eliminaries Covers Lifting

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

4th April 2005

reliminaries Covers Lifting

Evil!

• Hand in Homeworks!

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Preliminaries Covers Lifting	Simple Facets	Preliminaries Covers Lifting	Motivation Simple Facets

Valid Inequalities for the Knapsack Problem

• We are interested in valid inequalities for the knapsack set KNAP

$$\mathrm{KNAP} = \{ x \in \mathbb{B}^n | \sum_{j \in N} a_j x_j \le b \}$$

- $N = \{1, 2, \dots n\}$
- We assume WLOG that $a_j > 0 \ \forall j \in N$ Why?
 - If $a_j < 0$, let $\hat{x_j} = 1 x_j$
- We will also assume that $a_j < b \ \forall j \in N$
- We are interested in finding facets of conv(KNAP)

Store State

Using Valid Inequalities for a Relaxation

- I want to solve MIPs, why do I care about strong inequalities for the knapsack problem?
- If $P = \{x \in \mathbb{B}^n \mid Ax \le b\}$, then for any row i, $P_i = \{x \in \mathbb{B}^n \mid a_i^T x \le b_i\}$ is a relaxation of P.
 - $P \subseteq P_i \ \forall i = 1, 2, \dots m$ • $P \subseteq \bigcap_{i=1}^m P_i$
- Any inequality valid for a relaxation of an IP is valid for the IP itself.
- Generating valid inequalities for a relaxation is often easier.
- If the intersection of the relaxations is a good approximation to the true problem, then the inequalities will be quite useful.
- Crowder, Johnson, and Padberg is the seminal paper that shows this to be true.

Preliminaries Covers Lifting Motivation Simple Facets

Simple facets

- What is dim(conv(KNAP))?
 - $0, e_j, \forall j \in N$ are n + 1 affinely independent points in $conv(KNAP) \Rightarrow dim(conv(KNAP)) = n$.
- $x_k \ge 0$ is a facet of conv(KNAP)
 - **Proof.** $0, e_j, \ \forall j \in N \setminus k$ are n affinely independent points that satisfy $x_k = 0$
- $x_k \leq 1$ is a facet of conv(KNAP) if $a_j + a_k \leq b \; \forall j \in N \setminus k$
 - **Proof.** $e_k, e_j + e_k, \forall j \in N \setminus k$ are n affinely independent points that satisfy $x_k = 1$.

States

Covers

- A set $C \subseteq N$ is a *cover* if $\sum_{j \in C} a_j > b$
- A cover C is a minimal cover if $C \setminus j$ is not a cover $\forall j \in C$

Definition

Dominatio

• If $C \subseteq N$ is a cover, then the *cover inequality*

Preliminaries

Covers

$$\sum_{j \in C} x_j \le |C| - 1$$

is a valid inequality for \boldsymbol{S}

Example

- $MYKNAP = \{ x \in \mathbb{B}^7 \mid 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19 \}$
 - Some minimal covers are the following:

$x_1 + x_2 + x_3$	\leq	2
$x_1 + x_2 + x_6$	\leq	2
$x_1 + x_5 + x_6$	\leq	2
$x_3 + x_4 + x_5 + x_6$	\leq	3

Best We Can Do?

- Are these inequalities the strongest ones we can come up with?
- What does *strongest* mean?
 - We all know that facets are the "strongest", but can we say anything else
- If $\pi^T x \leq \pi_0$ and $\mu^T x \leq \mu_0$ are two valid inequalities for $P \subseteq \Re^n_+$, we say that $\pi^T x \leq \pi_0$ dominates $\mu^T x \leq \mu_0$ if $\exists u \geq 0$ such that
 - $\pi \ge u\mu$
 - $\pi_0 \leq u\mu_0$
 - $(\pi, \pi_0) \neq u(\mu, \mu_0)$
- If $\pi^T x \leq \pi_0$ dominates $\mu^T x \leq \mu_0$, then $\{x \in \Re^n_+ \mid \pi^T x \leq \pi_0\} \subseteq \{x \in \Re^n_+ \mid \mu^T x \leq \mu_0\}$

Back to the Knapsack

- If $C \subseteq N$ is a minimal cover, the extended cover E(C) is defined as
 - $E(C) = C \cup \{j \in N \mid a_j \ge a_i \ \forall i \in C\}$

Preliminaries

Covers

• If E(C) is an extended cover for S, then the *extended cover* inequality

$$\sum_{e \in E(C)} x_j \le |C| - 1,$$

Dominatio

is a valid inequality for \boldsymbol{S}

- **Proof.** $x^R \in \text{KNAP}, \sum_{j \in E(C)} x_j^R \ge |C| \Rightarrow |R \cap E(C)| \ge |C|.$ $\sum_{j \in R} a_j \ge \sum_{j \in R \cap E(C)} a_j \ge \sum_{j \in C} a_j > b$, so $x^R \notin \text{KNAP}$
- Note this inequality dominates the cover inequality if $E(C) \setminus C \neq \emptyset$
- (Example, cont.) The cover inequality $x_3 + x_4 + x_5 + x_6 \le 3$ is dominated by the extended cover

As Good As It Gets?

- Question: Are these inequalities as strong as possible?
- Answer: Sometimes.
- Order the variables so that $a_1 \geq a_2 \ldots \geq a_n$
- Denote the cover as $C = \{j_1, j_2, \dots j_r\}$ $(j_1 < j_2 < \dots < j_r)$ so that $a_{j_1} \ge a_{j_2} \ge \dots \ge a_{j_r}$
- $\bullet\,$ Given a minimal cover C , define the following sets:
 - $R_k = C \setminus k \ \forall k \in C$
 - $S_k = C \setminus \{j_1, j_2\} \cup \{k\} \ \forall k \in E(C) \setminus C$
 - $T_k = C \setminus j_1 \cup \{k\} \ \forall k \in N \setminus E(C)$

Facets

- If C = N, ∑_{j∈C} x_j ≤ |C| − 1 is a facet of conv(KNAP)
 Proof. R_k.
- Let $p = \min\{j \mid j \in N \setminus E(C)\}$. If C = E(C), and $\sum_{j \in C \setminus j_1} a_j + a_p \leq b$, then $\sum_{j \in C} x_j \leq |C| 1$ is a facet of conv(KNAP).

• **Proof.** R_k and T_k .

• If E(C) = N and $\sum_{j \in C \setminus \{j_1, j_2\}} a_j + a_1 \leq b$, then $\sum_{j \in E(C)} x_j \leq |C| - 1$ is a facet of conv(KNAP).

• **Proof.** R_k and S_k .

In General...

- Order the variables so that $a_1 \ge a_2 \ldots \ge a_n$
- Let C be a cover with $C = \{j_1, j_2, \dots j_r\}$ $(j_1 < j_2 < \dots < j_r)$ so that $a_{j_1} \ge a_{j_2} \ge \dots \ge a_{j_r}$. Let $p = \min\{j \mid j \in N \setminus E(C)\}.$
- If any of the following conditions hold, then

$$\sum_{j \in E(C)} x_j \le |C| - 1$$

gives a facet of conv(KNAP)

- C = N
- E(C) = N and (*) $\sum_{j \in C \setminus \{j_1, j_2\}} a_j + a_1 \leq b$

•
$$C = E(C)$$
 and (**) $\sum_{j \in C \setminus j_1} a_j + a_p \le b$

• $C \subset E(C) \subset N$ and (*) and (**).

Preliminaries Covers

Examples

conv(MYKNAP)

• From out friend polymake...

- $C = \{1, 2, 6\}$. E(C) = C.
 - If $a_2 + a_6 + a_3 \le b$, then $x_1 + x_2 + x_6 \le 2$ is a facet of conv(MYKNAP)
 - 16 < 19. It is a facet!
- $C = \{3, 4, 5, 6\}$. $E(C) = \{1, 2, 3, 4, 5, 6\}$. $C \subset E(C) \subset N$. $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 3$ is a facet of conv(MYKNAP) if...
 - $a_4 + a_5 + a_6 + a_7 \le b$? (Yes!)
 - $a_5 + a_6 + a_1 < b$ (No!).
- So $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 < 3$ is **not** facet-defining for conv(MYKNAP)

Preliminaries Covers

x_j	\geq	0	$orall j=1,2,\ldots,7$
x_j	\leq	1	$orall j=1,2,\ldots,7$
$x_1 + x_5 + x_6$	\leq	2	
$x_1 + x_4 + x_6$	\leq	2	
$x_1 + x_4 + x_5$	\leq	2	
$x_1 + x_3 + x_6$	\leq	2	
$x_1 + x_3 + x_5$	\leq	2	
$x_1 + x_3 + x_4$	\leq	2	
$x_1 + x_2 + x_6$	\leq	2	
$x_1 + x_2 + x_5$	\leq	2	
$x_1 + x_2 + x_4$	\leq	2	
$x_1 + x_2 + x_3$	\leq	2	
$2x_1 + x_2 + x_3 + x_4 + x_5 + x_6$	\leq	3	

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Preliminaries Covers Lifting		Preliminaries Covers Lifting	Lifting Covers UpLifting Theorem

Covers and Lifting

- Let $P_{1,2,7} = \operatorname{conv}(\operatorname{MYKNAP} \cap \{x \in \Re^7 \mid x_1 = x_2 = x_7 = 0\})$
- Consider the cover inequality arising from $C = \{3, 4, 5, 6\}$.
- $\sum_{j \in C} x_j \leq 3$ is facet defining for $P_{1,2,7}$
- If x_1 is not fixed at 0, can we strengthen the inequality?
- For what values of α_1 is the inequality

$$\alpha_1 x_1 + x_3 + x_4 + x_5 + x_6 \le 3$$

valid for

$$P_{2,7} = \operatorname{conv}(\{x \in MYKNAP \mid x_2 = x_7 = 0\})?$$

• If $x_1 = 0$ then the inequality is valid for all values of α_1

The Other Case

• If $x_1 = 1$, the inequality is valid if and only if

 $\alpha_1 + x_3 + x_4 + x_5 + x_6 < 3$

is valid for all $x \in \mathbb{B}^4$ satisfying

 $6x_3 + 5x_4 + 5x_5 + 4x_6 < 19 - 11$

- Equivalently, if and only if
 - $\alpha_1 + \max_{x \in \mathbb{R}^4} \{ x_3 + x_4 + x_5 + x_6 \mid 6x_3 + 5x_4 + 5x_5 + 4x_6 \le 8 \} \le 3$
- Equivalently if and only if $\alpha_1 \leq 3 \gamma$, where

$$\gamma = \max_{x \in \mathbb{B}^4} \{ x_3 + x_4 + x_5 + x_6 \mid 6x_3 + 5x_4 + 5x_5 + 4x_6 \le 8 \}.$$

Solving the Knapsack Problem

• In this case, we can "solve" the knapsack problem to see that $\gamma = 1$. Therefore $\alpha_1 \leq 2$.

Lifting

Lifting Covers

• The inequality

$$2x_1 + x_3 + x_4 + x_5 + x_6 \le 3$$

- is a valid inequality for P_{27}
 - Is it facet-defining?

Lifting

- What we've just done is called *lifting*. Where a valid (and facet defining) inequality for S ∩ {x ∈ Bⁿ | x_k = 0} is turned into a facet defining inequality for S.
- Theorem. Let $S \subseteq \mathbb{B}^n$, for $\delta \in \{0, 1\}, S^{\delta} = S \cap \{x \in \mathbb{B}^n \mid x_1 = \delta\}$. Suppose

$$\sum_{j=2}^n \pi_j x_j \le \pi_0$$

is valid for S^0 .

Lifting Thm. (2)

- If $S^1 = \emptyset$, then $x_1 \leq 0$ is valid for S
- If $S^1 \neq \emptyset$, then

$$\alpha_1 x_1 + \sum_{j=2}^n \pi_j x_j \le \pi_0$$

is valid for
$$S$$
 for any $\alpha_1 \leq \pi_0 - \gamma$, where

$$\gamma - \max\{\sum_{j=2}^n \pi_j x_j \mid x \in S^1\}$$

Lifting Thm. (3)

• If $\alpha_1 = \pi_0 - \gamma$ and $\sum_{j=2}^n \pi_j x_j \le \pi_0$ defines a face of dimension k of conv (S^0) , then

$$\alpha_1 x_1 + \sum_{j=2}^n \pi_j x_j \le \pi_0$$

defines a face of dimension at least k + 1 of conv(S).

For You To Do...

- Read N&W Sections II.2.1, II.2.2
- Read [2]
- Read [1]
- A. ATAMTÜRK, Cover and pack inequalities for (mixed) integer programming, Annals of Operations Research. forthcoming.
- H. CROWDER, E. L. JOHNSON, AND M. W. PADBERG, Solving large scale zero-one linear programming problems, Operations Research, 31 (1983), pp. 803–834.

Jeff Linderoth IE418 Integer Programming