IE418: Integer Programming

Jeff Linderoth
Department of Industrial and Systems Engineering
Lehigh University
4th April 2005

- Hand in Homeworks!

Jeff Linderoth	IE418 Integer Programming
Preliminaries Covers Lifting	Motivation Simple Facets

Jeff Linderoth
Preliminaries
Covers
Lifting

IE418 Integer Programming
Motivation
Motivation
Simple Facets

Using Valid Inequalities for a Relaxation

- I want to solve MIPs, why do I care about strong inequalities for the knapsack problem?
- If $P=\left\{x \in \mathbb{B}^{n} \mid A x \leq b\right\}$, then for any row i, $P_{i}=\left\{x \in \mathbb{B}^{n} \mid a_{i}^{T} x \leq b_{i}\right\}$ is a relaxation of P.
- $P \subseteq P_{i} \forall i=1,2, \ldots m$
- $P \subseteq \bigcap_{i=1}^{m} P_{i}$
- Any inequality valid for a relaxation of an IP is valid for the IP itself.
- Generating valid inequalities for a relaxation is often easier.
- If the intersection of the relaxations is a good approximation to the true problem, then the inequalities will be quite useful.
- Crowder, Johnson, and Padberg is the seminal paper that shows this to be true.

Simple facets

- What is $\operatorname{dim}(\operatorname{conv}($ KNAP $))$?
- $0, e_{j}, \forall j \in N$ are $n+1$ affinely independent points in $\operatorname{conv}(\operatorname{KNAP}) \Rightarrow \operatorname{dim}(\operatorname{conv}($ KNAP $))=n$.
- $x_{k} \geq 0$ is a facet of conv(KNAP)
- Proof. $0, e_{j}, \forall j \in N \backslash k$ are n affinely independent points that satisfy $x_{k}=0$
- $x_{k} \leq 1$ is a facet of $\operatorname{conv(\text {KNAP})~if~} a_{j}+a_{k} \leq b \forall j \in N \backslash k$
- Proof. $e_{k}, e_{j}+e_{k}, \forall j \in N \backslash k$ are n affinely independent points that satisfy $x_{k}=1$

Covers

- A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_{j}>b$
- A cover C is a minimal cover if $C \backslash j$ is not a cover $\forall j \in C$
- If $C \subseteq N$ is a cover, then the cover inequality

$$
\sum_{j \in C} x_{j} \leq|C|-1
$$

is a valid inequality for S
Jeff Linderoth
Preliminaries
Covers
Litting
IE418 Integer Programming
Definititon
Domination
Facet Proofs
Examples Definition
Domination
Facet Proo

Jeff Linderoth
 eliminaries Covers
 Covers Lifting
 E418 Integer Programming Definition Domination
 Domination Facet Proofs

Best We Can Do?

- Are these inequalities the strongest ones we can come up with?
- What does strongest mean?
- We all know that facets are the "strongest", but can we say anything else
- If $\pi^{T} x \leq \pi_{0}$ and $\mu^{T} x \leq \mu_{0}$ are two valid inequalities for $P \subseteq \Re_{+}^{n}$, we say that $\pi^{T} x \leq \pi_{0}$ dominates $\mu^{T} x \leq \mu_{0}$ if $\exists u \geq 0$ such that
- $\pi \geq u \mu$
- $\pi_{0} \leq u \mu_{0}$
- $\left(\pi, \pi_{0}\right) \neq u\left(\mu, \mu_{0}\right)$
- If $\pi^{T} x \leq \pi_{0}$ dominates $\mu^{T} x \leq \mu_{0}$, then $\left\{x \in \Re_{+}^{n} \mid \pi^{T} x \leq \pi_{0}\right\} \subseteq\left\{x \in \Re_{+}^{n} \mid \mu^{T} x \leq \mu_{0}\right\}$

Back to the Knapsack

- If $C \subseteq N$ is a minimal cover, the extended cover $E(C)$ is defined as

$$
\text { - } E(C)=C \cup\left\{j \in N \mid a_{j} \geq a_{i} \forall i \in C\right\}
$$

- If $E(C)$ is an extended cover for S, then the extended cover inequality

$$
\sum_{j \in E(C)} x_{j} \leq|C|-1,
$$

is a valid inequality for S

- Proof. $x^{R} \in \operatorname{KNAP}, \sum_{j \in E(C)} x_{j}^{R} \geq|C| \Rightarrow|R \cap E(C)| \geq|C|$. $\sum_{j \in R} a_{j} \geq \sum_{j \in R \cap E(C)} a_{j} \geq \sum_{j \in C} a_{j}>b$, so $x^{R} \notin \mathrm{KNAP}$
- Note this inequality dominates the cover inequality if $E(C) \backslash C \neq \emptyset$

As Good As It Gets?

- Question: Are these inequalities as strong as possible?
- Answer: Sometimes.
- Order the variables so that $a_{1} \geq a_{2} \ldots \geq a_{n}$
- Denote the cover as $C=\left\{j_{1}, j_{2}, \ldots j_{r}\right\}\left(j_{1}<j_{2}<\ldots<j_{r}\right)$ so that $a_{j_{1}} \geq a_{j_{2}} \geq \ldots \geq a_{j_{r}}$
- Given a minimal cover C, define the following sets:
- $R_{k}=C \backslash k \forall k \in C$
- $S_{k}=C \backslash\left\{j_{1}, j_{2}\right\} \cup\{k\} \forall k \in E(C) \backslash C$
- $T_{k}=C \backslash j_{1} \cup\{k\} \forall k \in N \backslash E(C)$
- (Example, cont.) The cover inequality $x_{3}+x_{4}+x_{5}+x_{6} \leq 3$ is dominated by the extended cover inequality $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}<3$

Jeff Linderoth	IE418 Integer Programming Preliminaries Ceverinition Cifting
Domination Facet Proofs Examples	

Jeff Linderoth	IE418 Integer Programming
Preliminaries	Definition Covers Domination Lifting
Facet Proofs Examples	

Facets

- If $C=N, \sum_{j \in C} x_{j} \leq|C|-1$ is a facet of conv(KNAP)
- Proof. R_{k}.
- Let $p=\min \{j \mid j \in N \backslash E(C)\}$. If $C=E(C)$, and $\sum_{j \in C \backslash j_{1}} a_{j}+a_{p} \leq b$, then $\sum_{j \in C} x_{j} \leq|C|-1$ is a facet of conv(KNAP).
- Proof. R_{k} and T_{k}.
- If $E(C)=N$ and $\sum_{j \in C \backslash\left\{j_{1}, j_{2}\right\}} a_{j}+a_{1} \leq b$, then $\sum_{j \in E(C)} x_{j} \leq|C|-1$ is a facet of conv(KNAP).
- Proof. R_{k} and S_{k}

In General...

- Order the variables so that $a_{1} \geq a_{2} \ldots \geq a_{n}$
- Let C be a cover with $C=\left\{j_{1}, j_{2}, \ldots j_{r}\right\}$
$\left(j_{1}<j_{2}<\ldots<j_{r}\right)$ so that $a_{j_{1}} \geq a_{j_{2}} \geq \ldots \geq a_{j_{r}}$. Let $p=\min \{j \mid j \in N \backslash E(C)\}$.
- If any of the following conditions hold, then

$$
\sum_{j \in E(C)} x_{j} \leq|C|-1
$$

gives a facet of conv(KNAP)

- $C=N$
- $E(C)=N$ and $\left({ }^{*}\right) \sum_{j \in C \backslash\left\{j_{1}, j_{2}\right\}} a_{j}+a_{1} \leq b$
- $C=E(C)$ and $\left({ }^{* *}\right) \sum_{j \in C \backslash j_{1}} a_{j}+a_{p} \leq b$
- $C \subset E(C) \subset N$ and $\left({ }^{*}\right)$ and ($\left.{ }^{* *}\right)$.
- From out friend polymake...
- $C=\{1,2,6\} . E(C)=C$.
- If $a_{2}+a_{6}+a_{3} \leq b$, then $x_{1}+x_{2}+x_{6} \leq 2$ is a facet of conv(MYKNAP)
- $16 \leq 19$. It is a facet!
- $C=\{3,4,5,6\} . E(C)=\{1,2,3,4,5,6\} . C \subset E(C) \subset N$. $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3$ is a facet of conv(MYKNAP)
if...
- $a_{4}+a_{5}+a_{6}+a_{7} \leq b$? (Yes!)
- $a_{5}+a_{6}+a_{1} \leq b$ (No!)
- So $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3$ is not facet-defining for conv(MYKNAP)

Jeff Linderoth
Preliminaries Covers Lifting

IE418 Integer Programming
Lifting Covers
UpLifting Theorem
Jeff Linderoth
Preliminaries
Covers
Lifting

Covers and Lifting

- Let $\left.P_{1,2,7}=\operatorname{conv(MYKNAP} \cap\left\{x \in \Re^{7} \mid x_{1}=x_{2}=x_{7}=0\right\}\right)$
- Consider the cover inequality arising from $C=\{3,4,5,6\}$.
- $\sum_{j \in C} x_{j} \leq 3$ is facet defining for $P_{1,2,7}$
- If x_{1} is not fixed at 0 , can we strengthen the inequality?
- For what values of α_{1} is the inequality

$$
\alpha_{1} x_{1}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

valid for

$$
P_{2,7}=\operatorname{conv}\left(\left\{x \in \text { MYKNAP } \mid x_{2}=x_{7}=0\right\}\right) ?
$$

- If $x_{1}=0$ then the inequality is valid for all values of α_{1}

The Other Case

- If $x_{1}=1$, the inequality is valid if and only if

$$
\alpha_{1}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

is valid for all $x \in \mathbb{B}^{4}$ satisfying

$$
6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 19-11
$$

- Equivalently, if and only if

$$
\alpha_{1}+\max _{x \in \mathbb{B}^{4}}\left\{x_{3}+x_{4}+x_{5}+x_{6} \mid 6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 8\right\} \leq 3
$$

- Equivalently if and only if $\alpha_{1} \leq 3-\gamma$, where

$$
\gamma=\max _{x \in \mathbb{B}^{4}}\left\{x_{3}+x_{4}+x_{5}+x_{6} \mid 6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 8\right\} .
$$

Solving the Knapsack Problem

- In this case, we can "solve" the knapsack problem to see that $\gamma=1$. Therefore $\alpha_{1} \leq 2$.
- The inequality

$$
2 x_{1}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

is a valid inequality for P_{27}

- Is it facet-defining?

Lifting

- What we've just done is called lifting. Where a valid (and facet defining) inequality for $S \cap\left\{x \in \mathbb{B}^{n} \mid x_{k}=0\right\}$ is turned into a facet defining inequality for S.
- Theorem. Let $S \subseteq \mathbb{B}^{n}$, for
$\delta \in\{0,1\}, S^{\delta}=S \cap\left\{x \in \mathbb{B}^{n} \mid x_{1}=\delta\right\}$. Suppose

$$
\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}
$$

is valid for S^{0}.

Jeff Linderoth
 Preliminaries
 Covers Lifting

IE418 Integer Programming
Lifting Covers
UpLifting Theo

Jeff Linderoth
 Preliminaries
 Covers Lifting

E418 Integer Programming
Lifting Covers
UpLifting Theorem

Lifting Thm. (2)

- If $S^{1}=\emptyset$, then $x_{1} \leq 0$ is valid for S

If $S^{1} \neq \emptyset$, then

$$
\alpha_{1} x_{1}+\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}
$$

is valid for S for any $\alpha_{1} \leq \pi_{0}-\gamma$, where

$$
\gamma-\max \left\{\sum_{j=2}^{n} \pi_{j} x_{j} \mid x \in S^{1}\right\} .
$$

- If $\alpha_{1}=\pi_{0}-\gamma$ and $\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}$ defines a face of dimension k of $\operatorname{conv}\left(S^{0}\right)$, then

$$
\alpha_{1} x_{1}+\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}
$$

defines a face of dimension at least $k+1$ of $\operatorname{conv}(S)$.

For You To Do...

- Read N\&W Sections II.2.1, II.2.2
- Read [2]
- Read [1]

居 A. Atamtürk, Cover and pack inequalities for (mixed) integer programming, Annals of Operations Research. forthcoming.
E H. Crowder, E. L. Johnson, and M. W. Padberg, Solving large scale zero-one linear programming problems, Operations Research, 31 (1983), pp. 803-834.

