Face(t)s A Big Theorem Examples

Key Things We Learned Last Time

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

23rd March 2005

- If $\{x \in \mathbb{R}^n \mid Ax = b\} \neq \emptyset$, the maximum number of affinely independent solutions of Ax = b is n + 1 rank(A).
- A polyhedron P is of dimension k, denoted dim(P) = k, if the maximum number of affinely independent points in P is k + 1.
- 2.4 If $P \subseteq \mathbb{R}^n$, then $dim(P) + rank(A^=, b^=) = n$

Face(t)

Evamr

A Big Theorem

- Partition the inequalities defining *P*:
 - $M = \{1, ..., m\},\$
 - $M^{=} = \{i \in M \mid a_i x = b_i \ \forall x \in P\}$ (the equality set),
 - $M^{\leq} = M \setminus M^{=}$ (the inequality set).

• $POLLY \subset \mathbb{R}^5$:

 $\dim(POLLY) = 3$

• Remember:

Our Friend POLLY

$x_1 - 2x_2 + x_3 - x_4 + 2x_5$	\leq	3
$x_1 - x_5$	\leq	0
$-x_1 + x_5$	\leq	0
$2x_2 - x_3 + x_4$	\leq	2
$-4x_2+2x_3-2x_4$	\leq	-4
$3x_1 - x_2$	\leq	2
$-x_{1}$	\leq	0
$-x_{2}$	\leq	0
$-x_{3}$	\leq	0
$-x_{4}$	\leq	0
$-x_{5}$	<	0

- Valid Inequalities and Faces
 - $P = \{ x \in \mathbb{R}^n \mid Ax \le b \}$
 - The inequality denoted by (π, π₀) is called a valid inequality for P if πx ≤ π₀ ∀x ∈ P.
 - Note that (π, π₀) is a valid inequality if and only if P lies in the half-space {x ∈ ℝⁿ | πx ≤ π₀}.
 - If (π, π₀) is a valid inequality for P and F = {x ∈ P | πx = π₀}, F is called a face of P and we say that (π, π₀) represents or defines F.
 - A face is said to be proper if $F \neq \emptyset$ and $F \neq P$.
 - Note that a face has multiple representations.

Face(t)s A Big Theorem Examples Valid Inequalities Facets

More on Faces

- The face represented by (π, π_0) is nonempty if and only if $\max{\{\pi x \mid x \in P\}} = \pi_0$.
- If the face F is nonempty, we say it supports P.
- 3.1 Let P be a polyhedron with equality set $M^{=}$. If $F = \{x \in P | \pi^{T}x = \pi_{0}\}$ is nonempty, then F is a polyhedron. Let $M_{F}^{=} \supseteq M^{=}, M_{F}^{\leq} = M \setminus M_{F}^{=}$. Then $F = \{x \mid a_{i}^{T}x = b_{i} \forall i \in M_{F}^{=}, a_{i}^{T}x \leq b_{i} \forall i \in M_{f}^{\leq}\}$
 - We get the polyhedron ${\cal F}$ by taking some of the inequalities of ${\cal P}$ and making them equalities
 - The number of distinct faces of P is finite.

Facets

• A face F is said to be a facet of P if $\dim(F) = \dim(P) - 1$.

Facets

• Facets are all we need to describe polyhedra.

Face(t)

A Big Theore

- 3.2 If F is a facet of P, then in any description of P, there exists some inequality representing F. (By setting the inequality to equality, we get F).
- **3.3 and 3.4** Every inequality that represents a face that is not a facet is unnecessary in the description of *P*.

POLLY's Faces

Consider the face

$$F = \{x \in POLLY \mid 2x_1 + 10x_2 - 5x_3 + 5x_4 - 3x_5 = 10\}$$

- Is it proper?
 - F = POLLY?
 - $F = \emptyset$?
- Points: (0, 2, 2, 0, 0), (0, 1, 0, 0, 0), (0, 0, 0, 2, 0)
 - Are they in F? (Don't forget, they must also be in P)
 - Are they affinely independent?
 - Yes! so dim $(F) \ge 2$
 - Is dim $(F) \leq 2$? (Yes!)
 - dim(POLLY) = 3, so F is a facet of POLLY

Facet Representation

- Remember 3.2. If F is a facet of POLLY, then there is some inequality $a_k^T x \leq b_k, k \in M^{\leq}$ representing F.
- Which inequality in the inequality set of *POLLY* represents *F*?
- $x \in POLLY, 2x_1 + 10x_2 5x_3 + 5x + 4 3x_5 = 10 \Rightarrow x_1 = 0$
 - So F is represented by the inequality $-x_1 \leq \mathbf{0}$

Polyhedra—A Fundamental Representation Theorem

A Big Theorem

Putting together what we have seen so far, we can say the following: (3.5)

- Every full-dimensional polyhedron P has a unique (up to scalar multiplication) representation that consists of one inequality representing each facet of P.
- If dim(P) = n k with k > 0, then P is described by a maximal set of linearly independent rows of (A⁼, b⁼), as well as one inequality representing each facet of P.

Polyhedra—A Useful Facet Proving Theorem

- Put another way, if a facet F of P is represented by (π, π₀), then the set of all representations of F is obtained by taking scalar multiples of (π, π₀) plus linear combinations of the equality set of P.
- We can use this to actually prove an inequality is a facet! (3.6)
- Let $M^{=} \equiv (A^{=}, b^{=})$ be the equality set of $P \subseteq \mathbb{R}^{n}$, and let $F = \{x \in P \mid \pi^{T}x = \pi_{0}\}$ be a proper face of P. The following statements are equivalent
 - F is a facet of P
 - If $\lambda x = \lambda_0 \ \forall x \in F$, then

$(\lambda, \lambda_0) = (\alpha \pi + uA^{=}, \alpha \pi_0 + u^t b^{=}),$

More Insight—Proving Facets

- This is just an indirect but very useful way to verify affine independence of points.
 - Here we assume that P is full dimensional dim(P) = n (though you can still use Theorem 3.6 even if not).
- Given valid inequality $\pi^T x \leq \pi_0 \dots$
 - Choose $t \ge n$ points $x^1, x^2 \dots x^t$ all satisfying $\pi^T x = \pi_0$. Suppose that all these points also lie in a generic hyperplane $\lambda^T x = \lambda_0$.
 - **2** Solve the linear equation system:

$$\sum_{j=1}^n \lambda_j x_j^k = \lambda_0 \,\,\forall k = 1, 2, \dots t$$

3 If the only solution is $(\lambda, \lambda_0) = \alpha(\pi, \pi_0)$ for $\alpha \neq 0$, then $\pi^T x \leq \pi_0$ is facet defining.

Example: The Node Packing Polytope

• Given a graph G = (V, E), with |V| = n

 $\mathsf{PACK}(G) = \{ x \in \mathbb{B}^n \mid x_i + x_j \le 1 \ \forall (i, j) \in E \}$

 $\mathsf{PACK} = \mathsf{conv}\left(\left(\begin{array}{c}0\\0\\0\\0\end{array}\right), \left(\begin{array}{c}1\\0\\0\\0\end{array}\right), \left(\begin{array}{c}0\\1\\0\\0\end{array}\right), \left(\begin{array}{c}0\\1\\0\\0\end{array}\right), \left(\begin{array}{c}0\\0\\1\\0\end{array}\right), \left(\begin{array}{c}0\\0\\1\\0\end{array}\right), \left(\begin{array}{c}0\\0\\1\\1\end{array}\right), \left(\begin{array}{c}1\\0\\0\\1\end{array}\right)\right)\right)$

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Face(t)s A Big Theorem Examples	Example 1 Example 2	Face(t)s A Big Theorem Examples	Example 1 Example 2

An easier way?

• What we've just done is really just another way to show that the points we chose were affinely independent.

```
octave:1> A = [ 1, 0, 1, 0, 0, 0; 0, 1, 0, 1, 0, 0;
0, 0, 1, 0, 1, 0; 1, 0, 0, 1, 0, 0;
0, 1, 0, 0, 1, 0; 1, 0, 1, 0, 0, 1 ]
```

A =

```
octave:2> rank(A)
ans = 6
```

A More Abstract Example

• Let $C \subseteq V$ be a maximal clique in G. We will show (two ways) that

$$\sum_{i \in C} x_i \le 1$$

- is a facet-defining inequality (a facet) of PACK(G).
- First question: What is dim(PACK)?
 - How do we establish the dimension of a polyhedron?

Face(t)s A Big Theorem Examples Examples

Way #1—Direct

- To show that $\sum_{i \in C} x_i \leq 1$ is a facet (that its dimension is n-1), we can given n affinely independent points in PACK that satisfy $\sum_{i \in C} x_i = 1$
 - Since the hyperplane $\sum_{i \in C} x_i = 1$ does not contain the origin, this is equivalent to giving n linearly independent points.
- WLOG, let the clique be $C = \{1, 2, \dots, k\}$
- Key: $\forall p \in V \setminus C \ \exists i_p \in C \text{ such that } (i_p, p) \notin E.$ Why?
- Points: $(e_1, e_2, \ldots, e_k, e_{k+1} + e_{i_{k+1}}, \ldots, e_p + e_{i_p}, \ldots, e_n + e_{i_n})$

Way #2—Indirect

- Let $F = \{x \in \mathsf{PACK} | \sum_{i \in C} x_i = 1\}$
- Suppose $F \subseteq G \equiv \{x \in \mathsf{PACK} | \lambda^T x = \lambda_0\} \ (\lambda \neq 0)$

A Big Theorem Example

• If we can show that G is just a (non-zero) scalar multiple of F, then we have established that F is a facet.

Example 1 Example 2

- Again, WLOG, let $C = \{1, 2, \dots, k\}$
- For $i \leq k$ consider the point e_i .
 - Satisfies equality $F. F \subseteq G \Rightarrow \lambda_i = \lambda_0 \ \forall i \in C$

Indirect Facet Proof, cont.

- For $p \in V \setminus C$, consider the point $e_p + e_{i_p}$: (1's in the coordinates p and i_p)
- By the same argument as the previous proof, this point packs, and we can always find such a point $\forall p \in V \setminus C$
- This point satisfies equality $F. F \subset G \Rightarrow \lambda_{i_p} + \lambda_p = \lambda_0$
- $\lambda_{i_p} = \lambda_0$, so $\lambda_p = \lambda_0 \ \forall p \in V \setminus C$.
- So out inequality defining G looks like $\lambda_0 \sum_{i \in C} x_i = \lambda_0$.
- This is a scalar multiple of the inequality defining *F*, so *F* is a facet defining inequality.
 - $\lambda_0 \neq 0$ since $\lambda \neq 0$, $\lambda_i = \lambda_0 \ \forall i \in C$, $\lambda_p = 0 \ \forall p \in V \setminus C$

