IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

23rd March 2005

- If $\left\{x \in \mathbb{R}^{n} \mid A x=b\right\} \neq \emptyset$, the maximum number of affinely independent solutions of $A x=b$ is $n+1-\operatorname{rank}(A)$.
- A polyhedron P is of dimension k, denoted $\operatorname{dim}(P)=k$, if the maximum number of affinely independent points in P is $k+1$.
- 2.4 If $P \subseteq \mathbb{R}^{n}$, then $\operatorname{dim}(P)+\operatorname{rank}\left(A^{=}, b^{=}\right)=n$
- Partition the inequalities defining P :
- $M=\{1, \ldots, m\}$,
- $M^{=}=\left\{i \in M \mid a_{i} x=b_{i} \forall x \in P\right\}$ (the equality set),
- $M^{\leq}=M \backslash M^{=}$(the inequality set).
Jeff Linderoth
Face(t)s
A Big Theorem
Examples

IE418 Integer Programming

Examples

Jeff Linderoth	IE418 Integer Programming
A Bige(t)s	Valid Inequalities Theorem Examples
Facets	

Valid Inequalities and Faces

$$
P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

- The inequality denoted by $\left(\pi, \pi_{0}\right)$ is called a valid inequality for P if $\pi x \leq \pi_{0} \forall x \in P$.
- Note that $\left(\pi, \pi_{0}\right)$ is a valid inequality if and only if P lies in the half-space $\left\{x \in \mathbb{R}^{n} \mid \pi x \leq \pi_{0}\right\}$.
- If $\left(\pi, \pi_{0}\right)$ is a valid inequality for P and $F=\left\{x \in P \mid \pi x=\pi_{0}\right\}, F$ is called a face of P and we say that $\left(\pi, \pi_{0}\right)$ represents or defines F.
- A face is said to be proper if $F \neq \emptyset$ and $F \neq P$.
- Note that a face has multiple representations.

More on Faces

Facets

- The face represented by $\left(\pi, \pi_{0}\right)$ is nonempty if and only if $\max \{\pi x \mid x \in P\}=\pi_{0}$.
- If the face F is nonempty, we say it supports P.
- 3.1 Let P be a polyhedron with equality set $M^{=}$. If
$F=\left\{x \in P \mid \pi^{T} x=\pi_{0}\right\}$ is nonempty, then F is a polyhedron.
Let $M_{\bar{F}}^{\bar{F}} \supseteq M^{=}, M_{\bar{F}}^{\leq}=M \backslash M_{\bar{F}}^{\bar{F}}$. Then
$F=\left\{x \mid a_{i}^{T} x=b_{i} \forall i \in M_{\bar{F}}^{\overline{=}}, a_{i}^{T} x \leq b_{i} \forall i \in M_{f}^{\leq}\right\}$
- We get the polyhedron F by taking some of the inequalities of P and making them equalities
- The number of distinct faces of P is finite.
- A face F is said to be a facet of P if $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.
- Facets are all we need to describe polyhedra.
- 3.2 If F is a facet of P, then in any description of P, there exists some inequality representing F. (By setting the inequality to equality, we get F).
- 3.3 and 3.4 Every inequality that represents a face that is not a facet is unnecessary in the description of P.
Jeff Linderoth
A Fige(t)s
A Tig Theorem
Examples

IE418 Integer Programming
Valid Inequalities
Faceets

Jeff Linderoth
 Face(t)s Big Theorem

IE418 Integer Programming Valid Inequalities

POLLY's Faces

Consider the face

$$
F=\left\{x \in P O L L Y \mid 2 x_{1}+10 x_{2}-5 x_{3}+5 x_{4}-3 x_{5}=10\right\}
$$

- Is it proper?
- $F=P O L L Y ?$
- $F=\emptyset$?
- Points: $(0,2,2,0,0),(0,1,0,0,0),(0,0,0,2,0)$
- Are they in F ? (Don't forget, they must also be in P)
- Are they affinely independent?
- Yes! so $\operatorname{dim}(F) \geq 2$
- Is $\operatorname{dim}(F) \leq 2$? (Yes!)
- $\operatorname{dim}(P O L L Y)=3$, so F is a facet of POLLY

Facet Representation

- Remember 3.2. If F is a facet of $P O L L Y$, then there is some inequality $a_{k}^{T} x \leq b_{k}, k \in M \leq$ representing F.
- Which inequality in the inequality set of $P O L L Y$ represents F ?
- $x \in P O L L Y, 2 x_{1}+10 x_{2}-5 x_{3}+5 x+4-3 x_{5}=10 \Rightarrow x_{1}=0$
- So F is represented by the inequality $-x_{1} \leq 0$

Polyhedra-A Fundamental Representation Theorem

Putting together what we have seen so far, we can say the following: (3.5)

- Every full-dimensional polyhedron P has a unique (up to scalar multiplication) representation that consists of one inequality representing each facet of P.
- If $\operatorname{dim}(P)=n-k$ with $k>0$, then P is described by a maximal set of linearly independent rows of $\left(A^{=}, b^{=}\right)$, as well as one inequality representing each facet of P.

Polyhedra—A Useful Facet Proving Theorem

- Put another way, if a facet F of P is represented by $\left(\pi, \pi_{0}\right)$, then the set of all representations of F is obtained by taking scalar multiples of (π, π_{0}) plus linear combinations of the equality set of P.
- We can use this to actually prove an inequality is a facet! (3.6)
- Let $M^{=} \equiv\left(A^{=}, b^{=}\right)$be the equality set of $P \subseteq \mathbb{R}^{n}$, and let $F=\left\{x \in P \mid \pi^{T} x=\pi_{0}\right\}$ be a proper face of P. The following statements are equivalent
- F is a facet of P
- If $\lambda x=\lambda_{0} \forall x \in F$, then

$$
\left(\lambda, \lambda_{0}\right)=\left(\alpha \pi+u A^{=}, \alpha \pi_{0}+u^{t} b^{=}\right),
$$

for some $\alpha \in \mathbb{R}, u \in \mathbb{R}^{\left|M^{=}\right|}$
Jeff Linderoth
Face(t)s
A Big Theorem
Examples

IE418 Integer Programming
Jeff Linderoth
Face $(\mathrm{t}) \mathrm{s}$
A Big Theorem
Examples
IE418 Integer Programming
Example 1
Example 2

More Insight—Proving Facets

- This is just an indirect but very useful way to verify affine independence of points.
- Here we assume that P is full dimensional $\operatorname{dim}(P)=n$ (though you can still use Theorem $\mathbf{3 . 6}$ even if not).
- Given valid inequality $\pi^{T} x \leq \pi_{0} \ldots$
(1) Choose $t \geq n$ points $x^{1}, x^{2} \ldots x^{t}$ all satisfying $\pi^{T} x=\pi_{0}$. Suppose that all these points also lie in a generic hyperplane $\lambda^{T} x=\lambda_{0}$.
(2) Solve the linear equation system:

$$
\sum_{j=1}^{n} \lambda_{j} x_{j}^{k}=\lambda_{0} \forall k=1,2, \ldots t
$$

(3) If the only solution is $\left(\lambda, \lambda_{0}\right)=\alpha\left(\pi, \pi_{0}\right)$ for $\alpha \neq 0$, then $\pi^{T} x \leq \pi_{0}$ is facet defining.

Example: The Node Packing Polytope

- Given a graph $G=(V, E)$, with $|V|=n$

$$
\operatorname{PACK}(G)=\left\{x \in \mathbb{B}^{n} \mid x_{i}+x_{j} \leq 1 \forall(i, j) \in E\right\}
$$

PACK $=$ conv $\left(\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)\right)$

```
Our Task
Prove that
\(x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 2\)
is a facet-defining inequality for \(\operatorname{PACK}(\hat{G})\) :
```


(1) What is $\operatorname{dim}(\operatorname{PACK}(\hat{G}))$?
(2) So then $\operatorname{rank}\left(A^{=}, b^{=}\right)=0$
(3) Let
$F=\left\{x \in \operatorname{PACK}(\hat{G}) \mid x_{1}+\right.$
$\left.x_{2}+x_{3}+x_{4}+x_{5}=2\right\}$.
Suppose $\lambda^{T} x=\lambda_{0} \forall x \in F$.
We will show that $\left(\lambda, \lambda_{0}\right)$ is
a scalar multiple of
$\left[(1,1,1,1,1,0)^{T}, 2\right]$

IE418 Integer Programming
Example 1
Example 2
Jeff Linderoth
A Big Face(t)s
Theorem
IE418 Integer Programming

An easier way?

- What we've just done is really just another way to show that the points we chose were affinely independent.
octave: $1>A=[1,0,1,0,0,0 ; 0,1,0,1,0,0$;
$0,0,1,0,1,0 ; 1,0,0,1,0,0 ;$
$0,1,0,0,1,0 ; 1,0,1,0,0,1]$
$\mathrm{A}=$

A More Abstract Example

- Let $C \subseteq V$ be a maximal clique in G. We will show (two ways) that

$$
\sum_{i \in C} x_{i} \leq 1
$$

- is a facet-defining inequality (a facet) of $\operatorname{PACK}(G)$.
- First question: What is $\operatorname{dim}(P A C K)$?
- How do we establish the dimension of a polyhedron?
octave:2> rank(A)

Way \#1—Direct
Way \#2—Indirect

- To show that $\sum_{i \in C} x_{i} \leq 1$ is a facet (that its dimension is $n-1$), we can given n affinely independent points in PACK that satisfy $\sum_{i \in C} x_{i}=1$
- Since the hyperplane $\sum_{i \in C} x_{i}=1$ does not contain the origin, this is equivalent to giving n linearly independent points.
- WLOG, let the clique be $C=\{1,2, \ldots, k\}$
- Key: $\forall p \in V \backslash C \exists i_{p} \in C$ such that $\left(i_{p}, p\right) \notin E$. Why?
- Points: $\left(e_{1}, e_{2}, \ldots, e_{k}, e_{k+1}+e_{i_{k+1}}, \ldots, e_{p}+e_{i_{p}}, \ldots, e_{n}+e_{i_{n}}\right)$
- Let $F=\left\{x \in \mathrm{PACK} \mid \sum_{i \in C} x_{i}=1\right\}$
- Suppose $F \subseteq G \equiv\left\{x \in \operatorname{PACK} \mid \lambda^{T} x=\lambda_{0}\right\}(\lambda \neq 0)$
- If we can show that G is just a (non-zero) scalar multiple of F, then we have established that F is a facet.
- Again, WLOG, let $C=\{1,2, \ldots, k\}$
- For $i \leq k$ consider the point e_{i}.
- Satisfies equality $F . F \subseteq G \Rightarrow \lambda_{i}=\lambda_{0} \forall i \in C$

Indirect Facet Proof, cont.

- For $p \in V \backslash C$, consider the point $e_{p}+e_{i_{p}}$: (1's in the coordinates p and i_{p})
- By the same argument as the previous proof, this point packs, and we can always find such a point $\forall p \in V \backslash C$
- This point satisfies equality $F . F \subset G \Rightarrow \lambda_{i_{p}}+\lambda_{p}=\lambda_{0}$
- $\lambda_{i_{p}}=\lambda_{0}$, so $\lambda_{p}=\lambda_{0} \forall p \in V \backslash C$.
- So out inequality defining G looks like $\lambda_{0} \sum_{i \in C} x_{i}=\lambda_{0}$.
- This is a scalar multiple of the inequality defining F, so F is a facet defining inequality.
- $\lambda_{0} \neq 0$ since $\lambda \neq 0, \lambda_{i}=\lambda_{0} \forall i \in C, \lambda_{p}=0 \forall p \in V \backslash C$

