IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University
21st March 2005

- A finite collection of vectors $x^{1}, \ldots, x^{k} \in \Re^{n}$ is linearly independent if the unique solution to $\sum_{i=1}^{k} \lambda_{i} x^{i}=0$ is $\lambda_{i}=0, \forall i=1,2, \ldots, k$. Otherwise, the vectors are linearly dependent.

Let A be a square matrix. Then, the following statements are equivalent:

- The matrix A is invertible.
- The matrix A^{T} is invertible.
- The determinant of A is nonzero.
- The rows of A are linearly independent.
- The columns of A are linearly independent.
- For every vector b, the system $A x=b$ has a unique solution.

Linear Algebra Review: Affine Independence

- A finite collection of vectors $x^{1}, \ldots, x^{k} \in \Re^{n}$ is affinely independent if the unique solution to $\sum_{i=1}^{k} \alpha_{i} x^{i}=0, \sum_{i=1}^{k} \alpha_{i}=0$ is $\alpha_{i}=0, \forall i=1,2, \ldots, k$.
- Linear independence implies affine independence, but not vice versa.
- Affine independence is essentially a "coordinate-free" version of linear independence.
- The following statements are equivalent:
(1) $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$ are affinely independent.
(2) $x_{2}-x_{1}, \ldots, x_{k}-x_{1}$ are linearly independent.
(3) $\left(x_{1}, 1\right), \ldots,\left(x_{k}, 1\right) \in \mathbb{R}^{n+1}$ are linearly independent.

Linear Algebra Review: Subspaces

- A nonempty subset $H \subseteq \mathbb{R}^{n}$ is called a subspace if $\alpha x+\gamma y \in H \forall x, y \in \bar{H}$ and $\forall \alpha, \gamma \in \mathbb{R}$
- A linear combination of a collection of vectors $x^{1}, \ldots x^{k} \in \mathbb{R}^{n}$ is any vector $y \in \mathbb{R}^{n}$ such that $y=\sum_{i=1}^{k} \lambda_{i} x^{i}$ for some $\lambda \in \mathbb{R}^{k}$.
- The span of a collection of vectors $x^{1}, \ldots x^{k} \in \mathbb{R}^{n}$ is the set of all linear combinations of those vectors.
- Given a subspace $H \subseteq \mathbb{R}^{n}$, a collection of linearly independent vectors whose span is H is called a basis of H. The number of vectors in the basis is the dimension of the subspace.
- A given subspace has an infinite number of bases.
- Each basis has the same number of vectors in it.
- If S and T are subspaces such that $S \subseteq T \subseteq \mathbb{R}^{n}$, then a basis of S can be extended to a basis of T.
- The span of the columns of a matrix A is a subspace called the column space or the range, denoted range (A).
- The span of the rows of a matrix A is a subspace called the row space.
- The dimensions of the column space and row space are always equal. We call this number $\operatorname{rank}(A)$.
- $\operatorname{rank}(A) \leq \min \{m, n\}$. If $\operatorname{rank}(A)=\min \{m, n\}$, then A is said to have full rank.
- The set $\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$ is called the nullspace of A (denoted $\operatorname{null}(A))$ and has dimension $n-\operatorname{rank}(A)$.

Some Properties of Subspaces

- The following are equivalent:
(1) $H \subseteq \mathbb{R}^{n}$ is a subspace.
(2) There is an $m \times n$ matrix A such that $H=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$
(3) There is a $k \times n$ matrix B such that
$H=\left\{x \in \mathbb{R}^{n} \mid x=u B, u \in \mathbb{R}^{k}\right\}$.
- If $\left\{x \in \mathbb{R}^{n} \mid A x=b\right\} \neq \emptyset$, the maximum number of affinely independent solutions of $A x=b$ is $n+1-\operatorname{rank}(A)$.
- If $H \subseteq \mathbb{R}^{n}$ is a subspace, then $\left\{x \in \mathbb{R}^{n} \mid x y=0\right.$ for $\left.y \in H\right\}$ is a subspace called the orthogonal subspace and denoted H^{\perp}
- If $H=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\},\left(A \in \mathbb{R}^{m \times n}\right)$ then $H^{\perp}=\left\{x \in \mathbb{R}^{n} \mid x=A^{T} u, u \in \mathbb{R}^{m}\right\}$

Convex Sets

- A set $S \subseteq \mathbb{R}^{n}$ is convex if $\forall x, y \in S, \lambda \in[0,1]$, we have $\lambda x+(1-\lambda) y \in S$.
- Let $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}^{k}$ be given such that $\lambda^{T} e=1$. Then
(1) The vector $\sum_{i=1}^{k} \lambda_{i} x^{i}$ is said to be a convex combination of x^{1}, \ldots, x^{k}
(2) The convex hull of x^{1}, \ldots, x^{k} is the set of all convex combinations of these vectors, denoted $\operatorname{conv}\left(x^{1}, \ldots, x^{k}\right)$.
- The convex hull of two points is a line segment.
- A set is convex if and only if for any two points in the set, the line segment joining those two points lies entirely in the set.
- All polyhedra are convex.
- A polyhedron is a set of the form
$\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}=\left\{x \in \mathbb{R}^{n} \mid a^{i} x \leq b^{i}, \forall i \in M\right\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
- A polyhedron $P \subset \mathbb{R}^{n}$ is bounded if there exists a constant K such that $\left|x_{i}\right|<K \forall x \in P, \forall i \in[1, n]$.
- A bounded polyhedron is called a polytope.
- Let $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ be given.
- The set $\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}$ is called a hyperplane.
- The set $\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq b\right\}$ is called a half-space.
- A polyhedron P is of dimension k, denoted $\operatorname{dim}(P)=k$, if the maximum number of affinely independent points in P is $k+1$.
- A polyhedron $P \subseteq \mathbb{R}^{n}$ is full-dimensional if $\operatorname{dim}(P)=n$.
- Let
- $M=\{1, \ldots, m\}$,
- $M^{=}=\left\{i \in M \mid a_{i} x=b_{i} \forall x \in P\right\}$ (the equality set,
- $M \leq=M \backslash M^{=}$(the inequality set).
- Let $\left(A^{=}, b^{=}\right),\left(A^{\leq}, b^{\leq}\right)$be the corresponding rows of (A, b).
- If $P \subseteq \mathbb{R}^{n}$, then $\operatorname{dim}(P)+\operatorname{rank}\left(A^{=}, b^{=}\right)=n$

Dimension and Rank

- $x \in P$ is called an inner point of P if $a^{i} x<b_{i} \forall i \in M \leq$.
- $x \in P$ is called an interior point of P if $a^{i} x<b_{i} \forall i \in M$.
- Every nonempty polyhedron has an inner point.
- A polyhedron has an interior point if and only if it is full-dimensional.
- 2.4 If $P \subseteq \mathbb{R}^{n}$, then $\operatorname{dim}(P)+\operatorname{rank}\left(A^{=}, b^{=}\right)=n$

Example

- $P O L L Y \subseteq \mathbb{R}^{5}$:

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-x_{4}+2 x_{5} & \leq 3 \\
x_{1}-x_{5} & \leq 0 \\
-x_{1}+x_{5} & \leq 0 \\
2 x_{2}-x_{3}+x_{4} & \leq 2 \\
-4 x_{2}+2 x_{3}-2 x_{2} & \leq-4 \\
3 x_{1}-x_{2} & \leq 2 \\
-x_{1} & \leq 0 \\
-x_{2} & \leq 0 \\
-x_{3} & \leq 0 \\
-x_{4} & \leq 0 \\
-x_{5} & \leq 0
\end{aligned}
$$

- What is $\operatorname{dim}(P O L L Y)$?
- Consider points:
- $(1,1,0,0,1)$
- ($0,1,0,0,0$)
- $(1,2,2,0,1)$
- (0,0, $, 2,0)$
- (1,0, $0,2,1$)
- Which are in POLLY?

Figuring $\operatorname{dim}(P O L L Y)$

- Are the points in POLLY affinely independent?

$$
\operatorname{rank}\left(\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]\right)=4
$$

- Implies that $(1,1,0,0,1),(0,1,0,0,0),(1,2,2,0,1)$, ($0,0,0,2,0$) are affinely independent.
- $\operatorname{dim}(P O L L Y) \geq 3$
- By 2.4, we now know $\operatorname{dim}(P O L L Y)=3,4$, or 5

Figuring $\operatorname{dim}(P O L L Y)$

- All points in POLLY satisfy the following inequalities with equality:

$$
\begin{aligned}
x_{1}-x_{5} & \leq 0 \\
-x_{1}+x_{5} & \leq 0 \\
2 x_{2}-x_{3}+x_{4} & \leq 2 \\
-4 x_{2}+2 x_{3}-2 x_{2} & \leq-4
\end{aligned}
$$

- So $\operatorname{rank}\left(A^{=}, b^{=}\right) \geq 2$
- $\operatorname{dim}(P)=3$

Valid Inequalities and Faces

- The inequality denoted by $\left(\pi, \pi_{0}\right)$ is called a valid inequality for P if $\pi x \leq \pi_{0} \forall x \in P$.
- Note that $\left(\pi, \pi_{0}\right)$ is a valid inequality if and only if P lies in the half-space $\left\{x \in \mathbb{R}^{n} \mid \pi x \leq \pi_{0}\right\}$.
- If $\left(\pi, \pi_{0}\right)$ is a valid inequality for P and $F=\left\{x \in P \mid \pi x=\pi_{0}\right\}, F$ is called a face of P and we say that $\left(\pi, \pi_{0}\right)$ represents or defines F.
- A face is said to be proper if $F \neq \emptyset$ and $F \neq P$.
- Note that a face has multiple representations.

More on Faces

- The face represented by $\left(\pi, \pi_{0}\right)$ is nonempty if and only if $\max \{\pi x \mid x \in P\}=\pi_{0}$.
- If the face F is nonempty, we say it supports P.
- Note that the set of optimal solutions to an LP is always a face of the feasible region.
- 3.1 Let P be a polyhedron with equality set $M^{=}$. If $F=\left\{x \in P \mid \pi^{T} x=\pi_{0}\right\}$ is nonempty, then F is a polyhedron. Let $M_{\bar{F}}^{\overline{ }} \supseteq M^{=}, M_{\bar{F}}^{\leq}=M \backslash M_{\bar{F}}^{\bar{\prime}}$. Then
$F=\left\{x \mid a_{i}^{T} x=b_{i} \forall i \in M_{F}^{\overline{\bar{F}}}, a_{i}^{T} x \leq b_{i} \forall i \in M_{f}^{\leq}\right\}$
- We get the polyhedron F by taking some of the inequalities of P and making them equalities
- The number of distinct faces of P is finite.
- A face F is said to be a facet of P if $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.
- In fact, facets are all we need to describe polyhedra.
- 3.2 If F is a facet of P, then in any description of P, there exists some inequality representing F. (By setting the inequality to equality, we get F).
- 3.3 and 3.4 Every inequality that represents a face that is not a facet is unnecessary in the description of P.

Consider the face

$$
F=\left\{x \in P O L L Y \mid 2 x_{1}+10 x_{2}-5 x_{3}+5 x_{4}-3 x_{5}=10\right\}
$$

- Is it proper?
- $F=P O L L Y$?
- $F=\emptyset$?
- Points: $(0,2,2,0,0),(0,1,0,0,0),(0,0,0,2,0)$
- Are they in F ? (Don't forget, they must also be in P)
- Are they affinely independent?
- Yes! so $\operatorname{dim}(F) \geq 2$
- Is $\operatorname{dim}(F) \leq 2$? (Yes!)
- $\operatorname{dim}(P O L L Y)=3$, so F is a facet of $P O L L Y$

Facet Representation

- Remember 3.2. If F is a facet of $P O L L Y$, then there is some inequality $a^{T} k \leq b_{k}, k \in M \leq$ representing F.
- Which inequality in the inequality set of $P O L L Y$ represents F ?
- $x \in P O L L Y, 2 x_{1}+10 x_{2}-5 x_{3}+5 x+4-3 x_{5}=10 \Rightarrow x_{1}=0$
- So F is represented by the inequality $-x_{1} \leq 0$

Polyhedra—A Fundamental Representation

Theorem

Putting together what we have seen so far, we can say the following: (3.5)

- Every full-dimensional polyhedron P has a unique (up to scalar multiplication) representation that consists of one inequality representing each facet of P.
- If $\operatorname{dim}(P)=n-k$ with $k>0$, then P is described by a maximal set of linearly independent rows of ($A^{=}, b^{=}$), as well as one inequality representing each facet of P.

Polyhedra—A Useful Facet Proving Theorem

- Put another way, if a facet F of P is represented by $\left(\pi, \pi_{0}\right)$, then the set of all representations of F is obtained by taking scalar multiples of $\left(\pi, \pi_{0}\right)$ plus linear combinations of the equality set of P.
- We can use this to actually prove an inequality is a facet! (3.6)
- Let $M^{=} \equiv\left(A^{=}, b^{=}\right)$be the equality set of $P \subseteq \mathbb{R}^{n}$, and let $F=\left\{x \in P \mid \pi^{T} x=\pi_{0}\right\}$ be a proper face of P. The following statements are equivalent
- F is a facet of P
- If $\lambda x=\lambda_{0} \forall x \in F$, then

$$
\left(\lambda, \lambda_{0}\right)=\left(\alpha \pi+u A^{=}, \alpha \pi_{0}+u^{t} b^{=}\right)
$$

for some $\alpha \in \mathbb{R}, u \in \mathbb{R}^{\left|M^{=}\right|}$

