UpLifting Downlifting General Lifting

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

6th April 2005

UpLifting Downlifting General Lifting

Last Time...

- $\operatorname{conv}(\operatorname{KNAP}) = \operatorname{conv}(\{x \in \mathbb{B}^n | \sum_{j \in N} a_j x_j \le b\})$
- $C \subseteq N \mid \sum_{j \in C} a_j > b$, $\sum_{C \setminus k} a_j \le b \forall k \in C$
- For "extended" cover E(C) if any of the following conditions hold, then

$$\sum_{j \in E(C)} x_j \le |C| - 1$$

gives a facet of conv(KNAP)

•
$$C = N$$

• $E(C) = N$ and (*) $\sum_{j \in C \setminus \{j_1, j_2\}} a_j + a_1 \le b$
• $C = E(C)$ and (**) $\sum_{i \in C \setminus \{i_1, j_2\}} a_i + a_n \le b$

•
$$C \subset E(C) \subset N$$
 and (*) and (**).

Jeff LinderothIE418 Integer ProgrammingJeff LinderothIE418 Integer ProgrammingUpLifting
Downlifting
General LiftingTheorem
ExampleUpLifting
Downlifting
General LiftingTheorem
Example

An "Uplifting" Experience

- $\bullet \ S \subseteq \mathbb{B}^n$
- Lifting is a process in which a valid (and facet defining) inequality for $S \cap \{x \in \mathbb{B}^n \mid x_k = 0\}$ is turned into a facet defining inequality for S.
- Theorem. Let $S \subseteq \mathbb{B}^n$, for $\delta \in \{0, 1\}, S^{\delta} = S \cap \{x \in \mathbb{B}^n \mid x_1 = \delta\}$. Suppose

$$\sum_{j=2}^n \pi_j x_j \le \pi_0$$

is valid for S^0 .

Lifting Thm. (2)

- If $S^1 = \emptyset$, then $x_1 \leq 0$ is valid for S
- If $S^1 \neq \emptyset$, then $\alpha_1 x_1 + \sum_{j=2}^n \pi_j x_j \le \pi_0$ is valid for S for any $\alpha_1 \le \pi_0 \gamma$, where

$$\gamma - \max\{\sum_{j=2}^n \pi_j x_j \mid x \in S^1\}.$$

• If $\alpha_1 = \pi_0 - \gamma$ and $\sum_{j=2}^n \pi_j x_j \le \pi_0$ defines a face of dimension k of conv(S⁰), then

$$\alpha_1 x_1 + \sum_{j=2}^n \pi_j x_j \le \pi_0$$

defines a face of dimension at least k + 1 of conv(S).

Example

Uplifting Example

• Let $P_{1,2,7} = \operatorname{conv}(\operatorname{MYKNAP} \cap \{x \in \mathbb{R}^7 \mid x_1 = x_2 = x_7 = 0\})$

Example

• Consider the cover inequality arising from $C = \{3, 4, 5, 6\}$.

UpLifting

- $\sum_{i \in C} x_i \leq 3$ is facet defining for $P_{1,2,7}$
- If x_1 is not fixed at 0, can we strengthen the inequality?
- For what values of α_1 is the inequality

$$\alpha_1 x_1 + x_3 + x_4 + x_5 + x_6 \le 3$$

valid for

$$P_{2,7} = \operatorname{conv}(\{x \in MYKNAP \mid x_2 = x_7 = 0\})?$$

• If $x_1 = 0$ then the inequality is valid for all values of α_1

Uplifting Example (2)

• If $x_1 = 1$, the inequality is valid if and only if

$$\alpha_1 + x_3 + x_4 + x_5 + x_6 \le 3$$

is valid for all $x \in \mathbb{B}^4$ satisfying

 $6x_3 + 5x_4 + 5x_5 + 4x_6 < 19 - 11$

- Equivalently, if and only if
 - $\alpha_1 + \max_{x \in \mathbb{R}^4} \{ x_3 + x_4 + x_5 + x_6 \mid 6x_3 + 5x_4 + 5x_5 + 4x_6 \le 8 \} \le 3$
- Equivalently if and only if $\alpha_1 \leq 3 \gamma$, where
 - $\gamma = \max_{x \in \mathbb{R}^4} \{ x_3 + x_4 + x_5 + x_6 \mid 6x_3 + 5x_4 + 5x_5 + 4x_6 \le 8 \}.$

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
UpLifting Downlifting General Lifting	Theorem Example	UpLifting Downlifting General Lifting	Theorem Example

You Can Also "DownLift"

- $s \subseteq \mathbb{B}^n, S^1 = S \cap \{x \in \mathbb{B}^n \mid x_1 = 1\}$
- Let $\sum_{i=2}^{n} \pi_i x_i \leq \pi_0$ be valid for S^1 .
- If $S^0 = \emptyset, x_1 > 1$ is valid for S, otherwise

$$\xi_1 x_1 + \sum_{j=2}^n \pi_j x_j \le \pi_0 + \xi_j$$

is valid for S, for $\xi_i > \gamma - \pi_0$

•
$$\gamma = \max\{\sum_{j=2}^n \pi_j x_j \mid x \in S^0\}$$

• Similar facet/dimension results to uplifting if the lifting is maximum.

DownLifting Example

- Let $P_6^1 = \text{conv}(\text{MYKNAP} \cap \{x \in \Re^7 \mid x_6 = 1\})$
- Fact: $x_1 + x_5 \le 1$ is facet-defining for P_6^1 .
 - C = E(C) and $\sum_{j \in C \setminus j_1} a_j + a_p \le b$ Note: $x_1 + x_5 \le 1$ is not valid for MYKNAP
- For what values of α is the inequality $x_1 + x_5 + \alpha(x_6 1) \leq 1$ valid for MYKNAP?
- If $x_6 = 1$, then valid if $\alpha \in [-\infty, \infty]$
- If $x_6 = 0$, then valid if $\alpha \ge x_1 + x_5 1 \ \forall x \in MYKNAP$
- If and only if $\alpha >$ $\max_{x \in \mathbb{R}^7} \{x_1 + x_5 - 1 \mid 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + x_7 \le 19\}$
- *α* > 1.
- $x_1 + x_5 + x_6 \le 2$ is valid and facet-defining inequality for MYKNAP.

• $K = \text{conv}(\{x \in \mathbb{Z}^{|N|}_+, y \in \Re^{|M|}_+ \mid a^T x + g^T y \le b, x \le u\})$

Downlifting General Lifting Definitions

- Partition N into [L, U, R]
 - $L = \{i \in N \mid x_i = \mathbf{0}\}$
 - $U = \{i \in N \mid x_i = u_i\}$
 - $R = N \setminus L \setminus U$
- We will use the notation: x_R to mean the vector of variables that are in the set R.
 - $a_R^T x_R = \sum_{j \in R} a_j x_j$

$$\begin{split} K(L,U) &= \mathsf{conv}(\{x \in \mathbb{Z}_+^{|N|}, y \in \Re_+^{|M|} \mid \\ a_R^T x + g^T y \leq d, x_R \leq u_R, x_i = \mathbf{0} \; \forall i \in L, x_i = u_i \; \forall i \in U.\}) \end{split}$$

• So $d = b - a_U^T x_U$

Lifting

- Let $\pi^T x_R \sigma^T y \leq \pi_0$ be a valid inequality for K(L, U).
- Consider the lifting function $\Phi: \Re \to \Re \cup \{\infty\}$
 - (∞) if lifting problem is infeasible

$$egin{aligned} \Phi(lpha) &= \pi_{0} - \max\{\pi_{R}^{T}x_{R} + \sigma^{T}y \mid \ a_{R}^{T}x_{R} + g^{T}y \leq d - lpha, x_{R} \leq u_{R}, x_{R} \in \mathbb{Z}_{+}^{|R|}, y \in \Re_{+}^{|M|} \end{aligned}$$

 In words, Φ(α) is the maximum value of the LHS of the valid inequality if the RHS in K is reduced by α.

$\Phi, \; \mathsf{Schmi}$

• Why do we care about $\Phi?$

$$\pi_R^T x_R + \pi_L^T x_L + \pi_U^T (u_U - x_U) + \sigma^T y \le \pi_0$$

is a valid inequality for \boldsymbol{K} if and only if

$$\pi_L^T x_L + \pi_U^T (u_U - x_U) \leq \Phi(a_L^T x_L + a_U^T (x_U - u_U)) \ \forall (x, y) \in K.$$

Proof.?

Example—Sequential Lifting

- Lifting one variable (at a time) in 0-1 IP (like we have done so far)...
- $\alpha x_k + \pi_R^T x_R \le \pi_0$ is valid for $P \Leftrightarrow \alpha x_k \le \Phi(a_k x_k) \ \forall x \in P$
 - $x_k = 0$, $0 \le \Phi(0)$ is always true.
 - $x_k = 1, \Rightarrow \alpha \leq \Phi(a_l)$
- If I "know" Φ(q)(∀q ∈ ℜ), I can just "lookup" the value of the lifting coefficient for variable x_k
- Note that if I have restricted more than one variable, then this "lookup" logic is not necessarily true
 - For lifting two (0-1) variables, I would have to look at four possible values.
 - In general, the lifting function changes with each new variable "lifted".

Definitions Superadditive Lifting Theorem Example

Superadditivity

• A function $\phi: \Re \to \Re$ is superadditive if

Downlifting General Lifting

$$\phi(q_1) + \phi(q_2) \le \phi(q_1 + q_2)$$

- Superadditive functions play a significant role in the theory of integer programming. (See N&W page 229). (We'll probably revisit them later).
- Superadditive Fact:

$$\sum_{j \in N} \phi(a_j) x_j \leq \sum_{j \in N} \phi(a_j x_j) \leq \phi\left(\sum_{j \in N} a_j x_j\right).$$

"Multiple Lookup"—Superadditivity

• Suppose that ϕ is a superadditive lower bound on Φ that satisfies $\pi_i = \phi(a_i) \ \forall i \in L$ and $\pi_i = \phi(-a_i) \ \forall i \in U$

$$\sum_{i \in L} \phi(a_i) x_i + \sum_{i \in U} \phi(-a_i) (u_i - x_i) \leq \phi(a_L^T x_L + a_U^T (x_U - u_U))$$
$$\leq \Phi(a_L^T x_L + a_U^T (x_U - u_U))$$

• So
$$\pi_R^T x_R + \pi_L^T x_L + \pi_U^T (u_U - x_U) + \sigma^T y \leq \pi_0$$

is a valid inequality for K

Jeff LinderothIE418 Integer ProgrammingJeff LinderothIE418 Integer ProgrammingUpLifting
Downlifting
General LiftingDefinitions
Superadditive Lifting
Theorem
ExampleUpLifting
Downlifting
ExampleDefinitions
Definitions
Superadditive LiftingDefinitions
Definitions
Theorem
Example

The Main Result

• If ϕ is a superadditive lower bound on Φ , any inequality of the form $\pi_R^T x_R - \sigma^T y \leq \pi_0$, which is valid for K(L, U), can be extended to the inequality

$$\pi_R^T x_R + \sum_{j \in L} \phi(a_j) x_j + \sum_{j \in U} \phi(-a_j) (u_j - x_j) + \sigma^T y \le \pi_0$$

which is valid for K.

• If $\pi_i = \phi(a_i) \ \forall i \in L$ and $\pi_i = \phi(-a_i) \ \forall i \in U$ and $\pi^T x_R - \sigma^T y = \pi_0$ defines a k-dimensional face of K(L, U), then the lifted inequality defines a face of dimension at least k + |L| + |U|.

This Is Soooooooo Cool

- What does this imply?
- If the lifting function itself is superadditive, I can lift *all* of the variables in one pass (if I know the lifting function, of course).
- Even if I don't know the lifting function, if I can get a superadditive function that is a lower bound, then I can lift all the variables at once.

Definitions Superadditive Liftin Theorem Example

Example

- This treatment follows that of Atamtürk's paper I handed out.
- Cover C with $\lambda = a(C) b > 0$
 - Write our knapsack cover inequality as

Downlifting General Lifting

$$\sum_{j \in C} \lambda x_j \le \lambda (|C| - 1)$$

Example

• Lifting function $\Theta: \Re \to \Re \cup \{\infty\}$

$$\Theta(\alpha) = \lambda(|C|-1) - \max\{\sum_{j \in C} \lambda x_j \mid \sum_{j \in C} a_j x_j \le b - \alpha\}.$$

Example—Lifted Knapsack Covers

UpLifting Downlifting

General Lifting

$$P = \operatorname{conv}(\{x \in \mathbb{B}^{10} \mid 35x_1 + 27x_2 + 23x_3 + 19x_4 + 15x_5 + 15x_6 + 12x_7 + 8x_8 + 6x_9 + 3x_{10} \le 39\})$$

- $C = \{4, 5, 6\}$, so $\lambda = 10$
 - $\Theta(\alpha) = 20 \max\{10x_4 + 10x_5 + 10x_6 \mid 35x_1 + 27x_2 + 23x_3 + 19x_6 + 15x_5 + 15x_6 + 12x_7 + 8x_8 + 6x_9 + 3x_{10} \le 39 \alpha\}$
- AMPL Example...

How Strong?

- We know that the cover inequality $x_3 + x_4 + x_5 \le 2$ defines a facet of the restriced problem.
- Is our inequality a facet of K_2 ?
 - Does $\phi(a_i) = \Phi(a_i) \ \forall i \in L \text{ and } \phi(-a_i) = \Phi(-a_i) \ \forall i \in U$?
- No!. "Closest" facet is

 $2x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \le 2$

Jeff Linderoth IE418 Integer Programming