IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering

Lehigh University

28th March 2005

Key Things We Learned Last Time

- A face F is said to be a facet of P if dim(F) = dim(P) 1.
- All facets are necessary (and sufficient) to describe a polyhedron.
- Facets do not have a unique description. But...
 - Every full-dimensional polyhedron *P* has a unique (up to scalar multiplication) representation that consists of one inequality representing each facet of *P*.
 - If dim(P) = n k with k > 0, then P is described by a maximal set of linearly independent rows of (A⁼, b⁼), as well as one inequality representing each facet of P.

Proving Facets—Way #2—Indirect

- This is just an indirect but very useful way to verify affine independence of points.
 - Here we assume that P is full dimensional dim(P) = n (though you can still use Theorem 3.6 even if not).
- Given valid inequality $\pi^T x \leq \pi_0$.
 - Choose $t \ge n$ points $x^1, x^2 \dots x^t$ all satisfying $\pi^T x = \pi_0$. Suppose that all these points also lie in a generic hyperplane $\lambda^T x = \lambda_0$.
 - **2** Solve the linear equation system:

$$\sum_{j=1}^{n} \lambda_j x_j^k = \lambda_0 \ \forall k = 1, 2, \dots t$$

(3) If the only solution is $(\lambda, \lambda_0) = \alpha(\pi, \pi_0)$ for $\alpha \neq 0$, then $\pi^T x \leq \pi_0$ is facet defining.

Mar

A More Abstract Example

$$\mathsf{PACK}(G) = \{ x \in \mathbb{B}^n \mid x_i + x_j \le 1 \ \forall (i, j) \in E \}$$

• Let $C \subseteq V$ be a maximal clique in G. We will show (two ways) that

$$\sum_{i \in C} x_i \le 1$$

- is a facet-defining inequality (a facet) of PACK(G).
- First question: What is dim(PACK)?
 - |V|!

Way #1—Direct

• To show that $\sum_{i \in C} x_i \leq 1$ is a facet (that its dimension is |V| - 1), we can given |V| affinely independent points in PACK that satisfy $\sum_{i \in C} x_i = 1$

Example

- Since the hyperplane $\sum_{i \in C} x_i = 1$ does not contain the origin, this is equivalent to giving |V| linearly independent points.
- WLOG, let the clique be $C = \{1, 2, \dots, k\}$

Facet Proving

Dual Descriptions

- Key: $\forall p \in V \setminus C \ \exists i_p \in C \text{ such that } (i_p, p) \notin E.$ Why?
- Points: $(e_1, e_2, \ldots, e_k, e_{k+1} + e_{i_{k+1}}, \ldots, e_p + e_{i_p}, \ldots, e_n + e_{i_n})$

Way #2—Indirect

- Let $F = \{x \in \mathsf{PACK}(G) | \sum_{i \in C} x_i = 1\}$
- Suppose $F \subseteq H \stackrel{\mathsf{def}}{=} \{x \in \mathsf{PACK} | \lambda^T x = \lambda_0\} \ (\lambda \neq 0)$

Facet Proving

Dual Descriptions

• If we can show that H is just a (non-zero) scalar multiple of F, then we have established that F is a facet.

Example

- Again, WLOG, let $C = \{1, 2, \dots, k\}$
- For i ≤ k consider the point e_i.
 Satisfies equality F. F ⊂ H ⇒ λ_i = λ₀ ∀i ∈ C

Indirect Facet Proof, cont.

- For $p \in V \setminus C$, consider the point $e_p + e_{i_p}$: (1's in the coordinates p and i_p)
- By the same argument as the previous proof, this point packs, and we can always find such a point $\forall p \in V \setminus C$
- This point satisfies equality H. $F \subset G \Rightarrow \lambda_{i_p} + \lambda_p = \lambda_0$
- $\lambda_{i_p} = \lambda_0$, so $\lambda_p = 0 \ \forall p \in V \setminus C$.
- So our inequality defining H looks like $\lambda_0 \sum_{i \in C} x_i = \lambda_0$.
- This is a scalar multiple of the inequality defining *F*, so *F* is a facet defining inequality.
 - $\lambda_0 \neq 0$ since $\lambda \neq 0$, $\lambda_i = \lambda_0 \ \forall i \in C$, $\lambda_p = 0 \ \forall p \in V \setminus C$.

Extreme Points

- x is an extreme point of P if there do not exist $x^1, x^2 \in P$ such that $x = \frac{1}{2}x^1 + \frac{1}{2}x^2$.
- x is an extreme point of P if and only if x is a zero-dimensional face of P.
- If (A, b) is a description of P ≠ Ø and rank(A) = n k, then P has a face of dimension k and no proper face of lower dimension.
- These three results together imply that P has an extreme point if and only if rank(A) = n.
- This is the case for any polytope or any polyhedron lying in the nonnegative orthant.

Facet Proving Dual Descriptions Last Results

Definitions Example The Main Theor Software

Facet Proving Dual Descriptions Last Results

Extreme Rays

- The recession cone P^0 associated with P is $\{r \in \mathbb{R}^n | Ar \leq 0\}$. Members of the recession cone are called rays of P.
- r is an extreme ray of P if there do not exist rays r^1 and r^2 of P such that $r = \frac{1}{2}r^1 + \frac{1}{2}r^2$.
- If $P \neq \emptyset$, then r is an extreme ray of P if and only if $\{\lambda r \mid \lambda \in \mathbb{R}_+\}$ is a one-dimensional face of P^0
- The last two results together imply that a polyhedron has a finite number of extreme points and extreme rays.
 - (Since there are a finite number of faces)

Good Ol' POLLY

• $POLLY \subseteq \mathbb{R}^5$:

$x_1 - 2x_2 + x_3 - x_4 + 2x_5$	\leq	3	
$x_1 - x_5$	\leq	0	
$-x_1 + x_5$	\leq	0	
$2x_2 - x_3 + x_4$	\leq	2	
$-4x_2 + 2x_3 - 2x_4$	\leq	-4	
$3x_1 - x_2$	\leq	2	
$-x_{1}$	\leq	0	
$-x_{2}$	\leq	0	
$-x_{3}$	\leq	0	
$-x_{4}$	\leq	0	
$-x_{5}$	<	0	

(1,1,0,0,1)^T is an extreme point of *POLLY* **Prove** it! (0,1,2,0,0)^T is

an extreme ray of *POLLY* **Prove it!**

Minkowski's Theorem

• If $P \neq \emptyset$ and rank(A) = n, then

$$P = \left\{ \sum_{k \in K} \lambda_k x^k + \sum_{j \in J} \mu_j r^j \mid \lambda_k \ge 0 \text{ for } k \in K, \mu_j \ge 0 \text{ for } j \in J, \sum_{k \in K} \lambda_i = 1 \right\}$$

- where $\{x^k\}_{k\in K}$ are the extreme points and $\{r^j\}_{j\in J}$ are the extreme rays.
- Corollaries
 - A nonempty polyhedron is bounded if and only if it has no extreme rays.

Jeff Linderoth IE418 Integer Programming

- A polytope is the convex hull of its extreme points.
- A set of the form given above is called finitely generated.
- This result is often stated as "every polyhedron is finitely generated."

It's Still POLLY

• By Minkowski's Theorem, I can characterize *POLLY* by her extreme points and extreme rays.

$$ext(POLLY) = \left\{ \begin{pmatrix} 5/3 \\ 3 \\ 4 \\ 0 \\ 5/3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2/3 \\ 0 \\ 2 \\ 2/3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 2 \\ 2/3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\} \quad \bullet \ \lambda_2 = 1/3, \lambda_4 = 2/3, \mu_2 = 23$$
$$\bullet \ \hat{x} = (0, 71/3, 23, 2/3, 0) \in POLLY$$

Converting From One Description to Another

Dual Descriptions

- In *theory*, we can always convert from the inequality description of a polyhedron to the extreme-point-extreme-ray description.
- This could be (and is) *very* useful when trying (for example) to determine valid inequalities for a class of integer programs. Why?
- In practice, how can we convert from one description to another?
 - "Double Description Algorithm"
 - "Fourier-Motzkin Elimination".
 - Programs: PORTA, Polymake, Irs, ddd, etc...
 - Show and Tell! (time permitting)
- Buyer Beware— "small" extreme point descriptions can lead to *huge* number of inequalities and vice versa

Polymake

• On shark in /usr/local/polymake

Dual Descriptions

- Wiki entry http: //coral.ie.lehigh.edu/ cgi-bin/wiki.pl? PolymakeInformation
- Inequalities are all of form: $a_0 + a_1 x_1 + \ldots + a_n x_n \ge 0$
- "Points" are given such that first column is '1', then it is a extreme point, otherwise, it is an extreme ray.

• POLLY INEQUALITIES 3 -1 2 -1 1 -2

Example The Main Theorem

0 -1 0 0 0 1

0 1 0 0 0 -1

2 0 -2 1 -1 0

-404-220

2 -3 1 0 0 0

000100

000010

000001

Software

Results from Linear Programming

Define the following:

- $P = \{x \in \mathbb{R}^n_+ \mid Ax \le b\}, z = \max\{cx \mid x \in P\}$
- $\mathcal{Q} = \{ u \in \mathbb{R}^m_+ \mid uA \ge c \}, w = \min\{ub \mid u \in \mathcal{Q} \}$
- $\{x^k\}_{k \in K}$, $\{u^i\}_{i \in I}$ are the extreme points of P and Q respectively.
- $P^{\mathbf{0}} = \{x \in \mathbb{R}^n_+ \mid Ax \le \mathbf{0}\}$
- $Q^{\mathbf{0}} = \{ u \in \mathbb{R}^m_+ \mid u^T A \ge \mathbf{0} \}$
- $\{r^j\}_{j\in J}$, $\{v^t\}_{t\in T}$ are the extreme rays of P^0 and Q^0 respectively.

Results from LP

- $P \neq \emptyset \Leftrightarrow vb \ge 0 \ \forall t \in T$
- The following are equivalent when $P \neq \emptyset$:
 - \bigcirc z is unbounded from above,
 - 2 there exists an extreme ray r^j of P with $cr^j > 0$,
- If $P \neq \emptyset$ and z is bounded, then

$$z = \max_{k \in K} cx^k = w = \min_{i \in I} u^i b^i$$

Facet Proving Dual Descriptions Last Results

Projections and Polyhedra

Dual Descriptions

Last Results

• If $p \in \mathbb{R}^n$ and H is a subspace, the projection of p onto H is the vector $q \in H$ such that $p - q \in H^{\perp}$.

Projection

- Note that this is a decomposition of a vector p into the sum of a vector in H and a vector in $H^{\perp}.$
- The *projection of a set* is the union of the projections of all its members.
- We will often be interested in "projecting out" a set of variables, i.e., projecting P into a subspace {(x, y) ∈ ℝⁿ × ℝ^p | y = 0}.

Jeff Linderoth

Last Results

Dual Descriptions

The projection of a point (x, y) into this subspace is the point (x, 0).

IE418 Integer Programming

Weyl's Theorem

The Projection of a Polyhedron

- Let $P = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^p \mid Ax + Gy \le b\}$
- $\bullet\,$ So the projection of P into the space of just the x variables is

$$proj_x(P) = \{x \in \mathbb{R}^n \mid (x, 0) \in P\} \\ = \{x \in \mathbb{R}^n \mid v^T(b - Ax) \ge 0 \ \forall t \in T\}$$

where $\{v^t\}_{t\in T}$ are the extreme rays of $Q = \{v \in \mathbb{R}^M_+ \mid vG \ge \mathbf{0}\}.$

• This immediately implies that the projection of a polyhedron is a polyhedron.

Jeff Linderoth IE418 Integer Programming

Weyl's Theorem

lf

$$Q = \left\{ \sum_{k \in K} \lambda_k x^k + \sum_{j \in J} \mu_j r^j \mid \lambda_k \ge 0 \text{ for } k \in K, \mu_j \ge 0 \text{ for } j \in J, \sum_{k \in K} \lambda_i = 1 \right\}$$

where $\{x^k\}_{k \in K}$ and $\{r^j\}_{j \in J}$ are given sets of rational vectors, then Q is a rational polyhedron.

- This is the converse of Minkowski's Theorem.
- This says roughly "every finitely generated set is a polyhedron"
- The proof is easy using projection (Read it in the book)...

