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Key Things We Learned Last Time

A face F is said to be a facet of P if dim(F ) = dim(P )− 1.

All facets are necessary (and sufficient) to describe a
polyhedron.

Facets do not have a unique description. But...

Every full-dimensional polyhedron P has a unique (up to scalar
multiplication) representation that consists of one inequality
representing each facet of P .
If dim(P ) = n− k with k > 0, then P is described by a
maximal set of linearly independent rows of (A=, b=), as well
as one inequality representing each facet of P .
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Proving Facets—Way #2—Indirect

This is just an indirect but very useful way to verify affine
independence of points.

Here we assume that P is full dimensional dim(P ) = n
(though you can still use Theorem 3.6 even if not).

Given valid inequality πT x ≤ π0.

1 Choose t ≥ n points x1, x2 . . . xt all satisfying πT x = π0.
Suppose that all these points also lie in a generic hyperplane
λT x = λ0.

2 Solve the linear equation system:

n∑
j=1

λjx
k
j = λ0 ∀k = 1, 2, . . . t

3 If the only solution is (λ, λ0) = α(π, π0) for α 6= 0, then
πT x ≤ π0 is facet defining.
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A More Abstract Example

PACK(G) = {x ∈ Bn | xi + xj ≤ 1 ∀(i, j) ∈ E}

Let C ⊆ V be a maximal clique in G. We will show (two
ways) that

∑
i∈C

xi ≤ 1

is a facet-defining inequality (a facet) of PACK(G).

First question: What is dim(PACK)?

|V |!
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Way #1—Direct

To show that
∑

i∈C xi ≤ 1 is a facet (that its dimension is
|V | − 1), we can given |V | affinely independent points in
PACK that satisfy

∑
i∈C xi = 1

Since the hyperplane
∑

i∈C xi = 1 does not contain the origin,
this is equivalent to giving |V | linearly independent points.

WLOG, let the clique be C = {1, 2, . . . , k}
Key: ∀p ∈ V \ C ∃ip ∈ C such that (ip, p) 6∈ E. Why?

Points: (e1, e2, . . . , ek, ek+1 + eik+1
, . . . , ep + eip , . . . , en + ein)
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Way #2—Indirect

Let F = {x ∈ PACK(G)|
∑

i∈C xi = 1}

Suppose F ⊆ H
def
= {x ∈ PACK|λT x = λ0} (λ 6= 0)

If we can show that H is just a (non-zero) scalar multiple of
F , then we have established that F is a facet.

Again, WLOG, let C = {1, 2, . . . , k}
For i ≤ k consider the point ei.

Satisfies equality F . F ⊆ H ⇒ λi = λ0 ∀i ∈ C
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Indirect Facet Proof, cont.

For p ∈ V \ C, consider the point ep + eip : (1’s in the
coordinates p and ip)

By the same argument as the previous proof, this point packs,
and we can always find such a point ∀p ∈ V \ C

This point satisfies equality H. F ⊂ G ⇒ λip + λp = λ0

λip = λ0, so λp = 0 ∀p ∈ V \ C.

So our inequality defining H looks like λ0
∑

i∈C xi = λ0.

This is a scalar multiple of the inequality defining F , so F is a
facet defining inequality.

λ0 6= 0 since λ 6= 0, λi = λ0 ∀i ∈ C, λp = 0 ∀p ∈ V \ C.
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Extreme Points

x is an extreme point of P if there do not exist x1, x2 ∈ P
such that x = 1

2x1 + 1
2x2.

x is an extreme point of P if and only if x is a
zero-dimensional face of P .

If (A, b) is a description of P 6= ∅ and rank(A) = n− k, then
P has a face of dimension k and no proper face of lower
dimension.

These three results together imply that P has an extreme
point if and only if rank(A) = n.

This is the case for any polytope or any polyhedron lying in
the nonnegative orthant.
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Extreme Rays

The recession cone P 0 associated with P is {r ∈ Rn|Ar ≤ 0}.
Members of the recession cone are called rays of P .

r is an extreme ray of P if there do not exist rays r1 and r2 of
P such that r = 1

2r1 + 1
2r2.

If P 6= ∅, then r is an extreme ray of P if and only if
{λr | λ ∈ R+} is a one-dimensional face of P 0

The last two results together imply that a polyhedron has a
finite number of extreme points and extreme rays.

(Since there are a finite number of faces)
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Good Ol’ POLLY

POLLY ⊆ R5:

x1 − 2x2 + x3 − x4 + 2x5 ≤ 3

x1 − x5 ≤ 0

−x1 + x5 ≤ 0

2x2 − x3 + x4 ≤ 2

−4x2 + 2x3 − 2x4 ≤ −4

3x1 − x2 ≤ 2

−x1 ≤ 0

−x2 ≤ 0

−x3 ≤ 0

−x4 ≤ 0

−x5 ≤ 0

(1, 1, 0, 0, 1)T is
an extreme
point of
POLLY Prove
it!

(0, 1, 2, 0, 0)T is
an extreme ray
of POLLY
Prove it!
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Minkowski’s Theorem

If P 6= ∅ and rank(A) = n, then

P =

∑
k∈K

λkxk +
∑
j∈J

µjr
j | λk ≥ 0 for k ∈ K, µj ≥ 0 for j ∈ J,

∑
k∈K

λi = 1

 .

where {xk}k∈K are the extreme points and {rj}j∈J are the extreme
rays.

Corollaries

A nonempty polyhedron is bounded if and only if it has no
extreme rays.
A polytope is the convex hull of its extreme points.

A set of the form given above is called finitely generated.

This result is often stated as “every polyhedron is finitely
generated.”
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It’s Still POLLY

By Minkowski’s Theorem, I can characterize POLLY by her
extreme points and extreme rays.

ext(POLLY ) =

8>>><>>>:
0BBB@

5/3
3
4
0

5/3

1CCCA
0BBB@

0
0
0
2
0

1CCCA
0BBB@

2/3
0
0
2

2/3

1CCCA
0BBB@

0
1
0
0
0

1CCCA
0BBB@

1
1
0
0
1

1CCCA
9>>>=>>>;

cone(POLLY ) =

8>>><>>>:
0BBB@

0
1
2
0
0

1CCCA
0BBB@

0
0
1
1
0

1CCCA
9>>>=>>>;

λ2 = 1/3, λ4 =
2/3, µ2 = 23

x̂ =
(0, 71/3, 23, 2/3, 0) ∈
POLLY
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Converting From One Description to Another

In theory, we can always convert from the inequality description of a
polyhedron to the extreme-point-extreme-ray description.

This could be (and is) very useful when trying (for example) to
determine valid inequalities for a class of integer programs. Why?

In practice, how can we convert from one description to another?

“Double Description Algorithm”
“Fourier-Motzkin Elimination”.
Programs: PORTA, Polymake, lrs, ddd, etc...
Show and Tell! (time permitting)

Buyer Beware— “small” extreme point descriptions can lead to
huge number of inequalities and vice versa
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Polymake

On shark in
/usr/local/polymake

Wiki entry http:
//coral.ie.lehigh.edu/
cgi-bin/wiki.pl?
PolymakeInformation

Inequalities are all of form:
a0 + a1x1 + . . . + anxn ≥ 0

“Points” are given such that
first column is ’1’, then it is
a extreme point, otherwise,
it is an extreme ray.

POLLY

INEQUALITIES

3 -1 2 -1 1 -2

0 -1 0 0 0 1

0 1 0 0 0 -1

2 0 -2 1 -1 0

-4 0 4 -2 2 0

2 -3 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Jeff Linderoth IE418 Integer Programming

Facet Proving
Dual Descriptions

Last Results

Projection
Weyl’s Theorem

Results from Linear Programming

Define the following:

P = {x ∈ Rn
+ | Ax ≤ b}, z = max{cx | x ∈ P}

Q = {u ∈ Rm
+ | uA ≥ c}, w = min{ub | u ∈ Q}

{xk}k∈K , {ui}i∈I are the extreme points of P and Q
respectively.

P 0 = {x ∈ Rn
+ | Ax ≤ 0}

Q0 = {u ∈ Rm
+ | uT A ≥ 0}

{rj}j∈J , {vt}t∈T are the extreme rays of P 0 and Q0

respectively.
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Results from LP

P 6= ∅ ⇔ vb ≥ 0 ∀t ∈ T

The following are equivalent when P 6= ∅:
1 z is unbounded from above,
2 there exists an extreme ray rj of P with crj > 0,
3 Q = ∅

If P 6= ∅ and z is bounded, then

z = max
k∈K

cxk = w = min
i∈I

uib
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Projections and Polyhedra

If p ∈ Rn and H is a subspace, the projection of p onto H is
the vector q ∈ H such that p− q ∈ H⊥.

Note that this is a decomposition of a vector p into the sum
of a vector in H and a vector in H⊥.

The projection of a set is the union of the projections of all its
members.

We will often be interested in “projecting out” a set of
variables, i.e., projecting P into a subspace
{(x, y) ∈ Rn × Rp | y = 0}.
The projection of a point (x, y) into this subspace is the point
(x, 0).
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The Projection of a Polyhedron

Let P = {(x, y) ∈ Rn × Rp | Ax + Gy ≤ b}
So the projection of P into the space of just the x variables is

projx(P ) = {x ∈ Rn | (x, 0) ∈ P}
= {x ∈ Rn | vT (b−Ax) ≥ 0 ∀t ∈ T}

where {vt}t∈T are the extreme rays of
Q = {v ∈ RM

+ | vG ≥ 0}.
This immediately implies that the projection of a polyhedron
is a polyhedron.
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Weyl’s Theorem

If

Q =

∑
k∈K

λkxk +
∑
j∈J

µjr
j | λk ≥ 0 for k ∈ K, µj ≥ 0 for j ∈ J,

∑
k∈K

λi = 1

 ,

where {xk}k∈K and {rj}j∈J are given sets of rational vectors, then Q is
a rational polyhedron.

This is the converse of Minkowski’s Theorem.

This says roughly “every finitely generated set is a polyhedron”

The proof is easy using projection (Read it in the book)...
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