IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

23rd February 2005

Jeff Linderoth Review Relations Between Problems NP-complete proofs In Conclusion...

The Ingredients Some Easy Problems The Hard Problems

IE418 Integer Programming

Computational Complexity

- The ingredients that we need to build a theory of computational complexity for problem classification are the following
 - $\bullet\,$ A class ${\mathcal C}$ of problems to which the theory applies
 - A (nonempty) subclass $C_{\mathcal{E}} \subseteq C$ of "easy" problems
 - A (nonempty) subclass $C_{\mathcal{H}} \subseteq C$ of "hard" problems
 - A relation < "not more difficult than" between pairs of problems
- Our goal is just to put some definitions around this machinery
 - Thm: $Q \in \mathcal{C}_{\mathcal{E}}, P \lhd Q \Rightarrow P \in \mathcal{C}_{\mathcal{E}}$
 - Thm: $P \in \mathcal{C}_{\mathcal{H}}, P \lhd Q \Rightarrow Q \in \mathcal{C}_{\mathcal{H}}$

The "Easy" problems—Class \mathcal{P}

- \mathcal{P} is the class of problems for which there exists a polynomial algorithm.
- $\mathcal{P} \in \mathcal{NP} \cap \text{co-}\mathcal{NP}$: Why?
- \bullet Some problems in ${\cal P}$

Matching

- Given: Graph $G = (V, E), k \in \mathbb{Z}$
- Question: Does ∃ a matching M in G with |M| ≥ k. A matching is a subset of edges such that no two edges share a common endpoint). More mathy:
 (i, i) ⊂ M ⇒ (i, k) ⊂ M∀k ≠ i
 - $(i,j) \in M \Rightarrow (i,k) \notin M \forall k \neq j.$

Jeff Linderoth Review Relations Between Problems NP-complete proofs In Conclusion... IE418 Integer Programming

The Ingredients Some Easy Problems The Hard Problems

More Problems in \mathcal{P}

LP

- Given: $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$.
- Question: Does $\exists x \in \mathbb{R}^n_+$ such that $Ax \leq b, c^T x \geq K$?

Assignment Problem

- Given: set $N = \{1, 2, \dots, n\}$, costs $c_{ij} \in \mathbb{Z}_+ \forall (i, j) \in (N \times N)$
- Question: Does \exists a permutation Π of N such that $\sum_{i \in N} c_{i\pi(i)} \ge Q$

The Ingredients Some Easy Problems The Hard Problems

More Problems in \mathcal{P}

Longest Path in a DAG

- Given: A directed acyclic graph G = (N, A), lengths $\ell_a \in \mathbb{Z} \ \forall a \in A$
- Question: Does \exists a path P in G such that $\sum_{a \in P} \ell_a \ge K$?

The "Hard Problems"—Class \mathcal{NPC}

- We want to ask the question—What are the hardest problems in $\mathcal{NP}?$
 - We'll call this class of problems \mathcal{NPC} , " \mathcal{NP} -Complete".
- Using the definitions we have made, we would like to say that if $P \in \mathcal{NPC}$, then $Q \in \mathcal{NP} \Rightarrow Q \lhd P$
 - If P ∈ NP and we can convert in polynomial time every other problem Q ∈ NP to P, then P is in this sense the "hardest" problem in NP. P ∈ NPC
- Is it obvious that such problems exist?
 - No! We'll come to this later...
- Thm: $Q \in \mathcal{P}, P \lhd Q \Rightarrow P \in \mathcal{P}$
- Thm: $P \in \mathcal{NPC}, P \lhd Q \Rightarrow Q \in \mathcal{NPC}$

 $\begin{array}{c} \text{Reductions} \\ \mathcal{NPC} \end{array}$

Polynomial Reduction

- If problems $P, Q \in \mathcal{NP}$, and if an instance of P can be converted *in polynomial time* to an instance of Q, then P is *polynomially reducible* to Q.
 - This is the "not (substantially) more difficult than" relation that we want to use.
 - We will write this as $P \lhd Q$
- Depending on time, I will show a couple reductions here.

Jeff Linderoth	IE418 Integer Programming
Review Relations Between Problems NP-complete proofs In Conclusion	$\begin{array}{c} \text{Reductions} \\ \mathcal{NPC} \end{array}$

Knapsack <1 ⁷ Longest Path in DAG

Knapsack Problem

- Given: set N, profits $p_j \in \mathbb{Z}_+ \ \forall j \in N$, sizes: $s_j \in \mathbb{Z}_+ \ \forall j \in N$, $B \in \mathbb{Z}$, $K \in \mathbb{Z}$
- Question: Does \exists a subset $N' \subseteq N$ such that $\sum_{j \in N'} s_j \leq B$ and $\sum_{j \in N'} p_j \geq K$?

construct something here ...

Prove: \exists a path of length Q in the DAG above $\Leftrightarrow \exists$ a subset $N' \subseteq N$ such that $\sum_{j \in N'} s_j \leq B$ and $\sum_{j \in N'} p_j \geq K$.

SHOW ME THE MONEY!

- The following statements are true:
 - ① Longest Path in DAG is in ${\mathcal P}$
 - In Knapsack is in NPC
- Thm: If $P \cap \mathcal{NPC} \neq \emptyset \Rightarrow \mathcal{P} = \mathcal{NP}$
- Did I just win \$1M?
 - Convert Knapsack to Longest Path on DAG, and solve!

The Satisfiability Problem

- This is the first problem to be shown to be NP-complete.
- The problem is described by
 - a finite set $N = \{1, \ldots, n\}$ (the *literals*), and
 - m pairs of subsets of N, $C_i = (C_i^+, C_i^-)$ (the *clauses*).
- An instance is feasible if the set

$$\left\{x \in \mathbb{B}^n \mid \sum_{j \in C_i^+} x_j + \sum_{j \in C_i^-} (1 - x_j) \ge 1 \ \forall i = 1, \dots, m\right\}$$

is nonempty.

- This problem is in \mathcal{NP} . Why?
- In 1971, Cook defined the class \mathcal{NP} and showed that satisfiability was NP-complete.

• We will not attempt to understand the proof

The Line Between $\mathcal P$ and \mathcal{NPC}

The line between these two classes is very thin!

- Shortest Path (with non-negative edge weights) is in \mathcal{P} .
- \bullet Longest Path (with non-negative edge weights) is in \mathcal{NPC}

Chinese Postman

- Given: Undirected graph $G = (V, E), w_e \in \mathbb{Z}_+ \forall e \in E, B \in \mathbb{Z}$
- Question: Does ∃ a cycle in G traversing each edge at least once whose total weight is ≤ B?

Chinese Postman $\in \mathcal{P}$

Jeff Linderoth Review Relations Between Problems NP-complete proofs In Conclusion... IE418 Integer Programming

Reduction: \mathcal{NPC}

The Line Between \mathcal{P} and \mathcal{NPC}

Directed Chinese Postman

- Given: Directed Graph $G = (N, A), w_a \in \mathbb{Z}_+ \forall a \in A, B \in \mathbb{Z}$
- Question: Does ∃ a cycle in G traversing each arc at least once whose total weight is ≤ B?

Directed Chinese Postman $\in \mathcal{P}$

Mixed Chinese Postman

- Given: Mixed Graph $G = (V, A \cup E), w_e \in \mathbb{Z}_+ \forall e \in (A \cup E), B \in \mathbb{Z}$
- Question: Does ∃ a cycle in G traversing each edge and each arc at least once whose total weight is ≤ B?

Mixed Chinese Postman $\in \mathcal{NPC}$

Reductions \mathcal{NPC}

That Thin, Thin Line

• Consider a 0-1 matrix ${\cal A}$ an integer k defining the decision problem

$$\exists \{x \in \mathbf{B}^n \mid Ax \le e, e^T x \ge k\}?$$

- If we limit the number of nonzero entries in each column to 2, then this problem is known to be in \mathcal{P} .
 - What is this problem?
- If we allow the number of nonzero entries in each column to be 3, then this problem is \mathcal{NP} -complete!
 - What is this problem?
- If we allow at most one '1' per row, the problem is in ${\cal P}$
 - Prove it!
- If we allow two '1's per row, it is in \mathcal{NPC}

Proving \mathcal{NP} -completeness

- In fact, that is what we will prove now...
- Once we know that satisfiability is \mathcal{NP} -complete, we can use this to prove other problems are \mathcal{NP} -complete using the "reduction theorem":
 - $P \in \mathcal{NPC}, P \lhd Q \Rightarrow Q \in \mathcal{NPC}$
- Let's prove that **Node Packing** is NP-Complete.

Node Packing (or Independent Set)

- Given: Graph $G = (V, E), k \in \mathbb{Z}$
- Question: Does $\exists U \subseteq V$ such that $|U| \ge k$ and U is a node packing. $(u \in U \Rightarrow v \notin U \ \forall v \in \delta(u))$

Our first \mathcal{NP} -complete proof Other Problems Other Methods

Reduction

Your writing here...

Jeff Linderoth	
Review Relations Between Problems <i>NP</i> -complete proofs In Conclusion	

IE418 Integer Programming Our first \mathcal{NP} -complete proof Other Problems

Other Problems we just proved \mathcal{NP} -Complete

- Given graph G = (V, E), its complement is $\overline{G} = (V, \{(i, j) \mid i \in V, j \in V, (i, j) \notin E\})$
 - For the math-illiterate: Same set of vertices, all edges *not* in the original graph.

Theorem

Given G = (V, E). The following statements are equivalent.

- **1** *is an independent set for G*
- **2** $V \setminus I$ is a vertex cover for G
- **③** I is a clique in \overline{G}

Our first \mathcal{NP} -complete proof Other Problems Other Methods

Other NP-Complete Problems

Maximum Clique

- Given: Graph $G = (V, E), k \in \mathbb{Z}$
- Question: Does $\exists U \subseteq V$ such that $|U| \ge k$ and U is a clique. $(u \in U \Rightarrow v \in U \ \forall v \in \delta(u))$

Proof: Max Independent Set \triangleleft Maximum Clique. Given MIS instance: $G_1 = (V, E), q$. Construct MC instance consisting of $G = \overline{G}_1$, and k = q. U is a clique of size q in G if and only if U is an independent set of size k in G_1 .

Jeff Linderoth	IE418 Integer Programming
Review Relations Between Problems NP-complete proofs In Conclusion	Our first \mathcal{NP} -complete proof Other Problems Other Methods

Other NP-Complete Problems

Minimum Vertex Cover

- Given: Graph $G = (V, E), k \in \mathbb{Z}$
- Question: Does $\exists U \subseteq V$ such that $|U| \leq k$ and U is a vertex cover: $(\forall (u, v) \in E \text{ either } u \in U \text{ or } v \in U)$.

Proof: Maximum Independent Set \triangleleft Minimum Vertex Cover. Given MIS instance: $G_1 = (V, E), q$. Construct MVC instance consisting of $G = G_1$, and k = |V| - q. U is a vertex cover of size k in G if and only if $V \setminus U$ is an independent set of size q in G_1 .

Other methods of proving \mathcal{NP} -Completeness

This is from the Garey and Johnson Handout...

- Restriction
 - If you can show that a special case of the problem is an $\mathcal{NP}\text{-}\mathrm{complete}$ problem, then the problem must be $\mathcal{NP}\text{-}\mathrm{complete}$
- 2 Local Replacement
 - This is like what we did to prove node packing is NP-complete.
- Omponent Design
 - These are hard.
 - I welcome you to read and look through some of the proofs for yourself!

Jeff Linderoth	IE418 Integer Programming
Review Relations Between Problems NP-complete proofs In Conclusion	

Theory versus Practice

- In practice, it is true that most problem known to be in ${\cal P}$ are "easy" to solve.
- This is because most known polynomial time algorithms are of relatively low order.
- It seems very unlikely that $\mathcal{P}=\mathcal{NP}$
- Although all NP-complete problems are "equivalent" in theory, they are not in practice.
- TSP vs. QAP
 - TSP—Solved instances of size ≈ 17000
 - QAP—Solved instances of size ≈ 30

That's It!

- Next Time: Review for midterm
- Midterm on 3/2!

Jeff Linderoth IE418 Integer Programming