Key Things We Learned Last Time

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

28th March 2005

- A face F is said to be a facet of P if $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.
- All facets are necessary (and sufficient) to describe a polyhedron.
- Facets do not have a unique description. But...
- Every full-dimensional polyhedron P has a unique (up to scalar multiplication) representation that consists of one inequality representing each facet of P.
- If $\operatorname{dim}(P)=n-k$ with $k>0$, then P is described by a maximal set of linearly independent rows of ($A^{=}, b^{=}$), as well as one inequality representing each facet of P.
Jeff Linderoth
Facet Proving
Dual Descriptions
Last Results

IE418 Integer Programming
Key Theorem
Key Theco
Example

Jeff Linderoth
Facet Proving Facet Proving
Lescriptions
Last Results

IE418 Integer Programming
Key Theorem
Example

Proving Facets—Way \#2—Indirect

- This is just an indirect but very useful way to verify affine independence of points.
- Here we assume that P is full dimensional $\operatorname{dim}(P)=n$ (though you can still use Theorem $\mathbf{3 . 6}$ even if not).
- Given valid inequality $\pi^{T} x \leq \pi_{0}$.
(1) Choose $t \geq n$ points $x^{1}, x^{2} \ldots x^{t}$ all satisfying $\pi^{T} x=\pi_{0}$. Suppose that all these points also lie in a generic hyperplane $\lambda^{T} x=\lambda_{0}$.
(2) Solve the linear equation system:

$$
\sum_{j=1}^{n} \lambda_{j} x_{j}^{k}=\lambda_{0} \forall k=1,2, \ldots t
$$

(3) If the only solution is $\left(\lambda, \lambda_{0}\right)=\alpha\left(\pi, \pi_{0}\right)$ for $\alpha \neq 0$, then $\pi^{T} x \leq \pi_{0}$ is facet defining.

A More Abstract Example

$$
\operatorname{PACK}(G)=\left\{x \in \mathbb{B}^{n} \mid x_{i}+x_{j} \leq 1 \forall(i, j) \in E\right\}
$$

- Let $C \subseteq V$ be a maximal clique in G. We will show (two ways) that

$$
\sum_{i \in C} x_{i} \leq 1
$$

- is a facet-defining inequality (a facet) of $\operatorname{PACK}(G)$.
- First question: What is $\operatorname{dim}(P A C K)$?
- $|V|$!

Way \#1—Direct

- To show that $\sum_{i \in C} x_{i} \leq 1$ is a facet (that its dimension is $|V|-1$), we can given $|V|$ affinely independent points in PACK that satisfy $\sum_{i \in C} x_{i}=1$
- Since the hyperplane $\sum_{i \in C} x_{i}=1$ does not contain the origin, this is equivalent to giving $|V|$ linearly independent points.
- WLOG, let the clique be $C=\{1,2, \ldots, k\}$
- Key: $\forall p \in V \backslash C \exists i_{p} \in C$ such that $\left(i_{p}, p\right) \notin E$. Why?
- Points: $\left(e_{1}, e_{2}, \ldots, e_{k}, e_{k+1}+e_{i_{k+1}}, \ldots, e_{p}+e_{i_{p}}, \ldots, e_{n}+e_{i_{n}}\right)$

Way \#2—Indirect

- Let $F=\left\{x \in \operatorname{PACK}(G) \mid \sum_{i \in C} x_{i}=1\right\}$
- Suppose $F \subseteq H \stackrel{\text { def }}{=}\left\{x \in \operatorname{PACK} \mid \lambda^{T} x=\lambda_{0}\right\}(\lambda \neq 0)$
- If we can show that H is just a (non-zero) scalar multiple of F, then we have established that F is a facet.
- Again, WLOG, let $C=\{1,2, \ldots, k\}$
- For $i \leq k$ consider the point e_{i}.
- Satisfies equality $F . F \subseteq H \Rightarrow \lambda_{i}=\lambda_{0} \forall i \in C$

Indirect Facet Proof, cont.

- For $p \in V \backslash C$, consider the point $e_{p}+e_{i_{p}}$: (1's in the coordinates p and i_{p})
- By the same argument as the previous proof, this point packs, and we can always find such a point $\forall p \in V \backslash C$
- This point satisfies equality $H . F \subset G \Rightarrow \lambda_{i_{p}}+\lambda_{p}=\lambda_{0}$
- $\lambda_{i_{p}}=\lambda_{0}$, so $\lambda_{p}=0 \forall p \in V \backslash C$.
- So our inequality defining H looks like $\lambda_{0} \sum_{i \in C} x_{i}=\lambda_{0}$.
- This is a scalar multiple of the inequality defining F, so F is a facet defining inequality
- $\lambda_{0} \neq 0$ since $\lambda \neq 0, \lambda_{i}=\lambda_{0} \forall i \in C, \lambda_{p}=0 \forall p \in V \backslash C$.

Jeff Linderoth Facet Proving Dual Descriptions Last Results

IE418 Integer Programming
Definitions
Example
The Main Theorem
Software Definitions
Example
The Main Theorem

Extreme Points

- x is an extreme point of P if there do not exist $x^{1}, x^{2} \in P$ such that $x=\frac{1}{2} x^{1}+\frac{1}{2} x^{2}$.
- x is an extreme point of P if and only if x is a zero-dimensional face of P.
- If (A, b) is a description of $P \neq \emptyset$ and $\operatorname{rank}(A)=n-k$, then P has a face of dimension k and no proper face of lower dimension.
- These three results together imply that P has an extreme point if and only if $\operatorname{rank}(A)=n$.
- This is the case for any polytope or any polyhedron lying in the nonnegative orthant.

Extreme Rays

Good OI' POLLY

- $P O L L Y \subseteq \mathbb{R}^{5}$:
- The recession cone P^{0} associated with P is $\left\{r \in \mathbb{R}^{n} \mid A r \leq 0\right\}$ Members of the recession cone are called rays of P.
- r is an extreme ray of P if there do not exist rays r^{1} and r^{2} of P such that $r=\frac{1}{2} r^{1}+\frac{1}{2} r^{2}$.
- If $P \neq \emptyset$, then r is an extreme ray of P if and only if $\left\{\lambda r \mid \lambda \in \mathbb{R}_{+}\right\}$is a one-dimensional face of P^{0}
- The last two results together imply that a polyhedron has a finite number of extreme points and extreme rays.
- (Since there are a finite number of faces)

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-x_{4}+2 x_{5} & \leq 3 & & (1,1,0,0,1)^{T} \text { is } \\
x_{1}-x_{5} & \leq 0 & & \text { an extreme } \\
-x_{1}+x_{5} & \leq 0 & & \text { point of } \\
2 x_{2}-x_{3}+x_{4} & \leq 2 & & \text { POLLY Prove } \\
-4 x_{2}+2 x_{3}-2 x_{4} & \leq-4 & & \text { it! } \\
3 x_{1}-x_{2} & \leq 2 & & (0,1,2,0,0)^{T} \text { is } \\
-x_{1} & \leq 0 & & \text { an extreme ray } \\
-x_{2} & \leq 0 & & \text { of } P O L L Y \\
-x_{3} & \leq 0 & & \text { Prove it! }
\end{aligned}
$$

$$
-x_{5} \leq 0
$$

Jeff Linderoth
Facet Proving
Dual Descriptios
Last Results
IE418 Integer Programming
Definitions
Example The Main Theorem

Jeff Linderoth
Facet Proving
Dual Descriptions
Descriptions
Last Results

Minkowski's Theorem

- If $P \neq \emptyset$ and $\operatorname{rank}(A)=n$, then
$P=\left\{\sum_{k \in K} \lambda_{k} x^{k}+\sum_{j \in J} \mu_{j} r^{j} \mid \lambda_{k} \geq 0\right.$ for $k \in K, \mu_{j} \geq 0$ for $\left.j \in J, \sum_{k \in K} \lambda_{i}=1\right\}$
- where $\left\{x^{k}\right\}_{k \in K}$ are the extreme points and $\left\{r^{j}\right\}_{j \in J}$ are the extreme rays.
- Corollaries
- A nonempty polyhedron is bounded if and only if it has no extreme rays.
- A polytope is the convex hull of its extreme points.
- A set of the form given above is called finitely generated.
- This result is often stated as "every polyhedron is finitely generated."

Converting From One Description to Another

- In theory, we can always convert from the inequality description of a polyhedron to the extreme-point-extreme-ray description.
- This could be (and is) very useful when trying (for example) to determine valid inequalities for a class of integer programs. Why?
- In practice, how can we convert from one description to another?
- "Double Description Algorithm"
- "Fourier-Motzkin Elimination".
- Programs: PORTA, Polymake, Irs, ddd, etc...
- Show and Tell! (time permitting)
- Buyer Beware- "small" extreme point descriptions can lead to huge number of inequalities and vice versa

Polymake

- On shark in
/usr/local/polymake
- POLLY
- Wiki entry http:
//coral.ie.lehigh.edu/
cgi-bin/wiki.pl?
PolymakeInformation
- Inequalities are all of form: $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n} \geq 0$
- "Points" are given such that first column is ' 1 ', then it is a extreme point, otherwise, INEQUALITIES 3-1 2 -1 1 -2 $0-10001$ $010000-1$
 -4 0 4-2 20 $2-31000$ 010000 001000 000100 000010 000001
it is an extreme ray.

Jeff Linderoth
Facet Proving
DualRescripioions Last Results

IE418 Integer Programming
Projection
Weyl's Theorem
Jeff Linderoth
Facet Proving
Uual Descritions
Lest Results

IE418 Integer Programming Projection
Projection
Weyl's Theorem

Results from Linear Programming

Define the following:

- $P=\left\{x \in \mathbb{R}_{+}^{n} \mid A x \leq b\right\}, z=\max \{c x \mid x \in P\}$
- $\mathcal{Q}=\left\{u \in \mathbb{R}_{+}^{m} \mid u A \geq c\right\}, w=\min \{u b \mid u \in \mathcal{Q}\}$
- $\left\{x^{k}\right\}_{k \in K},\left\{u^{i}\right\}_{i \in I}$ are the extreme points of P and \mathcal{Q} respectively
- $P^{0}=\left\{x \in \mathbb{R}_{+}^{n} \mid A x \leq 0\right\}$
- $Q^{0}=\left\{u \in \mathbb{R}_{+}^{m} \mid u^{T} A \geq 0\right\}$
- $\left\{r^{j}\right\}_{j \in J,},\left\{v^{t}\right\}_{t \in T}$ are the extreme rays of P^{0} and \mathcal{Q}^{0} respectively.
- $P \neq \emptyset \Leftrightarrow v b \geq 0 \forall t \in T$
- The following are equivalent when $P \neq \emptyset$:
(1) z is unbounded from above,
(2) there exists an extreme ray r^{j} of P with $c r^{j}>0$,
$\mathcal{Q}=\emptyset$
- If $P \neq \emptyset$ and z is bounded, then

$$
z=\max _{k \in K} c x^{k}=w=\min _{i \in I} u^{i} b
$$

- If $p \in \mathbb{R}^{n}$ and H is a subspace, the projection of p onto H is the vector $q \in H$ such that $p-q \in H^{\perp}$.
- Note that this is a decomposition of a vector p into the sum of a vector in H and a vector in H^{\perp}
- The projection of a set is the union of the projections of all its members.
- We will often be interested in "projecting out" a set of variables, i.e., projecting P into a subspace $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p} \mid y=0\right\}$.
- The projection of a point (x, y) into this subspace is the point $(x, 0)$.
- Let $P=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{p} \mid A x+G y \leq b\right\}$
- So the projection of P into the space of just the x variables is

$$
\begin{aligned}
\operatorname{proj}_{x}(P) & =\left\{x \in \mathbb{R}^{n} \mid(x, 0) \in P\right\} \\
& =\left\{x \in \mathbb{R}^{n} \mid v^{T}(b-A x) \geq 0 \forall t \in T\right\}
\end{aligned}
$$

where $\left\{v^{t}\right\}_{t \in T}$ are the extreme rays of $Q=\left\{v \in \mathbb{R}_{+}^{M} \mid v G \geq 0\right\}$.

- This immediately implies that the projection of a polyhedron is a polyhedron.

Weyl's Theorem

If
$Q=\left\{\sum_{k \in K} \lambda_{k} x^{k}+\sum_{j \in J} \mu_{j} r^{j} \mid \lambda_{k} \geq 0\right.$ for $k \in K, \mu_{j} \geq 0$ for $\left.j \in J, \sum_{k \in K} \lambda_{i}=1\right\}$
where $\left\{x^{k}\right\}_{k \in K}$ and $\left\{r^{j}\right\}_{j \in J}$ are given sets of rational vectors, then Q is a rational polyhedron.

- This is the converse of Minkowski's Theorem.
- This says roughly "every finitely generated set is a polyhedron"
- The proof is easy using projection (Read it in the book)...

