

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering

Lehigh University

13th April 2005

General Lifting and SuperAdditivity

•
$$K = \operatorname{conv}(\{x \in \mathbb{Z}^{|N|}_+, y \in \Re^{|M|}_+ \mid a^Tx + g^Ty \le b, x \le u\})$$

- Partition N into [L, U, R]
 - $L = \{i \in N \mid x_i = \mathbf{0}\}$
 - $U = \{i \in N \mid x_i = u_i\}$
 - $R = N \setminus L \setminus U$

• So $d = b - a_{II}^T x_{II}$

• We will use the notation: x_R to mean the vector of variables that are in the set R.

• $a_R^T x_R = \sum_{j \in R} a_j x_j$

$$egin{aligned} K(L,U) &= \mathsf{conv}(\{x\in\mathbb{Z}^{|N|}_+,y\in\Re^{|M|}_+\mid a_R^Tx+g^Ty\leq d,x_R\leq u_R,x_i=\mathsf{0}\;\forall i\in L,x_i=u_i\;\forall i\in U.\}) \end{aligned}$$

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
General Lifting Separation	Definitions Superadditive Lifting Theorem Example	General Lifting Separation	Definitions Superadditive Lifting Theorem Example

Lifting

- Let $\pi^T x_R \sigma^T y \leq \pi_0$ be a valid inequality for K(L, U).
- Consider the lifting function $\Phi: \Re \to \Re \cup \{\infty\}$

$$egin{aligned} \Phi(lpha) &= \pi_0 - \max\{\pi_R^T x_R + \sigma^T y \mid \ a_R^T x_R + g^T y \leq d - lpha, x_R \leq u_R, x_R \in \mathbb{Z}_+^{|R|}, y \in \Re_+^{|M|}, \end{aligned}$$

- (∞) if lifting problem is infeasible
- In words, Φ(α) is the maximum value of the LHS of the valid inequality if the RHS in K is reduced by α.

Φ, Schmi

Why do we care about Φ?

$$\pi_R^T x_R + \pi_L^T x_L + \pi_U^T (u_U - x_U) + \sigma^T y \le \pi_0$$

is a valid inequality for \boldsymbol{K} if and only if

$$\pi_L^T x_L + \pi_U^T (u_U - x_U) \le \Phi(a_L^T x_L + a_U^T (x_U - u_U)) \ \forall (x, y) \in K.$$

Proof.

$$\begin{split} \Phi(a_L^T x_L + a_U^T (x_U - u_U)) &= \pi_0 - \max\{\pi_R^T x_R + \sigma^T y \mid \\ a_R^T x_R + g^T y \leq b - a_L x_L - a_U x_U, \\ x_R \leq u_R, x_R \in \mathbb{Z}_+^{|R|}, y \in \mathbb{R}_+^{|M|} \} \end{split}$$

So if there exists (\hat{x}, \hat{y}) such that $\pi_L^T \hat{x}_L + \pi_U^T (u_U - \hat{x}_U) + \max\{\} > \pi_0$, then $\pi_L^T \hat{x}_L + \pi_U^T (u_U - \hat{x}_U) + \pi_R^T x_R + \sigma^T y \le \pi_0$ cannot be a valid inequality.

Sequential Lifting. Example

General Lifting

Separatio

• Suppose that we are doing sequential lifting for 0-1 IP like we have done so far.

Definitions

- If x_k fixed at 0. (Lower bound). $\alpha x_k + \pi_R^T x_R \le \pi_0$ is valid for $P \Leftrightarrow \alpha x_k \le \Phi(a_k x_k) \ \forall x \in P$
 - $x_k = 0$, $0 \le \Phi(0)$ is always true.

•
$$x_k = 1, \quad \Rightarrow \alpha \leq \Phi(a_k)$$

• If x_k fixed at one (Upper Bound), then $\alpha(1 - x_k) + \pi_D^T x_B < \pi_0$ is valid for

$$P \Leftrightarrow \alpha(1-x_k) \neq \pi_R x_R \leq \pi_0$$
 is value for $P \Leftrightarrow \alpha(1-x_k) \leq \Phi(a_k(x_k-1)) \forall x \in P$

• $x_k = 1$, $0 \le \Phi(a_k(x_k - 1)) \forall x$

•
$$x_k = 0, \quad \Rightarrow \alpha \leq \Phi(-a_k)$$

- For some classes of inequalities, we have closed form solution for the lifting function.
- If I "know" $\Phi(q)(\forall q \in \Re)$, I can just "lookup" the value of the lifting coefficient for variable x_k

Lifting Functions (Sequential)

- Note that if I have restricted more than one variable, then this "lookup" logic is not necessarily true
 - For lifting two (0-1) variables, I would have to look at four possible values.
- In general, the lifting function Φ for some valid inequality $\pi_R^T x_R + g^T y \leq \pi_0$ changes as I lift variables: $\Phi_{i+1}(\alpha) \neq \Phi_i(\alpha) \ \forall i, \alpha$
- This implies that if I lift the variables in different orders, I can get different facets.
- What do we know about relationships between lifting functions?
- It is monotonically decreasing: Φ_{i+1}(α) ≤ Φ_i(α)∀i, α.
 (Why?—N&W II.2, Proposition 1.3)
- The highest value a coefficient can have when I lift it comes when I lift it first.

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
General Lifting Separation	Definitions Superadditive Lifting Theorem Example	General Lifting Separation	Definitions Superadditive Lifting Theorem Example

Lifting Functions

- Suppose the lifting function *doesn't change* when I lift a variable.
- If this happens, I can use the same lifting function again to determine the next coefficient.
- If the lifting function *never changes*, then I can use the same function to lift all of the variables.
- \bullet This happens if and only if Φ is a superadditive

Superadditivity

 $\bullet~\mathsf{A}$ function $\phi:\Re\to\Re$ is superadditive if

 $\phi(q_1) + \phi(q_2) \le \phi(q_1 + q_2)$

- Superadditive functions play a significant role in the theory of integer programming. (See N&W page 229).
- Example: $\lfloor \cdot \rfloor$ is a superadditive function.
- Superadditive Fact:

$$\sum_{j\in N} \phi(a_j) x_j \leq \sum_{j\in N} \phi(a_j x_j) \leq \phi\left(\sum_{j\in N} a_j x_j\right).$$

Superadditive Lifting Theorem Example

"Multiple Lookup"—Superadditivity

General Lifting

Separatio

• Suppose that ϕ is a superadditive lower bound on Φ that satisfies $\pi_i = \phi(a_i) \ \forall i \in L$ and $\pi_i = \phi(-a_i) \ \forall i \in U$

$$egin{aligned} &\sum_{i\in L}\phi(a_i)x_i+\sum_{i\in U}\phi(-a_i)(u_i-x_i) &\leq &\phi(a_L^Tx_L+a_U^T(x_U-u_U))\ &\leq &\Phi(a_L^Tx_L+a_U^T(x_U-u_U)) \end{aligned}$$

$$\pi_R^T x_R + \pi_L^T x_L + \pi_U^T (u_U - x_U) + \sigma^T y \le \pi_0$$

is a valid inequality for \boldsymbol{K}

The Main Result

• If ϕ is a superadditive lower bound on Φ , any inequality of the form $\pi_R^T x_R - \sigma^T y \leq \pi_0$, which is valid for K(L, U), can be extended to the inequality

Theorem

$$\pi_R^T x_R + \sum_{j \in L} \phi(a_j) x_j + \sum_{j \in U} \phi(-a_j) (u_j - x_j) + \sigma^T y \le \pi_0$$

which is valid for K.

• If $\phi(a_i) = \Phi(a_i) \ \forall i \in L \text{ and } \phi(-a_i) = \Phi(a_i) \ \forall i \in U \text{ and } \pi^T x_R - \sigma^T y = \pi_0 \text{ defines a } k \text{-dimensional face of } K(L,U),$ then the lifted inequality defines a face of dimension at least k + |L| + |U| of K

This Is Soooooooo Cool

- What does this imply?
- If the lifting function itself is superadditive, I can lift *all* of the variables in one pass (if I know the lifting function, of course).
- Even if I don't know the lifting function, if I can get a superadditive function that is a lower bound, then I can lift all the variables at once.
- Often, by examining the special structure of the lifting problem, one can fairly easily deduce a (closed form) solution for the lifting function.
- Then one can also deduce a superadditive lower bound

Example—Lifted Knapsack Covers

- $P = \operatorname{conv}(\{x \in \mathbb{B}^{10} \mid 35x_1 + 27x_2 + 23x_3 + 19x_4 + 15x_5 + 15x_6 + 12x_7 + 8x_8 + 6x_9 + 3x_{10} \le 39\})$
- $C = \{4, 5, 6\}$, so $\lambda = 10$
 - $\Theta(\alpha) = 20 \max\{10x_4 + 10x_5 + 10x_6 \mid 35x_1 + 27x_2 + 23x_3 + 19x_4 + 15x_5 + 15x_6 + 12x_7 + 8x_8 + 6x_9 + 3x_{10} \le 39 \alpha\}$

General Lifting Separation Example	General Lifting Lots Of Facets Separation The Separation Problem
Superadditive?	Facets of P
• Is $\Theta(\alpha)$ superadditive?	(12) + x1 $+ x9 <= 1 (36) + 2x1 + x2 + x3 + x4 + x7 + x9 + x10 <= (13) + x1 + x8 <= 1 (37) + 2x1 + x2 + x3 + x4 + x7 + x8 + x10 <= :$
• No! $\alpha_1 = 10, \alpha_2 = 25$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\left(\begin{array}{cc} 0 & \text{if } 0 \leq \alpha \leq 9\\ 10 + \alpha - 19 & \text{if } 9 \leq \alpha \leq 19\end{array}\right)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\phi(\alpha) = \begin{cases} 10 & \text{if } 19 \le \alpha \le 24 \\ 20 + \alpha - 34 & \text{if } 24 \le \alpha \le 34 \\ 20 & \text{if } 34 \le \alpha \le 39 \end{cases}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 1 & 1 & 1 & 2 & 2 \\ 30 + \alpha - 49 & \text{if } \alpha \ge 39 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

- Using ϕ we get an inequality
 - $2x_1 + \frac{13}{10}x_2 + x_3 + x_4 + x_5 + x_6 + \frac{3}{10}x_7 \le 2$

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
General Lifting	Lots Of Facets	General Lifting	Lots Of Facets
Saparation	The Separation Problem	Soparation	The Separation Problem
Separation		Separation	

But Wait There's More

(60)	+ 5x1+3x2+3x3+3x4+2x5+2x6+ x7+2x8 +x10 <	<=	6
(61)	+ 5x1+4x2+3x3+3x4+2x5+2x6+2x7+ x8+ x9+x10 <	<=	6
(62)	+ 5x1+3x2+3x3+2x4+2x5+2x6+ x7+2x8+ x9+x10 <	<=	6
(63)	+ 5x1+4x2+4x3+3x4+2x5+2x6+ x7+ x8+ x9+x10 <	<=	6
(64)	+ 5x1+3x2+3x3+2x4+ x5+ x6+2x7+ x8+2x9+x10 <	<=	6
(65)	+ 5x1+3x2+3x3+2x4+ x5+ x6+2x7+2x8+ x9+x10 <	<=	6
(66)	+ 6x1+5x2+4x3+3x4+3x5+3x6+2x7+ x8 +x10 <	<=	7
(67)	+ 6x1+4x2+4x3+3x4+2x5+2x6+2x7+ x8+2x9+x10 <	<=	7
(68)	+ 6x1+4x2+4x3+3x4+2x5+3x6+ x7+2x8+ x9+x10 <	<=	7
(69)	+ 6x1+4x2+4x3+3x4+3x5+2x6+ x7+2x8+ x9+x10 <	<=	7
(70)	+ 7x1+5x2+4x3+3x4+2x5+2x6+3x7+2x8+2x9+x10 <	<=	8
(71)	+ 7x1+5x2+5x3+4x4+3x5+3x6+2x7+2x8+ x9+x10 <	<=	8
(72)	+ 7x1+5x2+5x3+4x4+2x5+3x6+2x7+ x8+2x9+x10 <	<=	8
(73)	+ 7x1+5x2+5x3+4x4+3x5+2x6+2x7+ x8+2x9+x10 <	<=	8
(74)	+ 8x1+6x2+5x3+4x4+3x5+3x6+3x7+2x8+2x9+x10 <	<=	9
(75)	+ 8x1+6x2+6x3+5x4+3x5+3x6+2x7+ x8+2x9+x10 <	<=	9
(76)	+ 9x1+7x2+6x3+5x4+3x5+4x6+3x7+2x8+2x9+x10 <	<=	10
(77)	+ 9x1+7x2+6x3+5x4+4x5+3x6+3x7+2x8+2x9+x10 <	<=	10
(78)	+ 9x1+7x2+6x3+5x4+4x5+4x6+3x7+2x8+ x9+x10 <	<=	10
(79)	+10x1+8x2+7x3+6x4+4x5+4x6+3x7+2x8+2x9+x10 <	<=	11
(80)	+12x1+9x2+8x3+6x4+5x5+5x6+4x7+3x8+2x9+x10 <	<=	13

What to do?

(31) + 3x1+2x2+2x3+2x4+x5+x6 + x8

(35) + 3x1+2x2+2x3+ x4+ x5+ x6+ x7+ x8

(34) + 3x1+2x2+2x3+ x4+ x5+ x6+ x7 + x9

(32) + 2x1+2x2+2x3+ x4+ x5+ x6

(33) + 2x1 + x2 + x3

• We often try to solve problems that have knapsack rows with *lots* more variables than that...

<= 3 (55) + 5x1+4x2+3x3+3x4+2x5+2x6+ x7+ x8+ x9

+ x8+ x9+x10 <= 3 (57) + 4x1+3x2+3x3+2x4+ x5+2x6+ x7+ x8+ x9+x1

+x10 <= 3 (56) + 4x1+3x2+3x3+2x4+2x5+2x6+ x7+ x8 +x1<u>0 <= 5</u>

<= 3 (58) + 4x1+3x2+3x3+2x4+2x5+ x6+ x7+ x8+ x9+x1
<= 3 (59) + 4x1+3x2+2x3+2x4+ x5+ x6+2x7+ x8+ x9+x1</pre>

- Obviously I do not want to add all of those facets.
- What to do?
- Given some $\hat{x} \notin P$, find an inequality of the form $\sum_{j \in C} x_j \leq |C| 1$ such that $\sum_{j \in C} \hat{x}_j > |C| 1$.
- This is called a *separation problem*
- Note that it is dependent on the particular class of inequalities—In this case cover inequalities.

<=

Knapsack Separation

• Note that $\sum_{j\in C} x_j \leq |C|-1$ can be rewritten as

$$\sum_{j\in C} (1-x_j) \ge 1.$$

- Separation Problem: Given a "fractional" LP solution \hat{x} , does $\exists C \subseteq N$ such that $\sum_{j \in C} a_j > b$ and $\sum_{j \in C} (1 \hat{x}_j) < 1$?
- Is $\gamma = \min_{C \subseteq N} \{ \sum_{j \in C} (1 \hat{x}_j) \mid \sum_{j \in C} a_j > b \} < 1$
- Let $z_j \in \{0,1\}$, $z_j = 1$ if $j \in C$, $z_j = 0$ if $j \notin C$.

Jeff Linderoth

General Lifting Separation

• Is
$$\gamma = \min\{\sum_{j \in N} (1 - \hat{x}_j) z_j \mid \sum_{j \in N} a_j z_j > b, z \in \mathbb{B}^n\} < 1?$$

- If $\gamma \geq 1, \hat{x}$ satisfies all cover inequalities
- If $\gamma < 1$ with optimal solution z_R , then $\sum_{j \in R} x_j \le |R| 1$ is a violated cover inequality.

IE418 Integer Programming

The Separation Problem

Example

$$MYKNAP = \{x \in \mathbb{B}^7 \mid 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19\}$$

• $\hat{x} = (0, 2/3, 0, 1, 1, 1, 1)$ $\gamma = \min_{z \in \mathbb{B}^7} \{z_1 + 1/3z_2 + z_3 \mid 11z_1 + 6z_2 + 6z_3 + 5z_4 + 5z_5 + 4z_6 + z_7 \ge 20\}.$

•
$$\gamma=1/3$$

•
$$z = (0, 1, 0, 1, 1, 1, 1)$$

- $x_2 + x_4 + x_5 + x_6 + x_7 \le 4$
- Minimal Cover: $x_2 + x_4 + x_5 + x_6 \leq 3$
- You would do the lifting from here.

Jeff Linderoth IE418 Integer Programming

Complexity of Separation

- How hard is it to separate a fractional LP solution?
- Is it obvious that it is hard?
 - No! Since the point you are trying to separate is not an "arbitrary" knapsack problem, but instead the profits have a special form.
 - Klabjan, Nemhauser, and Tovey, "The Complexity of Cover Inequality Separation" show that knapsack separation is NP-Hard

