	Ellipsoid Method
	Polarity
Separatio	Separation = Optimization

Today's Outline

30th March 2005

• Some Problems

- Separation Problem
- Optimization Problem
- The Ellipsoid Method
 - An informal introduction
- The equivalance of separation and optimization

psoid Methoc

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Ellipsoid Method		Ellipsoid Method	History
Polarity Separation — Optimization		Polarity Separation – Optimization	Algorithm
Separation – Optimization		Separation – Optimization	Impact

The Separation Problem

• Consider the following problem

 $OP: \max\{c^T x \mid x \in X \subseteq \Re^n\}.$

- The **Separation Problem** (*SEP*) associated with *OP* is the following:
 - Given $\hat{x} \in \Re^n$, is $\hat{x} \in \operatorname{conv}(X)$?
 - If not, give a "certificate"— An inequality $\pi^T x \leq \pi_0$ satisfied by all points in X, but violated by \hat{x} : $(\pi^T \hat{x} > \pi_0)$.
- Our goal in the following will be to show (loosely) that solving the separation problem in polynomial time is equivalent to solving the optimization problem in polynomial time

The Ellipsoid Algorithm

- Due to Khachiyan in 1979
 - Building on the work of Shor, Yudin, and Nemirovskii
- The *first* algorithm that demonstrated that linear programming was solvable in polynomial time
- Now many interior point algorithms have polynomial complexity
- The Ellipsoid method is considered to be computationally impractical
- Its consequences in combinatorial optimization are enormous!
- In what follows, we will assume that
 - P is bounded.
 - P is full-dimensional

Ellipsoid Method
PolarityHistory
AlgorithmEllipsoid Method
PolarityHistory
PolaritySeparation = OptimizationImpactSeparation = OptimizationImpact

Ellipsoid Algorithm

- Find ellipsoid $E_0 \supseteq P$
- **2** Find center x_0 of E_0
- **③** Test if $x_0 \in P$.
- If x₀ ∈ P, you are done. Otherwise, find the violated inequality (π, π₀).
- Solution Push the (π, π_0) until it hits x_0 , giving you a half-ellipsoid HE that contains P.
- **(**) Find a new ellipsoid $E_1 \supseteq HE$ such that

$$\frac{\operatorname{volume}(E_1)}{\operatorname{volume}(E_0)} \le e^{-1/(2n)} < 1$$

• $E_0 \leftarrow E_1$. Go to 2.

Ellipsoid Method

- The shrinking is geometric (multiplicative)...
- In a polynomial number of steps, you either show
 - $\bullet~{\rm A}$ point \hat{x} in P
 - P is empty
 - The volume gets smaller than a lower bound (so *P* is empty within tolerance).
- Given a linear program, if we can solve the separation problem in polynomial time, then we can solve the optimization problem in polynomial time using the ellipsoid method.

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Ellipsoid Method	History	Ellipsoid Method	History
Polarity	Algorithm	Polarity	Algorithm
Separation = Optimization	Impact	Separation $=$ Optimization	Impact

Minimum Cut (MCP)

Given G = (V, E), s,t, ∈ V, let P be the collection of all s - t paths in G. The problem of finding a minimum s - t cut in G = (V, E) is

$$\min_{e \in E} c_e x_e$$

subject to

$$\sum_{e \in P} x_e \geq 1 \qquad \forall P \in \mathcal{P}$$
$$0 \leq x_e \leq 1 \qquad \forall e \in E$$

- Solving this *linear* program gives you a minimum s t cut.
- This isn't obvious, since it is not clear that the extreme points are integral.

Separation Example, Cont.

- Can I solve the LP relaxation of the MCP problem in polynomial time?
- There are an exponential number of inequalities!
 - So even if our LP algorithm runs in time polynomial in the number of inequalities, this is not a polynomial algorithm!
- Thank goodness for the Ellipsoid Method
- Given $\hat{x} \in \Re^{|E|}$, can I check (in polynomial time) whether or not $\sum_{e \in P} \hat{x}_e \ge 1$ $\forall P \in \mathfrak{P}$?
- Find a minimum weight s t path, with weights $\hat{x}!$

TSP-LP

$$\min \sum_{e \in E} c_e x_e$$

subject to

$$\sum_{e \in \delta(\{v\})} x_e \leq 2 \qquad \forall v \in V$$
$$\sum_{e \in \delta(U)} x_e \geq 2 \qquad \forall U \subset V \mid 3 \leq |U| \leq |V|/2$$

•
$$\forall e = (s, t) \in E$$
 solve

$$\min \sum_{e \in \delta(U)} \hat{x}_e \mid U \subset Vs \in U, t \in V \setminus U$$

Wrap-up

• By ellipsoid algorithm, if you can separate in polynomial time, then you can solve the optimization problem in polynomial time

Impact

Separation = Optimization

• Key now—Show that if you can solve an LP in polynomial time, then you must be able to solve its separation problem in polynomial time. For that we need polarity.

solving this problem other th			
Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Ellipsoid Method Polarity Separation = Optimization	Definitions	Ellipsoid Method Polarity Separation = Optimization	Definitions

Polarity

- I am assuming you all read the section on Polarity. (I.4.5)
- Here are the key results we need
- If $P = \{x \in \Re^n | Ax \le b\}$, $\Pi = \{(\pi, \pi_0) \in \Re^{n+1} | \pi^T x \le \pi_0 \ \forall x \in P\}$ is the polar of P.
- Let P ⊆ ℜⁿ be a polyhedron with extreme points {x^k}_{k∈K} and extreme rays {r_j}_{j∈J}. Then Π = {(π, π₀)} is the following polyhedral cone:

$$\begin{aligned} \pi^T x^k - \pi_0 &\leq & \mathbf{0} \qquad \forall k \in K \\ \pi^T r^j &\leq & \mathbf{0} \qquad \forall j \in J \end{aligned}$$

$$P = \{ x \in \mathbb{R}^2 \mid x_1 + x_2 \le 1, -x_1 \le 0, -x_2 \le 0 \}$$

- Is $(1, 2, 4) \in \Pi$?
- Does $x_1 + 2x_2 \le 4 \forall x \in P$?
- $ext(P) = \{(0,0,0)^T, (0,1,0)^T, (0,0,1)^T\}$

$$\Pi = \{(\pi, \pi_0) \in \mathbb{R}^3 \mid -\pi_0 \le 0, \pi_1 - \pi_0 \le 0, \pi_2 - \pi_0 \le 0\}$$

• Assume $\dim(P) = \operatorname{rank}(A) = n$

Cool!

- The facets of P are the extreme rays of the polar of P!
- (π, π_0) is an extreme ray of Π iff (π, π_0) is a facet of P.

And Vice Versa!

- $\pi^T \hat{x} \leq \pi_0$ defines a facet of Π if and only if \hat{x} is an extreme point of P
- $\pi^T \hat{r} \leq 0$ defines a facet of Π if and only if \hat{r} is an extreme ray of P

The 1-Polar

- Let's assume we are dealing with polytopes.
- If $\hat{P} = \{x \in \Re^n \mid Ax \le b\}$ is full dimensional it has an interior point.

Definitions

- By translation, we can take this interior point to be 0.
- So if $a^T x \leq b$ is valid inequality for the (translated) \hat{P} , b > 0
- You can scale each inequality by the RHS and rewrite the polytope as $P = \{x \in \Re^n \mid Ax \le 1\}$
- The 1-polar of P is $\Pi^1 = \{ \pi \in \Re^n \mid \pi^T x^k \le 1 \; \forall k \in K \equiv \mathsf{ext}(P) \}$

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Ellipsoid Method Polarity Separation = Optimization	From Polarity The Main Result	Ellipsoid Method Polarity Separation = Optimization	From Polarity The Main Result

Main Theorem

- $\bullet~$ If P is full dimensional and 0 is an interior point of P, then
- $P = \{x \mid x^T \pi^t \leq 1 \ \forall t \in T \equiv \mathsf{ext}(\mathsf{\Pi}^1)\}$
- $\Pi^1 = \{ \pi \mid \pi^T x^k \leq 1 \ \forall k \in K \equiv \mathsf{ext}(P) \}$
- The consequence of this is the following:
- $\hat{x} \in P \Leftrightarrow \max\{\hat{x}^T \pi | \pi \in \Pi^1\} \leq 1$
- $\bullet \ \hat{\pi} \in \Pi^1 \Leftrightarrow \max\{\hat{\pi}^T x | x \in P\} \leq 1$

Separation is Equivalent to Optimization

- Separate over P in $\mathcal{P} \stackrel{\mathsf{Ellipsoid}}{\Rightarrow}$ Solve LP over P in \mathcal{P}
- Solve LP over P in $\mathcal{P} \stackrel{\text{Polarity}}{\Rightarrow}$ Separate over Π in \mathcal{P}
- Separate over Π in $\mathcal{P} \stackrel{\mathsf{Ellipsoid}}{\Rightarrow} \mathsf{Solve LP} \mathsf{ over } \Pi \mathsf{ in } \mathcal{P}$
- Solve LP over Π in $\mathcal{P} \stackrel{\text{Polarity}}{\Rightarrow}$ Separate over P in \mathcal{P} Q.E.D

