Problem Sets
20% Mid Term Exam
30% Final Exam
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Course Topics (Subject to Change)

Module #1: IP Basics

Modeling

Modeling problems with integer decision variables
Formulating and solving MIPS with an AML

Branch-and-Bound

The very basics of the “workhorse” algorithm for solving IPs

Software for IP

Module #2: IP Theory

Complexity Theory

What makes a problem “hard” or “easy”
The complexity classes P, and NP, and NP-completeness

Polyhedral Theory

Dimension, facets, polarity, and the equivalence of
separation and optimization.
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Course Topics (2)

Module #3: Branching-Based Algorithms

Preprocessing and Probing

Cutting Planes and lifting

Branching and Node Selection Rules

Module #4: Advanced Topics

Lagrangian Relaxations, Bender’s Decomposition,
Branch-and-Price.

Primal and Lattice-Based methods
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Course Objectives

1 Be able to read, digest, and understand scholarly journal
articles on integer programming.

2 Become acquainted with “off the shelf” solvers for integer
programs, learn what the algorithmic parameters mean, how
to tune them for improved performance, and how to
customize them for specialized algorithms.

3 Understand how integer variables are used for formulating
complex mathematical models, and in particular, what makes
one valid model “better” than another.

4 Know the basic concepts of complexity theory, to be able to
understand the difference between an “easy” problem and a
“hard” problem.
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Course Objectives

5 Absorb basic polyhedral theory, and use this theory to describe
properties of polyhedra arising from integer programs.

6 Understand the theory of valid inequalities and the lifting of
valid inequalities.

7 Learn different classes of valid inequalities used in commercial
solvers and also problem specific classes of valid inequalities.

8 Understand decomposition-based (problem specific)
techniques for large-scale problems.
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Great Expectations

I am expected to...

Teach

Be at my office hours

Give you feedback on
how you are doing in a
timely fashion

You are expected to...

Learn

Attend lectures and
participate

Do the problem sets

Not be rude, if possible.

Sleeping
Cell Phones
Leaving in the middle
of lecture
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About me...

B.S. (G.E.), UIUC, 1992.

M.S., OR, GA Tech, 1994.

Ph.D., Optimization, GA
Tech, 1998

1998-2000 : MCS, ANL

2000-2002 : Axioma, Inc.

Research Areas: Large Scale
Optimization, High
Performance Computing.

Married. One child, Jacob,
born 10/28/02. He is
awesome.

Hobbies: Golf, Stochastic
Programming, Chess.
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Picture Time

Jeff Linderoth IE418 Integer Programming



Couse Details
Motivation for IP
Integer Programs

Definitions
Mathematical Details
Types of Integer Programs

Programming? I Hate Programming!
Question

What does “Programming” mean in “Mathematical Program-
ming”, “Linear Programming”, “Stochastic Programming”, “In-
teger Programming”?

Answer

Planning

Mathematical Programming (Optimization) is about decision
making.

Integer Programming is about decision making with integers.

More precisely, decision making in which some of the decisions
make take only certain integer values.
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Programming With Integers?!?!?!

Why in the heck would we ever want to program with
integers?

If the variable is associated with a physical entity that is
indivisible, then it must be integer.

Number of airplanes to produce
Number of ears of corn in the state of Illinois to harvest in the
month of October.

How are these two decisions different?

The point here is that sometimes a continuous approximation
to the discrete (integer) decision is accurate enough for
practical purposes.
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IMPORTANT Programming with Integers

We can use 0-1 (binary) variables for a variety of purposes.

Modeling yes/no decisions.
Enforcing disjunctions.
Enforcing logical conditions.
Modeling fixed costs.
Modeling piecewise linear functions.

In most of these cases the continuous approximation to the
discrete decision is not accurate enough for practical purposes.

Before we get to specific modeling instance, let’s look at the
general model...
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MIP

(Linear) Mixed-Integer Programming Problem: (MIP)

max{cT x + hT y | Ax + Gy ≤ b, x ∈ Zn
+, y ∈ Rp

+}

Instance: c ∈ Rn, h ∈ Rp, A ∈ Rm×n, G ∈ Rm×p

MATH NOTATION QUIZ

What the heck is Rp
+?

What the heck is Zn
+?

∈?
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General Comments

Note that the textbook considers maximization problems by
default.

Many people (myself included) often consider minimization as
the default, so be ready to be confused

One further assumption we will make, and never mention
again, is that the input data is rational. e.g. (c ∈ Qn)

This is an important assumption since with irrational data,
certain “intuitive” results no longer hold.
A computer can only understand rational data anyway, so this
is not an unreasonable assumption.
Note that you implicitly assumed this in your linear
programming course anyway!
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How Hard is Integer Programming?

Solving general integer programs can be much more difficult
than solving linear programs.

This is more than just an empirical statement

There is a whole theory surrounding it
You will learn some of the gory details

Solving the associated linear programming relaxation results in
an upper bound on the optimal solution to the MIP.

Rounding to a feasible integer solution may be difficult or
impossible
The optimal solution to the LP relaxation can be arbitrarily far
away from the optimal solution to the MIP.
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Integer Programming Classes

We call the problem mixed integer programming due to the presence
of continuous variables

In some problems x are allowed to take on values only 0 or 1

Such variables are called binary.
Integer programs involving only binary variables are called
binary integer programs (BIPs). (x ∈ Bn)

Pure Integer Programming

G, h, y not present: max{cT x | Ax ≤ b, x ∈ Zn
+}

Mixed 0-1 Programming

x ∈ Bn. G, h, y present:
max{cT x + hT y | Ax + Gy ≤ b, x ∈ Bn

+, y ∈ Rp
+}

Linear Programming(!)

c, A, x not present: max{hT y | Gy ≤ b, y ∈ Rp
+}
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Combinatorial Optimization

A combinatorial optimization problem CP = (N,F) consists
of

A finite ground set N ,
A set F ⊆ 2N of feasible solutions
Costs cj ∀j ∈ N

The cost of F ∈ F is c(F ) =
∑

j∈F cj .

The combinatorial optimization problem is then

max{c(F ) : F ∈ F}

Many COPs can be written as BIPs or MIPs.

We’ll see an example soon...
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The Knapsack Problem

A burglar has a knapsack of size b. He breaks into a store that
carries a set of items N . Each item has profit cj and size aj .

What items should the burglar select in order to optimize his
heist?

xj =

{
1 Item j goes in the knapsack
0 Otherwise

zHEIST = max{
∑
j∈N

cjxj :
∑
j∈N

ajxj ≤ b, xj ∈ {0, 1} ∀j ∈ N}.

Integer Knapsack Problem:

zHEIST = max{
∑
j∈N

cjxj :
∑
j∈N

ajxj ≤ b, xj ∈ Z+ ∀j ∈ N}.
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Fall into the...

Given m machines and n jobs, find a least cost assignment of
jobs to machines not exceeding the machine capacities

Each job j requires aij units of machine i’s capacity bi

min z ≡
m∑

i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

aijxij ≤ bi ∀i (Machine Capacity)

m∑
i=1

xij = 1 ∀j (Assign all jobs)

xij ∈ {0, 1} ∀i, j
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Modeling Dependent Decisions

We can also use binary variables to enforce the condition that
a certain action can only be taken if some other action is also
taken.

Suppose x and y are variables representing whether or not to
take certain actions.

The constraint x ≤ y says “only take action x if action y is
also taken”

Uncapacitated facility location.

Set of facilities J , Set of customers I. Which facilities should
be opened in order to meet customer demand at minimum
cost?
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UFL

xj = 1: If and only if we open facility j

yij : Fraction of customer j’s demand
satisfied by facility i

min
∑
j∈J

cjxj +
∑
i∈I

∑
j∈J

fijyij

∑
j∈N

yij = 1 ∀i ∈ I

∑
i∈I

yij ≤ xj ∀j ∈ J (1)

xj ∈ {0, 1} ∀j ∈ J (2)

yij ≥ 0 ∀i ∈ I,∀j ∈ J (3)
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Selecting from a Set

We can use constraints of the form
∑

j∈T xj ≥ 1 to represent
that at least one item should be chosen from a set T .

Similarly, we can also model that at most one or exactly one
item should be chosen.

Example: Set covering problem

If A in a 0-1 matrix, then a set covering problem is any
problem of the form

min cT x
s.t. Ax ≥ e1

xj ∈ {0, 1} ∀j

Set Packing: Ax ≤ e

Set Partitioning: Ax = e
1It is common to denote the vector of 1’s as e
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COP—Set {Covering, Packing, Partitioning}

A combinatorial
optimization
problem
CP = (N,F)
consists of

A finite ground
set N ,
A set F ⊆ 2N

of feasible
solutions, and
A cost function
c

Each row of A represents an item
from N

Each column Aj represents a
subset Nj ∈ F of the items.

Each variable xj represents
selecting subset Nj .

The constraints say that
∪{j|xj=1}Nj = N .

In other words, each item must
appear in at least one selected
subset.
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Vehicle Routing

x1 x2 x3 . . .

Customer 1 : 1 0 0
... = 1

Customer 2 : 0 1 0
... = 1

Customer 3 : 0 1 1
... = 1

Customer 4 : 0 1 0
... = 1

Customer 5 : 1 0 1
... = 1

This is a very flexible modeling trick

You can list all feasible routes, allowing you to handle “weird”
constraints like time windows, strange precedence rules, nonlinear
cost functions, etc. Jeff Linderoth IE418 Integer Programming
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The Farmer’s Daughter

This is The Most Famous Problem in Combinatorial Optimization!

A traveling salesman must visit all his cities at minimum cost.

Given directed
(complete) graph
with node set N

Costs cij of traveling
from city i to city j

xij = 1 if and only if
salesman goes from
city i to city j

min
∑
i∈N

∑
j∈N

cijxij

∑
i∈N

xij = 1 ∀j ∈ N∑
j∈N

xij = 1 ∀i ∈ N

Subtour elimination constraint:∑
i∈S

∑
j 6∈S

xij ≥ 1 ∀S ⊆ N, 2 ≤ |S| ≤ |N |−2
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TSP Trivia Time!

Historically, this was the first problem on which “branch and
cut” was performed (by Dantzig, Fulkerson, and Johnson).

101851798816724304313422284420468908052573419683296
8125318070224677190649881668353091698688.

Is this...

a) The number of times an undergraduate student asked me
where room 355 was this week?

b) The number of subatomic particles in the universe?
c) The number of subtour elimination constraints when
|N | = 299.

d) All of the above?
e) None of the above?
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Answer Time

The answer is (e). (a)–(c) are all too small (as far as I know)
:-). (It is (c), for |N | = 300).

“Exponential” is really big.

Yet people have solved TSP’s with |N | > 16, 000!

You will learn how to solve these problems too!

The “trick” is to only add the subset of constraints that are
necessary to prove optimality. branch-and-cut

Jeff Linderoth IE418 Integer Programming



Couse Details
Motivation for IP
Integer Programs

Simple Binary Models
Combinatorial Optimization Problems
Special Ordered Sets
“Algorithmic” Modeling

Modeling a Restricted Set of Values

We may want variable x to only take on values in the set
{a1, . . . , am}.
We introduce m binary variables yj , j = 1, . . . ,m and the
constraints

x =
m∑

j=1

ajyj ,

m∑
j=1

yj = 1,

yj ∈ {0, 1}

This is called a special ordered set (SOS) of variables.
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Example—Building a warehouse

Suppose we are modeling a facility location problem in which
we must decide on the size of a warehouse to build.

The choices of sizes and their associated cost are shown
below:

Size Cost

10 100
20 180
40 320
60 450
80 600

Warehouse sizes and costs
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Warehouse Modeling

Using binary decision variables x1, x2, . . . , x5, we can model
the cost of building the warehouse as

COST ≡ 100x1 + 180x2 + 320x3 + 450x4 + 600x5.

The warehouse will have size

SIZE ≡ 10x1 + 20x2 + 40x3 + 60x4 + 80x5,

and we have the SOS constraint

x1 + x2 + x3 + x4 + x5 = 1.
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Piecewise Linear Cost Functions

We can use binary variables to model arbitrary piecewise linear
cost functions.

The function is specified by ordered pairs (ai, f(ai)) and we
wish to evaluate f(x)

We have a binary variable yi, which indicates whether
ai ≤ x ≤ ai+1.

To evaluate the function, we will take linear combinations∑k
i=1 λif(ai) of the given functions values.

This only works if the only two nonzero λ′is are the ones
corresponding to the endpoints of the interval in which x lies.
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Minimizing Piecewise Linear Cost Functions

The following formulation minimizes the function.

min
∑k

i=1 λif(ai)

s.t.
∑k

i=1 λi = 1,
λ1 ≤ y1,
λi ≤ yi−1 + yi, i ∈ [2..k − 1],
λk ≤ yk−1,∑k−1

i=1 yi = 1,
λi ≥ 0,
yi ∈ {0, 1}.

The key is that if yj = 1, then λi = 0, ∀i 6= j, j + 1.
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SOS2

A “better” formulation involves the use of special ordered sets
of type 2

SOS2 : A set of variables of which at most two can be
positive. If two are positive, they must be adjacent in the set.

min
∑k

i=1 λif(ai)

s.t.
∑k

i=1 λi = 1,
λi ≥ 0,
{λ1, λ2, . . . , λk} SOS2

The adjacency conditions of SOS2 are enforced by the
solution algorithm

(All) commercial solvers allow you to specify SOS2
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Modeling Disjunctive Constraints

We are given two constraints aT x ≥ b and cT x ≥ d with
nonnegative coefficients.

Instead of insisting both constraints be satisfied, we want at
least one of the two constraints to be satisfied.

To model this, we define a binary variable y and impose

aT x ≥ yb,

cT x ≥ (1− y)d,

y ∈ {0, 1}.
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Modeling Disjunctive Constraints

More generally, we can impose that exactly k out of m
constraints be satisfied with

(a′i)
T x ≥ biyi, i ∈ [1..m]∑m

i=1 yi ≥ k,
yi ∈ {0, 1}
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The Bag of Tricks

Indicator variables (Positivity of variables)

Limiting the Number of Positive Variables
“Fixed Charge” problems
Minimum production level

Indicator variables (Validity of constraints)

Either-or
If-then
k out of n
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The Bag of Tricks

Special Ordered Sets

Nonconvex regions

Economies of Scale

Discrete Capacity Extensions

Maximax or Minimin
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The Slide of Tricks. Indicator Variables...

δ = 1 ⇒
∑

j∈N ajxj ≤ b∑
j∈N ajxj+Mδ ≤ M+b∑

j∈N ajxj ≤ b ⇒ δ = 1∑
j∈N ajxj − (m− ε)δ ≥

b + ε

δ = 1 ⇒
∑

j∈N ajxj ≥ b∑
j∈N ajxj +mδ ≥ m+ b∑

j∈N ajxj ≥ b ⇒ δ = 1∑
j∈N ajxj − (M + ε)δ ≤

b− ε

Definitions

δ: Indicator variable
(δ ∈ {0, 1}).
M : Upper bound on∑

j∈N ajxj − b

m: Lower bound on∑
j∈N ajxj − b

ε: Small tolerance
beyond which we regard
the constraint as haven
been broken.

If aj ∈ Z, xj ∈ Z,
then we can take
ε = 1.
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Modeling Trick #1

Indicating Constraint (Non)violation

Suppose we wish to indicate whether or not an inequality∑
j∈N ajxj ≤ b holds by means of an indicator variable δ.

That is.

δ = 1 ⇒
∑

j∈N ajxj ≤ b

This can be represented by the constraint∑
j∈N ajxj + Mδ ≤ M + b
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Trick #1... The Logic

δ = 1 ⇒
∑

j∈N ajxj ≤ b ⇔
∑

j∈N ajxj + Mδ ≤ M + b

(Thinking)...

δ = 1 ⇒
∑

j∈N ajxj − b ≤ 0
1− δ = 0 ⇒

∑
j∈N ajxj − b ≤ 0∑

j∈N ajxj − b ≤ M(1− δ)

Does it work?
δ = 0 ⇒

∑
j∈N ajxj − b ≤ M

(true by definition of M)

δ = 1 ⇒
∑

j∈N ajxj − b ≤ 0
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Modeling Trick #2

∑
j∈N ajxj ≤ b ⇒ δ = 1

δ = 0 ⇒
∑

j∈N ajxj 6≤ b

δ = 0 ⇒
∑

j∈N ajxj > b

δ = 0 ⇒
∑

j∈N ajxj ≥ b + ε

If aj , xj are integer, we can choose ε = 1

Model as
∑

j∈N ajxj − (m− ε)δ ≥ b + ε

m is a lower bound for the expression
∑

j∈N ajxj − b
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Some Last Modeling Tricks

δ = 1 ⇒
∑

j∈N ajxj ≥ b

Model as
∑

j∈N ajxj + mδ ≥ m + b

∑
j∈N ajxj ≥ b ⇒ δ = 1

Model as
∑

j∈N ajxj − (M + ε)δ ≤ b− ε

You can obtain these by just transforming the constraints to
≤ form and using the first two tricks.
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Example

Use a 0-1 variable δ to indicate whether or not the constraint
2x1 + 3x2 ≤ 1 is satisfied.

x1, x2 are nonnegative continuous variables that cannot exceed
1.

δ = 1 ⇔ 2x1 + 3x2 ≤ 1

M : Upper Bound on 2x1 + 3x2 − 1. 4 works

m : Lower Bound on 2x1 + 3x2 − 1. −1 works.

ε : 0.1
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Example, Cont.

(⇒) Recall the trick.

δ = 1 ⇒
∑

j∈N ajxj ≤ b ⇔
∑

j∈N ajxj + Mδ ≤ M + b

2x1 + 3x2 + 4δ ≤ 5

(⇐). Recall the trick.∑
j∈N ajxj ≤ b ⇒ δ = 1 ⇔

∑
j∈N ajxj − (m− ε)δ ≥ b + ε

2x1 + 3x2 + 1.1δ ≥ 1.1

2x1 + 3x2 + 4δ ≤ 5

2x1 + 3x2 + 1.1δ ≥ 1.1
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A More Realistic Example

PPP—Production Planning Problem. (A simple linear
program).

An engineering plant can produce five types of products:
p1, p2, . . . p5 by using two production processes: grinding and
drilling. Each product requires the following number of hours
of each process, and contributes the following amount (in
hundreds of dollars) to the net total profit.

p1 p2 p3 p4 p5

Grinding 12 20 0 25 15
Drilling 10 8 16 0 0
Profit 55 60 35 40 20
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PPP – More Info

Each unit of each product take 20 manhours for final
assembly.

The factory has three grinding machines and two drilling
machines.

The factory works a six day week with two shifts of 8
hours/day. Eight workers are employed in assembly, each
working one shift per day.
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PPP

maximize

55x1 + 60x2 + 35x3 + 40x4 + 20x5 (Profit/week)

subject to

12x1 + 20x2 + 0x3 + 25x4 + 15x5 ≤ 288 (Grinding)

10x1 + 8x2 + 16x3 + 0x4 + 0x5 ≤ 192 (Drilling)

20x1 + 20x2 + 20x3 + 20x4 + 20x5 ≤ 384 Final Assembly

xi ≥ 0 ∀i = 1, 2, . . . 5
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Another PPP Modeling Example

Let’s model the following situation.

If we manufacture P1 or P2 (or both), then at least one of
P3, P4, P5 must also be manufactured.

Recall – We have indicator variables zj that indicate when
each of the xj > 0.

How do we model xj > 0 ⇒ zj = 1?.
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Modeling the Logic

Answer: xj ≤ Mzj

Given that we have included the constraints xj ≤ Mzj , we’d
like to model the following implication:

z1 + z2 ≥ 1 ⇒ z3 + z4 + z5 ≥ 1

Can you just “see” the answer?

I can’t. So let’s try our “formulaic” approach.

Think of it in two steps

z1 + z2 ≥ 1 ⇒ δ = 1
δ = 1 ⇒ z3 + z4 + z5 ≥ 1.
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Look up the Tricks

First we model the following:

z1 + z2 ≥ 1 ⇒ δ = 1

The formula from the bag o’ tricks∑
j∈N ajxj ≥ b ⇒ δ = 1 ⇔

∑
j∈N ajxj − (M + ε)δ ≤ b− ε

M : Upper Bound on
∑

j∈N ajzj − b

M = 1 in this case. (z1 ≤ 1, z2 ≤ 1, b = 1).

ε : “Tolerance Level” indicating the minimum about by which
the constraint can be violated.

ε = 1 in this case!
If the constraint is going to be violated, then it will be violated
by at least one.
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Modeling z1 + z2 ≥ 1 ⇒ δ = 1, Cont.

Just plug in the formula
∑

j∈N ajxj − (M + ε)δ ≤ b− ε

z1 + z2 − 2δ ≤ 0

Does this do what we want?

z1 z2 δ

0 0 ≥ 0
0 1 ≥ 1/2(⇒= 1)
1 0 ≥ 1/2(⇒= 1)
1 1 ≥ 1
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Second Part

Want to model the following:

δ = 1 ⇒ z3 + z4 + z5 ≥ 1.

The formula from the bag o’ tricks

δ = 1 ⇒
∑

j∈N ajxj ≥ b ⇔
∑

j∈N ajxj + mδ ≥ m + b

m : lower bound on
∑

j∈N ajxj − b.

m = −1. (z1 ≥ 0, z2 ≥ 0, b = 1).

Plug in the formula:

z3 + z4 + z5 − δ ≥ 0

It works! (Check for δ = 0, δ = 1).
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PPP, Make 1 or 2 ⇒ make 3, 4, or 5

maximize
55x1 + 60x2 + 35x3 + 40x4 + 20x5 (Profit/week)

subject to

12x1 + 20x2 + 0x3 + 25x4 + 15x5 ≤ 288

10x1 + 8x2 + 16x3 + 0x4 + 0x5 ≤ 192

20x1 + 20x2 + 20x3 + 20x4 + 20x5 ≤ 384

xi ≤ Mizi ∀i = 1, 2, . . . 5

z1 + z2 − 2δ ≤ 0

z3 + z4 + z5 − δ ≥ 0

xi ≥ 0 ∀i = 1, 2, . . . 5

zi ∈ {0, 1}∀i = 1, 2, . . . 5

δ ∈ {0, 1}
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Cool Things You Can Now Do

Either constraint 1 or constraint 2 must hold

Create indicators δ1, δ2, then δ1 + δ2 ≥ 1

At least one constraint of all the constraints in M should hold∑
i∈M δi ≥ 1

At least k of the constraints in M must hold∑
i∈M δi ≥ k

If x, then y

δy ≥ δx
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