Linear Algebra Review: Linear Independence

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

21st March 2005

A finite collection of vectors x¹,..., x^k ∈ ℜⁿ is *linearly independent* if the unique solution to ∑_{i=1}^k λ_ixⁱ = 0 is λ_i = 0, ∀i = 1, 2, ..., k. Otherwise, the vectors are *linearly dependent*.

Let A be a square matrix. Then, the following statements are equivalent:

- The matrix A is invertible.
- The matrix A^T is invertible.
- The determinant of A is nonzero.
- The rows of A are linearly independent.
- The columns of A are linearly independent.
- For every vector b, the system Ax = b has a unique solution.

Jeff Linderoth IE418 Integer Programming

Jeff Linderoth IE418 Integer Programming

Linear Algebra Review: Affine Independence

- A finite collection of vectors x¹,..., x^k ∈ ℜⁿ is affinely independent if the unique solution to
 ∑_{i=1}^k α_ixⁱ = 0, ∑_{i=1}^k α_i = 0 is α_i = 0, ∀i = 1, 2, ..., k.
- Linear independence implies affine independence, but not vice versa.
- Affine independence is essentially a "coordinate-free" version of linear independence.
- The following statements are equivalent:
 - **1** $x_1, \ldots, x_k \in \mathbb{R}^n$ are affinely independent.
 - 2 $x_2 x_1, \ldots, x_k x_1$ are linearly independent.
 - $(x_1, 1), \ldots, (x_k, 1) \in \mathbb{R}^{n+1}$ are linearly independent.

Linear Algebra Review: Subspaces

- A nonempty subset $H \subseteq \mathbb{R}^n$ is called a subspace if $\alpha x + \gamma y \in H \ \forall x, y \in H$ and $\forall \alpha, \gamma \in \mathbb{R}$
- A linear combination of a collection of vectors $x^1, \ldots x^k \in \mathbb{R}^n$ is any vector $y \in \mathbb{R}^n$ such that $y = \sum_{i=1}^k \lambda_i x^i$ for some $\lambda \in \mathbb{R}^k$.
- The span of a collection of vectors $x^1, \ldots x^k \in \mathbb{R}^n$ is the set of all linear combinations of those vectors.
- Given a subspace H ⊆ ℝⁿ, a collection of linearly independent vectors whose span is H is called a basis of H. The number of vectors in the basis is the dimension of the subspace.

Linear Algebra Review: Subspaces and Bases

- A given subspace has an infinite number of bases.
- Each basis has the same number of vectors in it.
- If S and T are subspaces such that $S \subseteq T \subseteq \mathbb{R}^n$, then a basis of S can be extended to a basis of T.
- The span of the columns of a matrix A is a subspace called the column space or the range, denoted range(A).
- The span of the rows of a matrix A is a subspace called the row space.
- The dimensions of the column space and row space are always equal. We call this number rank(A).

Linear Algebra Review: Rank and Nullity

- rank(A) ≤ min{m, n}. If rank(A) = min{m, n}, then A is said to have full rank.
- The set {x ∈ ℝⁿ | Ax = 0} is called the nullspace of A (denoted null(A)) and has dimension n − rank(A).

Jeff Linderoth IE418 Integer Programming

Jeff Linderoth

Some Properties of Subspaces

- The following are equivalent:
 - $\ \, \bullet \ \, H\subseteq \mathbb{R}^n \ \, \text{is a subspace}.$
 - 2 There is an $m \times n$ matrix A such that $H = \{x \in \mathbb{R}^n \mid Ax = 0\}$

IE418 Integer Programming

- **3** There is a $k \times n$ matrix B such that $H = \{x \in \mathbb{R}^n \mid x = uB, u \in \mathbb{R}^k\}.$
- If $\{x \in \mathbb{R}^n \mid Ax = b\} \neq \emptyset$, the maximum number of affinely independent solutions of Ax = b is n + 1 rank(A).
- If $H \subseteq \mathbb{R}^n$ is a subspace, then $\{x \in \mathbb{R}^n \mid xy = 0 \text{ for } y \in H\}$ is a subspace called the orthogonal subspace and denoted H^{\perp}
- If $H = \{x \in \mathbb{R}^n \mid Ax = 0\}$, $(A \in \mathbb{R}^{m \times n})$ then $H^{\perp} = \{x \in \mathbb{R}^n \mid x = A^T u, u \in \mathbb{R}^m\}$

Convex Sets

- A set $S \subseteq \mathbb{R}^n$ is convex if $\forall x, y \in S, \lambda \in [0, 1]$, we have $\lambda x + (1 \lambda)y \in S$.
- Let $x^1, \ldots, x^k \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^k$ be given such that $\lambda^T e = 1$. Then
 - The vector $\sum_{i=1}^k \lambda_i x^i$ is said to be a convex combination of x^1, \ldots, x^k
 - 2 The convex hull of x^1, \ldots, x^k is the set of all convex combinations of these vectors, denoted $\operatorname{conv}(x^1, \ldots, x^k)$.
- The convex hull of two points is a line segment.
- A set is convex if and only if for any two points in the set, the line segment joining those two points lies entirely in the set.
- All polyhedra are convex.

Polyhedra, Hyperplanes, and Half-spaces

- A polyhedron is a set of the form $\{x \in \mathbb{R}^n \mid Ax \leq b\} = \{x \in \mathbb{R}^n | a^i x \leq b^i, \forall i \in M\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.
- A polyhedron $P \subset \mathbb{R}^n$ is bounded if there exists a constant K such that $|x_i| < K \ \forall x \in P, \forall i \in [1, n].$
- A bounded polyhedron is called a polytope.
- Let $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ be given.
 - The set $\{x \in \mathbb{R}^n \mid a_{\underline{x}}^T = b\}$ is called a hyperplane.
 - The set $\{x \in \mathbb{R}^n \mid a^T x \leq b\}$ is called a half-space.

IE418 Integer Programming

Dimension of Polyhedra

- A polyhedron P is of dimension k, denoted dim(P) = k, if the maximum number of affinely independent points in P is k + 1.
- A polyhedron $P \subseteq \mathbb{R}^n$ is full-dimensional if dim(P) = n.
- Let
 - $M = \{1, ..., m\},\$
 - $M^{=} = \{i \in M \mid a_i x = b_i \; \forall x \in P\}$ (the equality set,
 - $M^{\leq} = M \setminus M^{=}$ (the inequality set).
- Let $(A^{=}, b^{=}), (A^{\leq}, b^{\leq})$ be the corresponding rows of (A, b).
- If $P \subseteq \mathbb{R}^n$, then $dim(P) + rank(A^=, b^=) = n$

Jeff Linderoth IE418 Integer Programming

Dimension and Rank

- $x \in P$ is called an inner point of P if $a^i x < b_i \ \forall i \in M^{\leq}$.
- $x \in P$ is called an interior point of P if $a^i x < b_i \ \forall i \in M$.
- Every nonempty polyhedron has an *inner point*.

Jeff Linderoth

- A polyhedron has an *interior point* if and only if it is *full-dimensional*.
- 2.4 If $P \subseteq \mathbb{R}^n$, then $dim(P) + rank(A^=, b^=) = n$

Example

 $x_1 -$

• $POLLY \subseteq \mathbb{R}^5$:

$-2x_2 + x_3 - x_4 + 2x_5$	<	3
$x_1 - x_5$	_ _	0
$-x_1 + x_5$	\leq	0
$2x_2 - x_3 + x_4$	\leq	2
$-4x_2 + 2x_3 - 2x_2$	\leq	_4
$3x_1 - x_2$	\leq	2
$-x_{1}$	\leq	0
$-x_{2}$	\leq	0
$-x_{3}$	\leq	0
$-x_{4}$	\leq	0
- <i>T</i> F	<	0

Figuring dim(*POLLY*)

• Are the points in *POLLY* affinely independent?

- Implies that (1, 1, 0, 0, 1), (0, 1, 0, 0, 0), (1, 2, 2, 0, 1), (0, 0, 0, 2, 0) are affinely independent.
- dim(POLLY) \geq 3
- By 2.4, we now know dim(POLLY) = 3, 4, or 5

Figuring dim(POLLY)

• All points in POLLY satisfy the following inequalities with equality:

$x_1 - x_5$	\leq	0
$-x_1 + x_5$	\leq	0
$2x_2 - x_3 + x_4$	\leq	2
$-4x_2 + 2x_3 - 2x_2$	\leq	-4

- So $\operatorname{rank}(A^{=}, b^{=}) \geq 2$
- dim(P) = 3

Jeff Linderoth IE418 Integer Programming

Valid Inequalities and Faces

- The inequality denoted by (π, π_0) is called a valid inequality for P if $\pi x \leq \pi_0 \ \forall x \in P$.
- Note that (π, π_0) is a valid inequality if and only if P lies in the half-space $\{x \in \mathbb{R}^n \mid \pi x \leq \pi_0\}$.
- If (π, π₀) is a valid inequality for P and
 F = {x ∈ P | πx = π₀}, F is called a face of P and we say that (π, π₀) represents or defines F.
- A face is said to be proper if $F \neq \emptyset$ and $F \neq P$.
- Note that a face has multiple representations.

More on Faces

 The face represented by (π, π₀) is nonempty if and only if max{πx | x ∈ P} = π₀.

IE418 Integer Programming

• If the face F is nonempty, we say it supports P.

Jeff Linderoth

- Note that the set of optimal solutions to an LP is always a face of the feasible region.
- 3.1 Let P be a polyhedron with equality set $M^{=}$. If $F = \{x \in P | \pi^{T}x = \pi_{0}\}$ is nonempty, then F is a polyhedron. Let $M_{F}^{=} \supseteq M^{=}, M_{F}^{\leq} = M \setminus M_{F}^{=}$. Then $F = \{x \mid a_{i}^{T}x = b_{i} \forall i \in M_{F}^{=}, a_{i}^{T}x \leq b_{i} \forall i \in M_{F}^{\leq}\}$
 - $\bullet\,$ We get the polyhedron F by taking some of the inequalities of P and making them equalities
 - The number of distinct faces of \boldsymbol{P} is finite.

Facets

- A face F is said to be a facet of P if dim(F) = dim(P) 1.
- In fact, facets are all we need to describe polyhedra.

Jeff Linderoth

- **3.2** If *F* is a facet of *P*, then in any description of *P*, there exists some inequality representing *F*. (By setting the inequality to equality, we get *F*).
- **3.3 and 3.4** Every inequality that represents a face that is not a facet is unnecessary in the description of *P*.

Example, cont.

Consider the face

$$F = \{x \in POLLY \mid 2x_1 + 10x_2 - 5x_3 + 5x_4 - 3x_5 = 10\}$$

- Is it proper?
 - F = POLLY?
 - $F = \emptyset$?
- Points: (0,2,2,0,0), (0,1,0,0,0), (0,0,0,2,0)
 - Are they in F? (Don't forget, they must also be in P)
 - Are they affinely independent?
 - Yes! so dim $(F) \ge 2$
 - Is dim $(F) \leq 2?$ (Yes!)
 - dim(POLLY) = 3, so F is a facet of POLLY

Jeff Linderoth IE418 Integer Programming

Facet Representation

Remember 3.2. If F is a facet of POLLY, then there is some inequality a^Tk ≤ b_k, k ∈ M[≤] representing F.

IE418 Integer Programming

- Which inequality in the inequality set of *POLLY* represents *F*?
- $x \in POLLY, 2x_1 + 10x_2 5x_3 + 5x + 4 3x_5 = 10 \Rightarrow x_1 = 0$
 - So F is represented by the inequality $-x_1 \leq \mathbf{0}$

Polyhedra—A Fundamental Representation Theorem

Putting together what we have seen so far, we can say the following: (3.5)

- Every full-dimensional polyhedron P has a unique (up to scalar multiplication) representation that consists of one inequality representing each facet of P.
- If dim(P) = n − k with k > 0, then P is described by a maximal set of linearly independent rows of (A⁼, b⁼), as well as one inequality representing each facet of P.

Polyhedra—A Useful Facet Proving Theorem

- Put another way, if a facet F of P is represented by (π, π₀), then the set of all representations of F is obtained by taking scalar multiples of (π, π₀) plus linear combinations of the equality set of P.
- We can use this to actually prove an inequality is a facet! (3.6)
- Let $M^{=} \equiv (A^{=}, b^{=})$ be the equality set of $P \subseteq \mathbb{R}^{n}$, and let $F = \{x \in P \mid \pi^{T}x = \pi_{0}\}$ be a proper face of P. The following statements are equivalent
 - F is a facet of P
 - If $\lambda x = \lambda_0 \ \forall x \in F$, then

$$(\lambda, \lambda_0) = (\alpha \pi + uA^{=}, \alpha \pi_0 + u^t b^{=}),$$

for some $\alpha \in \mathbb{R}, u \in \mathbb{R}^{|M^{=}|}$

Jeff Linderoth IE418 Integer Programming