Last Time...

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

6th April 2005

- $\operatorname{conv(\mathrm {KNAP})})=\operatorname{conv}\left(\left\{x \in \mathbb{B}^{n} \mid \sum_{j \in N} a_{j} x_{j} \leq b\right\}\right)$
- $C \subseteq N \mid \sum_{j \in C} a_{j}>b, \sum_{C \backslash k} a_{j} \leq b \forall k \in C$
- For "extended" cover $E(C)$ if any of the following conditions hold, then

$$
\sum_{j \in E(C)} x_{j} \leq|C|-1
$$

gives a facet of conv(KNAP)

- $C=N$
- $E(C)=N$ and $\left({ }^{*}\right) \sum_{j \in C \backslash\left\{j_{1}, j_{2}\right\}} a_{j}+a_{1} \leq b$
- $C=E(C)$ and $\left({ }^{* *}\right) \sum_{j \in C \backslash j_{1}} a_{j}+a_{p} \leq b$
- $C \subset E(C) \subset N$ and $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$.
Jeff Linderoth
UpLifting
Downlifting
General Lifting

IE418 Integer Programming

Theorem

Example

Jeff Linderoth
 UpLifting Downlifting General Lifting

IE418 Integer Programming
Theorem
Example

An "Uplifting" Experience

- $S \subseteq \mathbb{B}^{n}$
- Lifting is a process in which a valid (and facet defining) inequality for $S \cap\left\{x \in \mathbb{B}^{n} \mid x_{k}=0\right\}$ is turned into a facet defining inequality for S.
- Theorem. Let $S \subseteq \mathbb{B}^{n}$, for
$\delta \in\{0,1\}, S^{\delta}=S \cap\left\{x \in \mathbb{B}^{n} \mid x_{1}=\delta\right\}$. Suppose

$$
\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}
$$

is valid for S^{0}.

Lifting Thm. (2)

- If $S^{1}=\emptyset$, then $x_{1} \leq 0$ is valid for S
- If $S^{1} \neq \emptyset$, then $\alpha_{1} x_{1}+\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}$ is valid for S for any $\alpha_{1} \leq \pi_{0}-\gamma$, where

$$
\gamma-\max \left\{\sum_{j=2}^{n} \pi_{j} x_{j} \mid x \in S^{1}\right\} .
$$

- If $\alpha_{1}=\pi_{0}-\gamma$ and $\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}$ defines a face of dimension k of $\operatorname{conv}\left(S^{0}\right)$, then

$$
\alpha_{1} x_{1}+\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}
$$

defines a face of dimension at least $k+1$ of $\operatorname{conv}(S)$.

Uplifting Example

- Let $P_{1,2,7}=\operatorname{conv}\left(\right.$ MYKNAP $\left.\cap\left\{x \in \mathbb{R}^{7} \mid x_{1}=x_{2}=x_{7}=0\right\}\right)$
- Consider the cover inequality arising from $C=\{3,4,5,6\}$.
- $\sum_{j \in C} x_{j} \leq 3$ is facet defining for $P_{1,2,7}$
- If x_{1} is not fixed at 0 , can we strengthen the inequality?
- For what values of α_{1} is the inequality

$$
\alpha_{1} x_{1}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

valid for

$$
P_{2,7}=\operatorname{conv}\left(\left\{x \in \text { MYKNAP } \mid x_{2}=x_{7}=0\right\}\right) ?
$$

- If $x_{1}=0$ then the inequality is valid for all values of α_{1}

Uplifting Example (2)

- If $x_{1}=1$, the inequality is valid if and only if

$$
\alpha_{1}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

is valid for all $x \in \mathbb{B}^{4}$ satisfying

$$
6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 19-11
$$

- Equivalently, if and only if

$$
\alpha_{1}+\max _{x \in \mathbb{B}^{4}}\left\{x_{3}+x_{4}+x_{5}+x_{6} \mid 6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 8\right\} \leq 3
$$

- Equivalently if and only if $\alpha_{1} \leq 3-\gamma$, where

$$
\gamma=\max _{x \in \mathbb{B}^{4}}\left\{x_{3}+x_{4}+x_{5}+x_{6} \mid 6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 8\right\}
$$

Jeff Linderoth
UpLifting
Downlifting
General Lifting

IE418 Integer Programming
Theorem

Example

IE418 Integer Programming Theorem
Example

You Can Also "DownLift"

- $s \subseteq \mathbb{B}^{n}, S^{1}=S \cap\left\{x \in \mathbb{B}^{n} \mid x_{1}=1\right\}$
- Let $\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}$ be valid for S^{1}.
- If $S^{0}=\emptyset, x_{1} \geq 1$ is valid for S, otherwise

$$
\xi_{1} x_{1}+\sum_{j=2}^{n} \pi_{j} x_{j} \leq \pi_{0}+\xi_{1}
$$

is valid for S, for $\xi_{i} \geq \gamma-\pi_{0}$

$$
\text { - } \gamma=\max \left\{\sum_{j=2}^{n} \pi_{j} x_{j} \mid x \in S^{0}\right\} .
$$

- Similar facet/dimension results to uplifting if the lifting is maximum.

DownLifting Example

- Let $P_{6}^{1}=\operatorname{conv}\left(\right.$ myknap $\left.\cap\left\{x \in \Re^{7} \mid x_{6}=1\right\}\right)$
- Fact: $x_{1}+x_{5} \leq 1$ is facet-defining for P_{6}^{1}.
- $C=E(C)$ and $\sum_{j \in C \backslash j_{1}} a_{j}+a_{p} \leq b$
- Note: $x_{1}+x_{5} \leq 1$ is not valid for mYKNAP
- For what values of α is the inequality $x_{1}+x_{5}+\alpha\left(x_{6}-1\right) \leq 1$ valid for MYKNAP?
- If $x_{6}=1$, then valid if $\alpha \in[-\infty, \infty]$
- If $x_{6}=0$, then valid if $\alpha \geq x_{1}+x_{5}-1 \forall x \in$ MYKNAP
- If and only if $\alpha \geq$
$\max _{x \in \mathbb{B}^{7}}\left\{x_{1}+x_{5}-1 \mid 11 x_{1}+6 x_{2}+6 x_{3}+5 x_{4}+5 x_{5}+x_{7} \leq 19\right\}$
- $\alpha \geq 1$.
- $x_{1}+x_{5}+x_{6} \leq 2$ is valid and facet-defining inequality for MYKNAP.

General Lifting and SuperAdditivity

- $K=\operatorname{conv}\left(\left\{x \in \mathbb{Z}_{+}^{|N|}, y \in \Re_{+}^{|M|} \mid a^{T} x+g^{T} y \leq b, x \leq u\right\}\right)$
- Partition N into $[L, U, R]$
- $L=\left\{i \in N \mid x_{i}=0\right\}$
- $U=\left\{i \in N \mid x_{i}=u_{i}\right\}$
- $R=N \backslash L \backslash U$
- We will use the notation: x_{R} to mean the vector of variables that are in the set R.
- $a_{R}^{T} x_{R}=\sum_{j \in R} a_{j} x_{j}$

$$
\begin{aligned}
& K(L, U)=\operatorname{conv}\left(\left\{x \in \mathbb{Z}_{+}^{|N|}, y \in \Re_{+}^{|M|} \mid\right.\right. \\
& \left.\left.a_{R}^{T} x+g^{T} y \leq d, x_{R} \leq u_{R}, x_{i}=0 \forall i \in L, x_{i}=u_{i} \forall i \in U .\right\}\right)
\end{aligned}
$$

- So $d=b-a_{U}^{T} x_{U}$
Jeff Linderoth
UpLifting
Downlifting
General Lifting
IE418 Integer Programming
Definitions
Superadditive Lifting
Theorem
Example
Jeff Linderoth
UpLifting
Downlifting
General Lifting
IE418 Integer Programming
Definitions
Superadditive Lifting
Theorem
Examle

Example-Sequential Lifting

- Lifting one variable (at a time) in 0-1 IP (like we have done so far)...
- $\alpha x_{k}+\pi_{R}^{T} x_{R} \leq \pi_{0}$ is valid for $P \Leftrightarrow \alpha x_{k} \leq \Phi\left(a_{k} x_{k}\right) \forall x \in P$ - $x_{k}=0, \quad 0 \leq \Phi(0)$ is always true.
- $x_{k}=1, \quad \Rightarrow \alpha \leq \Phi\left(a_{l}\right)$
- If I "know" $\Phi(q)(\forall q \in \Re)$, I can just "lookup" the value of the lifting coefficient for variable x_{k}
- Note that if I have restricted more than one variable, then this "lookup" logic is not necessarily true
- For lifting two (0-1) variables, I would have to look at four possible values.
- In general, the lifting function changes with each new variable "lifted".

Superadditivity

A function $\phi: \Re \rightarrow \Re$ is superadditive if

$$
\phi\left(q_{1}\right)+\phi\left(q_{2}\right) \leq \phi\left(q_{1}+q_{2}\right)
$$

- Superadditive functions play a significant role in the theory of integer programming. (See N\&W page 229). (We'll probably revisit them later)
- Superadditive Fact:

$$
\sum_{j \in N} \phi\left(a_{j}\right) x_{j} \leq \sum_{j \in N} \phi\left(a_{j} x_{j}\right) \leq \phi\left(\sum_{j \in N} a_{j} x_{j}\right)
$$

"Multiple Lookup" -Superadditivity

- Suppose that ϕ is a superadditive lower bound on Φ that satisfies $\pi_{i}=\phi\left(a_{i}\right) \forall i \in L$ and $\pi_{i}=\phi\left(-a_{i}\right) \forall i \in U$

$$
\begin{aligned}
\sum_{i \in L} \phi\left(a_{i}\right) x_{i}+\sum_{i \in U} \phi\left(-a_{i}\right)\left(u_{i}-x_{i}\right) & \leq \phi\left(a_{L}^{T} x_{L}+a_{U}^{T}\left(x_{U}-u_{U}\right)\right) \\
& \leq \Phi\left(a_{L}^{T} x_{L}+a_{U}^{T}\left(x_{U}-u_{U}\right)\right)
\end{aligned}
$$

- So

$$
\pi_{R}^{T} x_{R}+\pi_{L}^{T} x_{L}+\pi_{U}^{T}\left(u_{U}-x_{U}\right)+\sigma^{T} y \leq \pi_{0}
$$

is a valid inequality for K
Jeff Linderoth
UpLifting
Downlifting
General Lifting

The Main Result

- If ϕ is a superadditive lower bound on Φ, any inequality of the form $\pi_{R}^{T} x_{R}-\sigma^{T} y \leq \pi_{0}$, which is valid for $K(L, U)$, can be extended to the inequality

$$
\pi_{R}^{T} x_{R}+\sum_{j \in L} \phi\left(a_{j}\right) x_{j}+\sum_{j \in U} \phi\left(-a_{j}\right)\left(u_{j}-x_{j}\right)+\sigma^{T} y \leq \pi_{0}
$$

which is valid for K.
If $\pi_{i}=\phi\left(a_{i}\right) \forall i \in L$ and $\pi_{i}=\phi\left(-a_{i}\right) \forall i \in U$ and $\pi^{T} x_{R}-\sigma^{T} y=\pi_{0}$ defines a k-dimensional face of $K(L, U)$, then the lifted inequality defines a face of dimension at least $k+|L|+|U|$.

Jeff Linderoth	IE418 Integer Programming
UpLifting	Definitions
Downlifting	Superadditive Lifting
Theorem	
General Lifting	Example

This Is Soooooooooo Cool

- What does this imply?
- If the lifting function itself is superadditive, I can lift all of the variables in one pass (if I know the lifting function, of course).
- Even if I don't know the lifting function, if I can get a superadditive function that is a lower bound, then I can lift all the variables at once.
- This treatment follows that of Atamtürk's paper I handed out.
- Cover C with $\lambda=a(C)-b>0$
- Write our knapsack cover inequality as

$$
\sum_{j \in C} \lambda x_{j} \leq \lambda(|C|-1)
$$

- Lifting function $\Theta: \Re \rightarrow \Re \cup\{\infty\}$

$$
\Theta(\alpha)=\lambda(|C|-1)-\max \left\{\sum_{j \in C} \lambda x_{j} \mid \sum_{j \in C} a_{j} x_{j} \leq b-\alpha\right\} .
$$

$$
\begin{aligned}
& P=\operatorname{conv}\left(\left\{x \in \mathbb{B}^{10} \mid 35 x_{1}+27 x_{2}+23 x_{3}+19 x_{4}+15 x_{5}+15 x_{6}\right.\right. \\
& \left.\left.+12 x_{7}+8 x_{8}+6 x_{9}+3 x_{10} \leq 39\right\}\right) \\
& \quad C=\{4,5,6\}, \text { so } \lambda=10
\end{aligned}
$$

$$
\begin{aligned}
& \Theta(\alpha)=20-\max \left\{10 x_{4}+10 x_{5}+10 x_{6} \mid 35 x_{1}+27 x_{2}+23 x_{3}+19 x\right. \\
& \left.+15 x_{5}+15 x_{6}+12 x_{7}+8 x_{8}+6 x_{9}+3 x_{10} \leq 39-\alpha\right\}
\end{aligned}
$$

- AMPL Example...

Jeff Linderoth	IE418 Integer Programming
UpLifting	Definitions
Downlifting	Superadditive Lifting
Theorem	
General Lifting	Example

$\Theta(\alpha)$

Jeff Linderoth	IE418 Integer Programming
UpLifting	Definitions
Downlifting	Superadditive Lifting
Theorem	
General Lifting	Example

Superadditive?

- Is $\Theta(\alpha)$ superadditive?
- No! $\alpha_{1}=10, \alpha_{2}=25$

$$
\phi(\alpha)=\left\{\begin{array}{cl}
0 & \text { if } 0 \leq \alpha \leq 9 \\
10+\alpha-19 & \text { if } 9 \leq \alpha \leq 19 \\
10 & \text { if } 19 \leq \alpha \leq 24 \\
20+\alpha-34 & \text { if } 24 \leq \alpha \leq 34 \\
20 & \text { if } 34 \leq \alpha \leq 39 \\
30+\alpha-49 & \text { if } \alpha \geq 39
\end{array}\right.
$$

- Using ϕ we get an inequality
- $2 x_{1}+\frac{13}{10} x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+\frac{3}{10} x_{7} \leq 2$

How Strong?

- We know that the cover inequality $x_{3}+x_{4}+x_{5} \leq 2$ defines a facet of the restriced problem.
- Is our inequality a facet of K_{2} ?
- Does $\phi\left(a_{i}\right)=\Phi\left(a_{i}\right) \forall i \in L$ and $\phi\left(-a_{i}\right)=\Phi\left(-a_{i}\right) \forall i \in U$?
- No!. "Closest" facet is

$$
2 x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \leq 2
$$

