IE418: Integer Programming

Jeff Linderoth
Department of Industrial and Systems Engineering
Lehigh University

23rd February 2005

Computational Complexity

- The ingredients that we need to build a theory of computational complexity for problem classification are the following
- A class \mathcal{C} of problems to which the theory applies
- A (nonempty) subclass $\mathcal{C}_{\mathcal{E}} \subseteq \mathcal{C}$ of "easy" problems
- A (nonempty) subclass $\mathcal{C}_{\mathcal{H}} \subseteq \mathcal{C}$ of "hard" problems
- A relation \triangleleft "not more difficult than" between pairs of problems
- Our goal is just to put some definitions around this machinery
- Thm: $Q \in \mathcal{C}_{\mathcal{E}}, P \triangleleft Q \Rightarrow P \in \mathcal{C}_{\mathcal{E}}$
- Thm: $P \in \mathcal{C}_{\mathcal{H}}, P \triangleleft Q \Rightarrow Q \in \mathcal{C}_{\mathcal{H}}$

The "Easy" problems-Class \mathcal{P}

- \mathcal{P} is the class of problems for which there exists a polynomial algorithm.
- $\mathcal{P} \in \mathcal{N} \mathcal{P} \cap \operatorname{co-\mathcal {N}\mathcal {P}:Why?~}$
- Some problems in \mathcal{P}

Matching

- Given: Graph $G=(V, E), k \in \mathbb{Z}$
- Question: Does \exists a matching M in G with $|M| \geq k$. A matching is a subset of edges such that no two edges share a common endpoint). More mathy:
$(i, j) \in M \Rightarrow(i, k) \notin M \forall k \neq j$.

Jeff Linderoth
Review
Relations Between Problems
N P-complete proofs
In Conclusion..

IE418 Integer Programming
The Ingredients
Some Easy Problems
The Hard Problems

More Problems in \mathcal{P}

LP

- Given: $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}$.
- Question: Does $\exists x \in \mathbb{R}_{+}^{n}$ such that $A x \leq b, c^{T} x \geq K$?

Assignment Problem

- Given: set $N=\{1,2, \ldots, n\}$, costs
$c_{i j} \in \mathbb{Z}_{+} \forall(i, j) \in(N \times N)$
- Question: Does \exists a permutation Π of N such that $\sum_{i \in N} c_{i \pi(i)} \geq Q$

More Problems in \mathcal{P}

Longest Path in a DAG

- Given: A directed acyclic graph $G=(N, A)$, lengths $\ell_{a} \in \mathbb{Z} \forall a \in A$
- Question: Does \exists a path P in G such that $\sum_{a \in P} \ell_{a} \geq K$?

Jeff Linderoth
Review
Relations Between Problems
N P-complete proofs In Conclusion..

IE418 Integer Programming
The Ingredients
Some Easy Problems
The Hard Problems

The "Hard Problems"—Class $\mathcal{N} \mathcal{P C}$

- We want to ask the question-What are the hardest problems in $\mathcal{N P}$?
- We'll call this class of problems $\mathcal{N P} \mathcal{P}$, " $\mathcal{N P}$-Complete".
- Using the definitions we have made, we would like to say that if $P \in \mathcal{N} \mathcal{P C}$, then $Q \in \mathcal{N} \mathcal{P} \Rightarrow Q \triangleleft P$
- If $P \in N P$ and we can convert in polynomial time every other problem $Q \in N P$ to P, then P is in this sense the "hardest" problem in $\mathcal{N P} . P \in \mathcal{N} \mathcal{P C}$
- Is it obvious that such problems exist?
- No! - We'll come to this later...
- Thm: $Q \in \mathcal{P}, P \triangleleft Q \Rightarrow P \in \mathcal{P}$
- Thm: $P \in \mathcal{N P C}, P \triangleleft Q \Rightarrow Q \in \mathcal{N P C}$

Polynomial Reduction

- If problems $P, Q \in \mathcal{N P}$, and if an instance of P can be converted in polynomial time to an instance of Q, then P is polynomially reducible to Q.
- This is the "not (substantially) more difficult than" relation that we want to use.
- We will write this as $P \triangleleft Q$
- Depending on time, I will show a couple reductions here.

Knapsack \triangleleft ? Longest Path in DAG

Knapsack Problem

- Given: set N, profits $p_{j} \in \mathbb{Z}_{+} \forall j \in N$, sizes:

$$
s_{j} \in \mathbb{Z}_{+} \forall j \in N, B \in \mathbb{Z}, K \in \mathbb{Z}
$$

- Question: Does \exists a subset $N^{\prime} \subseteq N$ such that $\sum_{j \in N^{\prime}} s_{j} \leq B$ and $\sum_{j \in N^{\prime}} p_{j} \geq K ?$
construct something here...

Prove: \exists a path of length Q in the DAG above $\Leftrightarrow \exists$ a subset $N^{\prime} \subseteq N$ such that $\sum_{j \in N^{\prime}} s_{j} \leq B$ and $\sum_{j \in N^{\prime}} p_{j} \geq K$.

SHOW ME THE MONEY!

- The following statements are true:
(1) Longest Path in DAG is in \mathcal{P}
(2) Knapsack is in $\mathcal{N P C}$
- Thm: If $P \cap \mathcal{N} \mathcal{P C} \neq \emptyset \Rightarrow \mathcal{P}=\mathcal{N} \mathcal{P}$
- Did I just win \$1M?
- Convert Knapsack to Longest Path on DAG, and solve!

The Satisfiability Problem

- This is the first problem to be shown to be $N P$-complete.
- The problem is described by
- a finite set $N=\{1, \ldots, n\}$ (the literals), and
- m pairs of subsets of $N, C_{i}=\left(C_{i}^{+}, C_{i}^{-}\right)$(the clauses).
- An instance is feasible if the set

$$
\left\{x \in \mathbb{B}^{n} \mid \sum_{j \in C_{i}^{+}} x_{j}+\sum_{j \in C_{i}^{-}}\left(1-x_{j}\right) \geq 1 \forall i=1, \ldots, m\right\}
$$

is nonempty.

- This problem is in $\mathcal{N P}$. Why?
- In 1971, Cook defined the class $\mathcal{N P}$ and showed that satisfiability was NP-complete.
- We will not attempt to understand the proof

The Line Between \mathcal{P} and $\mathcal{N P C}$

The line between these two classes is very thin!

- Shortest Path (with non-negative edge weights) is in \mathcal{P}.
- Longest Path (with non-negative edge weights) is in $\mathcal{N P \mathcal { C }}$

Chinese Postman

- Given: Undirected graph $G=(V, E), w_{e} \in \mathbb{Z}_{+} \forall e \in E, B \in \mathbb{Z}$
- Question: Does \exists a cycle in G traversing each edge at least once whose total weight is $\leq B$?

Chinese Postman $\in \mathcal{P}$

Jeff Linderoth Review
Relations Between Problems
N P-complete proofs
In Conclusion.

IE418 Integer Programming
Reductions
$\mathcal{N P C}$

The Line Between \mathcal{P} and $\mathcal{N} \mathcal{P} \mathcal{C}$

Directed Chinese Postman

- Given: Directed Graph

$$
G=(N, A), w_{a} \in \mathbb{Z}_{+} \forall a \in A, B \in \mathbb{Z}
$$

- Question: Does \exists a cycle in G traversing each arc at least once whose total weight is $\leq B$?

Directed Chinese Postman $\in \mathcal{P}$

Mixed Chinese Postman

- Given: Mixed Graph
$G=(V, A \cup E), w_{e} \in \mathbb{Z}_{+} \forall e \in(A \cup E), B \in \mathbb{Z}$
- Question: Does \exists a cycle in G traversing each edge and each arc at least once whose total weight is $\leq B$?

Mixed Chinese Postman $\in \mathcal{N} \mathcal{P C}$

That Thin, Thin Line

- Consider a 0-1 matrix A an integer k defining the decision problem

$$
\exists\left\{x \in \mathbf{B}^{n} \mid A x \leq e, e^{T} x \geq k\right\} ?
$$

- If we limit the number of nonzero entries in each column to 2 , then this problem is known to be in \mathcal{P}.
- What is this problem?
- If we allow the number of nonzero entries in each column to be 3 , then this problem is $\mathcal{N P}$-complete!
- What is this problem?
- If we allow at most one ' 1 ' per row, the problem is in \mathcal{P}
- Prove it!
- If we allow two ' 1 's per row, it is in $\mathcal{N P C}$

Jeff Linderoth	IE418 Integer Programming		
Review		\quad	Our first $\mathcal{N} \mathcal{P}$-complete proof
:---			
Relations Between Problems			
$N \operatorname{P}$-complete proofs			
In Conclusion...			

Proving $\mathcal{N} \mathcal{P}$-completeness

- In fact, that is what we will prove now...
- Once we know that satisfiability is $\mathcal{N} \mathcal{P}$-complete, we can use this to prove other problems are $\mathcal{N} \mathcal{P}$-complete using the "reduction theorem":
- $P \in \mathcal{N P C}, P \triangleleft Q \Rightarrow Q \in \mathcal{N P C}$
- Let's prove that Node Packing is NP-Complete.

Node Packing (or Independent Set)

- Given: Graph $G=(V, E), k \in \mathbb{Z}$
- Question: Does $\exists U \subseteq V$ such that $|U| \geq k$ and U is a node packing. ($u \in U \Rightarrow v \notin U \forall v \in \delta(u)$)

Reduction

Your writing here...

IE418 Integer Programming

Other Problems we just proved $\mathcal{N} \mathcal{P}$-Complete

- Given graph $G=(V, E)$, its complement is $\bar{G}=(V,\{(i, j) \mid i \in V, j \in V,(i, j) \notin E\})$
- For the math-illiterate: Same set of vertices, all edges not in the original graph.

Theorem

Given $G=(V, E)$. The following statements are equivalent.
(1) I is an independent set for G
(2) $V \backslash I$ is a vertex cover for G
(3) I is a clique in \bar{G}

Other NP-Complete Problems

Maximum Clique

- Given: Graph $G=(V, E), k \in \mathbb{Z}$
- Question: Does $\exists U \subseteq V$ such that $|U| \geq k$ and U is a clique. $(u \in U \Rightarrow v \in U \forall v \in \delta(u))$

Proof: Max Independent Set \triangleleft Maximum Clique.
Given MIS instance: $G_{1}=(V, E), q$. Construct MC instance consisting of $G=\bar{G}_{1}$, and $k=q . U$ is a clique of size q in G if and only if U is an independent set of size k in G_{1}.

Other NP-Complete Problems

Minimum Vertex Cover

- Given: Graph $G=(V, E), k \in \mathbb{Z}$
- Question: Does $\exists U \subseteq V$ such that $|U| \leq k$ and U is a vertex cover: $(\forall(u, v) \in E$ either $u \in U$ or $v \in U)$.

Proof: Maximum Independent Set \triangleleft Minimum Vertex Cover. Given MIS instance: $G_{1}=(V, E), q$. Construct MVC instance consisting of $G=G_{1}$, and $k=|V|-q . U$ is a vertex cover of size k in G if and only if $V \backslash U$ is an independent set of size q in G_{1}.

Other methods of proving $\mathcal{N} \mathcal{P}$-Completeness

This is from the Garey and Johnson Handout...
(1) Restriction

- If you can show that a special case of the problem is an $\mathcal{N} \mathcal{P}$-complete problem, then the problem must be $\mathcal{N} \mathcal{P}$-complete
(2) Local Replacement
- This is like what we did to prove node packing is NP-complete.
(3) Component Design
- These are hard.
- I welcome you to read and look through some of the proofs for yourself!

Theory versus Practice

- In practice, it is true that most problem known to be in \mathcal{P} are "easy" to solve.
- This is because most known polynomial time algorithms are of relatively low order.
- It seems very unlikely that $\mathcal{P}=\mathcal{N} \mathcal{P}$
- Although all NP-complete problems are "equivalent" in theory, they are not in practice.
- TSP vs. QAP
- TSP—Solved instances of size ≈ 17000
- QAP—Solved instances of size ≈ 30

That's It!

- Next Time: Review for midterm
- Midterm on $3 / 2$!

