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Linear Algebra Review: Linear Independence

A finite collection of vectors x1, . . . , xk ∈ <n is linearly independent
if the unique solution to

∑k
i=1 λix

i = 0 is λi = 0,∀i = 1, 2, . . . , k.
Otherwise, the vectors are linearly dependent.

Let A be a square matrix. Then, the following statements are equivalent:

The matrix A is invertible.

The matrix AT is invertible.

The determinant of A is nonzero.

The rows of A are linearly independent.

The columns of A are linearly independent.

For every vector b, the system Ax = b has a unique solution.
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Linear Algebra Review: Affine Independence

A finite collection of vectors x1, . . . , xk ∈ <n is affinely
independent if the unique solution to∑k

i=1 αix
i = 0,

∑k
i=1 αi = 0 is αi = 0,∀i = 1, 2, . . . , k.

Linear independence implies affine independence, but not vice
versa.

Affine independence is essentially a “coordinate-free” version
of linear independence.

The following statements are equivalent:
1 x1, . . . , xk ∈ Rn are affinely independent.
2 x2 − x1, . . . , xk − x1 are linearly independent.
3 (x1, 1), . . . , (xk, 1) ∈ Rn+1 are linearly independent.
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Linear Algebra Review: Subspaces

A nonempty subset H ⊆ Rn is called a subspace if
αx + γy ∈ H ∀x, y ∈ H and ∀α, γ ∈ R

A linear combination of a collection of vectors x1, . . . xk ∈ Rn

is any vector y ∈ Rn such that y =
∑k

i=1 λix
i for some

λ ∈ Rk.

The span of a collection of vectors x1, . . . xk ∈ Rn is the set
of all linear combinations of those vectors.

Given a subspace H ⊆ Rn, a collection of linearly independent
vectors whose span is H is called a basis of H. The number
of vectors in the basis is the dimension of the subspace.
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Linear Algebra Review: Subspaces and Bases

A given subspace has an infinite number of bases.

Each basis has the same number of vectors in it.

If S and T are subspaces such that S ⊆ T ⊆ Rn, then a basis
of S can be extended to a basis of T .

The span of the columns of a matrix A is a subspace called
the column space or the range, denoted range(A).

The span of the rows of a matrix A is a subspace called the
row space.

The dimensions of the column space and row space are always
equal. We call this number rank(A).
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Linear Algebra Review: Rank and Nullity

rank(A) ≤ min{m, n}. If rank(A) = min{m,n}, then A is
said to have full rank.

The set {x ∈ Rn | Ax = 0} is called the nullspace of A
(denoted null(A)) and has dimension n− rank(A).
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Some Properties of Subspaces

The following are equivalent:
1 H ⊆ Rn is a subspace.
2 There is an m×n matrix A such that H = {x ∈ Rn | Ax = 0}
3 There is a k × n matrix B such that

H = {x ∈ Rn | x = uB, u ∈ Rk}.

If {x ∈ Rn | Ax = b} 6= ∅, the maximum number of affinely
independent solutions of Ax = b is n + 1− rank(A).

If H ⊆ Rn is a subspace, then {x ∈ Rn | xy = 0 for y ∈ H}
is a subspace called the orthogonal subspace and denoted H⊥

If H = {x ∈ Rn | Ax = 0}, (A ∈ Rm×n) then
H⊥ = {x ∈ Rn | x = AT u, u ∈ Rm}
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Convex Sets

A set S ⊆ Rn is convex if ∀x, y ∈ S, λ ∈ [0, 1], we have
λx + (1− λ)y ∈ S.

Let x1, . . . , xk ∈ Rn and λ ∈ Rk be given such that λT e = 1.
Then

1 The vector
∑k

i=1 λix
i is said to be a convex combination of

x1, . . . , xk

2 The convex hull of x1, . . . , xk is the set of all convex
combinations of these vectors, denoted conv(x1, . . . , xk).

The convex hull of two points is a line segment.

A set is convex if and only if for any two points in the set, the
line segment joining those two points lies entirely in the set.

All polyhedra are convex.
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Polyhedra, Hyperplanes, and Half-spaces

A polyhedron is a set of the form
{x ∈ Rn | Ax ≤ b} = {x ∈ Rn|aix ≤ bi, ∀i ∈ M}, where
A ∈ Rm×n and b ∈ Rm.

A polyhedron P ⊂ Rn is bounded if there exists a constant K
such that |xi| < K ∀x ∈ P,∀i ∈ [1, n].

A bounded polyhedron is called a polytope.

Let a ∈ Rn and b ∈ R be given.

The set {x ∈ Rn | aT x = b} is called a hyperplane.
The set {x ∈ Rn | aT x ≤ b} is called a half-space.
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Dimension of Polyhedra

A polyhedron P is of dimension k, denoted dim(P ) = k, if the
maximum number of affinely independent points in P is k + 1.

A polyhedron P ⊆ Rn is full-dimensional if dim(P ) = n.

Let

M = {1, . . . ,m},
M= = {i ∈ M | aix = bi ∀x ∈ P} (the equality set,
M≤ = M \M= (the inequality set).

Let (A=, b=), (A≤, b≤) be the corresponding rows of (A, b).

If P ⊆ Rn, then dim(P ) + rank(A=, b=) = n
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Dimension and Rank

x ∈ P is called an inner point of P if aix < bi ∀i ∈ M≤.

x ∈ P is called an interior point of P if aix < bi ∀i ∈ M .

Every nonempty polyhedron has an inner point.

A polyhedron has an interior point if and only if it is
full-dimensional.

2.4 If P ⊆ Rn, then dim(P ) + rank(A=, b=) = n
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Example

POLLY ⊆ R5:

x1 − 2x2 + x3 − x4 + 2x5 ≤ 3

x1 − x5 ≤ 0

−x1 + x5 ≤ 0

2x2 − x3 + x4 ≤ 2

−4x2 + 2x3 − 2x2 ≤ −4

3x1 − x2 ≤ 2

−x1 ≤ 0

−x2 ≤ 0

−x3 ≤ 0

−x4 ≤ 0

−x5 ≤ 0

What is
dim(POLLY )?

Consider points:

(1, 1, 0, 0, 1)
(0, 1, 0, 0, 0)
(1, 2, 2, 0, 1)
(0, 0, 0, 2, 0)
(1, 0, 0, 2, 1)

Which are in
POLLY ?
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Figuring dim(POLLY )

Are the points in POLLY affinely independent?

rank

0BBBBB@

2666664
1 0 1 0
1 1 2 0
0 0 2 0
0 0 0 2
1 0 1 0
1 1 1 1

3777775

1CCCCCA = 4

Implies that (1, 1, 0, 0, 1), (0, 1, 0, 0, 0), (1, 2, 2, 0, 1),
(0, 0, 0, 2, 0) are affinely independent.

dim(POLLY ) ≥ 3

By 2.4, we now know dim(POLLY ) = 3, 4, or 5
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Figuring dim(POLLY )

All points in POLLY
satisfy the following
inequalities with equality:

x1 − x5 ≤ 0

−x1 + x5 ≤ 0

2x2 − x3 + x4 ≤ 2

−4x2 + 2x3 − 2x2 ≤ −4

rank

0BB@
2664

1 0 0 0 −1 0
−1 0 0 0 1 0
0 2 −1 1 0 2
0 −4 2 −2 0 −4

3775
1CCA = 2

So rank(A=, b=) ≥ 2

dim(P ) = 3
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Valid Inequalities and Faces

The inequality denoted by (π, π0) is called a valid inequality
for P if πx ≤ π0 ∀x ∈ P .

Note that (π, π0) is a valid inequality if and only if P lies in
the half-space {x ∈ Rn | πx ≤ π0}.
If (π, π0) is a valid inequality for P and
F = {x ∈ P | πx = π0}, F is called a face of P and we say
that (π, π0) represents or defines F .

A face is said to be proper if F 6= ∅ and F 6= P .

Note that a face has multiple representations.
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More on Faces

The face represented by (π, π0) is nonempty if and only if
max{πx | x ∈ P} = π0.

If the face F is nonempty, we say it supports P .

Note that the set of optimal solutions to an LP is always a
face of the feasible region.

3.1 Let P be a polyhedron with equality set M=. If
F = {x ∈ P |πT x = π0} is nonempty, then F is a polyhedron.

Let M=
F ⊇ M=,M≤

F = M \M=
F . Then

F = {x | aT
i x = bi∀i ∈ M=

F , aT
i x ≤ bi∀i ∈ M≤

f }
We get the polyhedron F by taking some of the inequalities of
P and making them equalities
The number of distinct faces of P is finite.

Jeff Linderoth IE418 Integer Programming



Facets

A face F is said to be a facet of P if dim(F ) = dim(P )− 1.

In fact, facets are all we need to describe polyhedra.

3.2 If F is a facet of P , then in any description of P , there
exists some inequality representing F . (By setting the
inequality to equality, we get F ).

3.3 and 3.4 Every inequality that represents a face that is not
a facet is unnecessary in the description of P .
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Example, cont.

Consider the face

F = {x ∈ POLLY | 2x1 + 10x2 − 5x3 + 5x4 − 3x5 = 10}

Is it proper?

F = POLLY ?
F = ∅?

Points: (0, 2, 2, 0, 0), (0, 1, 0, 0, 0), (0, 0, 0, 2, 0)

Are they in F? (Don’t forget, they must also be in P )
Are they affinely independent?
Yes! so dim(F ) ≥ 2
Is dim(F ) ≤ 2? (Yes!)
dim(POLLY ) = 3, so F is a facet of POLLY
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Facet Representation

Remember 3.2. If F is a facet of POLLY , then there is some
inequality aT k ≤ bk, k ∈ M≤ representing F .

Which inequality in the inequality set of POLLY represents
F?

x ∈ POLLY, 2x1 +10x2− 5x3 +5x+4− 3x5 = 10 ⇒ x1 = 0

So F is represented by the inequality −x1 ≤ 0
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Polyhedra—A Fundamental Representation
Theorem

Putting together what we have seen so far, we can say the
following: (3.5)

Every full-dimensional polyhedron P has a unique (up to
scalar multiplication) representation that consists of one
inequality representing each facet of P .

If dim(P ) = n− k with k > 0, then P is described by a
maximal set of linearly independent rows of (A=, b=), as well
as one inequality representing each facet of P .
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Polyhedra—A Useful Facet Proving Theorem

Put another way, if a facet F of P is represented by (π, π0), then
the set of all representations of F is obtained by taking scalar
multiples of (π, π0) plus linear combinations of the equality set of P .

We can use this to actually prove an inequality is a facet! (3.6)

Let M= ≡ (A=, b=) be the equality set of P ⊆ Rn, and let
F = {x ∈ P | πT x = π0} be a proper face of P . The following
statements are equivalent

F is a facet of P
If λx = λ0 ∀x ∈ F , then

(λ, λ0) = (απ + uA=, απ0 + utb=),

for some α ∈ R, u ∈ R|M=|
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