Definitions
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General Lifting and SuperAdditivity

o K = conv({z EZL{Vl,yG %Km | oz + gTy < b,z <u})

j e Partition N into [L, U, R]
IE418: Integer Programming o L—{ieN | =0}

e R=N\L\U
@ We will use the notation: xp to mean the vector of variables

, o that are in the set R.
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Lifting ®, Schmi
e Why do we care about $7?
o Let 7lxr — 0Ty < m be a valid inequality for K(L,U). W}EJCR + W%I‘L + 7TE(UU —zy) + oy < m
e Consider the lifting function ® : R — R U {0} is a valid inequality for K if and only if
rtap + nf(uy — zy) < S(atzp + afr(zp — ur)) V(z,y) € K.
Proof.

d(a) = m — max{w]:ng +oly |
T T IR M| ®(apzr, + af;(zy — uy)) = 7o — max{Tprr + 0y |
agrtr+9 y<d—oa,zgp <ur,xr € Z, ,y € N '} T T
artr+9 y <b-—arrr —aywy,

R M
@ (00) if lifting problem is infeasible tp < up,zp € L ‘,y € R‘Jr |}
@ In words, ®(«) is the maximum value of the LHS of the valid So if there exists (Z,¢) such that
inequality if the RHS in K is reduced by «. % 72+ nf(uy — Zu) + max{} > mo, then %
w%ﬁL + ﬂg(uU —Zy) + ngR + 0Ty < mo cannot be a valid
inequality.
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Sequential Lifting. Example

@ Suppose that we are doing sequential lifting for 0 — 1 IP like
we have done so far.
o If zy fixed at 0. (Lower bound). axy + WgacR < g is valid for
P & axp < ®(agxg) Yr € P
o z; =0, 0<®(0)is always true.
omk:1, éagd)(ak)
o If zy, fixed at one (Upper Bound), then
a(l —x) + ﬂng < 7o is valid for
P<e a(l—xy) <O(ap(zr, —1))Vz e P
o xp =1, 0 < d(0) is always true.
o 11, =0, = a<d(—a)
@ For some classes of inequalities, we have closed form solution

for the lifting function.
o If | “know" ®(q)(Vg € R), | can just “lookup” the value of
the lifting coefficient for variable x
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Lifting Functions (Sequential)

@ Note that if | have restricted more than one variable, then this
“lookup” logic is not necessarily true
o For lifting two (0-1) variables, | would have to look at four
possible values.

@ In general, the lifting function ® for some valid inequality
7T£:ER + g7y < mg changes as | lift variables:
¢i+1(0{) 7é (DZ(OJ) Vi, (67

@ This implies that if | lift the variables in different orders, | can
get different facets.

@ What do we know about relationships between lifting
functions?

@ It is monotonically decreasing: ®;11(a) < ®;(a)Vi, av.

(Why?—N&W 11.2, Proposition 1.3) %
@ The highest value a coefficient can have when | lift it comes

when | lift it first.
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Lifting Functions

@ Suppose the lifting function doesn’t change when | lift a
variable.

@ If this happens, | can use the same lifting function again to
determine the next coefficient.

o If the lifting function never changes, then | can use the same
function to lift all of the variables.

@ This happens if and only if ® is a superadditive
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Example

Superadditivity

@ A function ¢ : ® — R is superadditive if

#(q1) + d(q2) < (a1 + q2)

@ Superadditive functions play a significant role in the theory of
integer programming. (See N&W page 229).
e Example: |-] is a superadditive function.

@ Superadditive Fact:

> dlaj)a; <Y dlaz) <o | Y aja;

jEN jEN jEN
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“Multiple Lookup” —Superadditivity The Main Result
o Suppose that ¢ is a superadditive lower bound on ® that o If ¢ is a superadditive lower bound on @, any inequality of the
satisfies o gb(al) Vi € L and = (b(_a/z) Vi e U form 7T£.TR — O'Ty S 70, which is valid for K(L, U), can be
extended to the inequality
Z P(ai)zi + Z ¢(—ai)(ui —z:) < lapzr + af(zv — ur)) Thrp + Z P(aj)x; + Z d(—a;)(uj —z;) + oty < mo
i€l ieU jeL jeu

< O(afxp 4+ al(zy —u
< Papzr + ap(zo — uv)) which is valid for K.

o If ¢(a;) = ®(a;) Vi € L and ¢(—a;) = ®(a;) Vi € U and
7Tz — 0Ty = my defines a k-dimensional face of K(L,U),
then the lifted inequality defines a face of dimension at least

is a valid inequality for K k+|L|+|U| of K
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e So
mhep+mirn + gl (uy — zy) +oly < mo
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This Is Soooooooooo Cool Example—Lifted Knapsack Covers

@ What does this imply?
o If the lifting function itself is superadditive, | can lift all of the

variables in one pass (if | know the lifting function, of course). P = conv({x € B'® | 35z + 27x5 + 2323 + 1924 + 1525 + 1526
@ Even if | don't know the lifting function, if | can get a + 1227 + 8xg + 629 + 3710 < 39})

superadditive function that is a lower bound, then | can lift all

the variables at once. e C=1{4,56} s0)\=10

e Often, by examining the special structure of the lifting
problem, one can fairly easily deduce a (closed form) solution O(a) = 20 — max{10z4 + 10z5 + 10x6 | 351 + 275 + 2323

for the lifting function. + 1924 + 1525 + 1526 + 1227 + 8xg + 629 + 3210 < 39 — o}

@ Then one can also deduce a superadditive lower bound
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Superadditive? Facets of P

o ls @(a) superadditive? (12) + xt +x9 <= 1 (36) + 2xl+ x2+ x3+ x4 +x7T  + x9+x10 <= 3
(13) + x1 + x8 <= 1 ( 37) + 2x1+ x2+ x3+ x4 + x7+ x8 +x10 <= 3
o No! o] = ]_07 oy = 25 (14) + x1 + x7 <= 1 ( 38) + 2x1+2x2+ x3+ x4+ x5+ x6+ x7 +x10 <= 3
( 15) + =x1+ x2 + x6 <= 1 ( 39) + 2x1+ x2+ x3+ x4+ x5+ x6 + x8 +x10 <= 3
(16) + =x1+ x2 + x5 <= 1 ( 40) + 3x1+2x2+ x3+ x4+ x5+ x6+ x7+ x8+ x9 <= 3
(17) + x1+ x2+ x3+ x4 <= 1 ( 41) + 3x1+2x2+ x3+ x4 +2x7 + x9+x10 <= 4
( H ( 18) + 2x1+ x2 + x8+ x9 <= 2 ( 42) + 3x1+2x2+ x3+ x4 +2x7+ x8 +x10 <= 4
0 If 0 S aQ S 9 (19) + x1+ x2 + x7 +x10 <= 2 ( 43) + 3x1+3x2+2x3+ x4+ x5+2x6+ x7 +x10 <= 4
H ( 20) + 2x1+ x2+ x3 + x7 + x9 <= 2 ( 44) + 3x1+3x2+2x3+ x4+2x5+ x6+ x7 +x10 <= 4
]'O + a — 19 If 9 S « S 19 ( 21) + 2x1+ x2+ x3 + x7+ x8 <= 2 ( 45) + 3x1+2x2+2x3+ x4+ x5+2x6 + x8 +x10 <= 4
10 If 19 <a< 24 ( 22) + 2x1+2x2+ x3+ x4+ x5+ x6 <= 2 ( 46) + 3x1+2x2+2x3+ x4+2x5+ x6 + x8 +x10 <= 4
¢(O{) — — — E 2‘31; +  x1+ x2+ x3 + x6 +x10 <= 2 E 27; + ix1+3x2+2x3+2x§+ X5+2x6+ x;#— x8+ x9 <= i
H 2 + x1+ x2+ x3 + x5 +x10 <= 2 8) + 4x1+3x2+2x3+2x4+2x5+ x6+ x7+ x8+ x9 <=
20 + «Q 34 If 24 S «Q S 34 ( 25) + 2x1+ x2+ x3+ x4 + x6 + x9 <= 2 ( 49) + 4x1+2x2+2x3+ x4+ x5+ x6+2x7+ x8+ x9 <= 4
20 |-F 34 <a< 39 ( 26) + 2x1+ x2+ x3+ x4 + x6 + x8 <= 2 ( 50) + 3x1+2x2+2x3+2x4+ x5+ X6+ X7 + x9+x10 <= 4
- - ( 27) + 2x1+ x2+ x3+ x4+ x5 + x9 <= 2 ( B1) + 3x1+2x2+2x3+2x4+ x5+ x6+ x7+ x8 +x10 <= 4
30+a—49 ifa>39 ( 28) + 2x1+ x2+ x3+ x4+ x5 + x8 <= 2 ( 52) + 3x1+2x2+2x3+ x4+ x5+ x6+ X7+ x8+ x9+x10 <= 4
\ - ( 29) + 2x1+ x2+ x3+ x4+ x5+ x6+ x7 <= 2 ( 53) + 4x1+4x2+3x3+2x4+2x5+2x6+ X7 +x10 <= 5
( 30) + 3x1+2x2+2x3+2x4+ x5+ x6 + x9 <= 3 ( 54) + 5x1+3x2+3x3+2x4+2x5+2x6+2x7+ 5
. . . ( 31) + 3x1+2x2+2x3+2x4+ x5+ X6 + x8 <= 3 ( 55) + B5x1+4x2+3x3+3x4+2x5+2x6+ X7+ 5
("] Usmg (b we get an Ineq Uallty ( 32) + 2x1+2x2+2x3+ x4+ x5+ x6 +x10 <= 3 ( 56) + 4x1+3x2+3x3+2x4+2x5+2x6+ X7+ 5
13 3 ( 33) + 2x1+ x2+ x3 + x8+ x9+x10 <= 3 ( 57) + 4x1+3x2+3x3+2x4+ x5+2x6+ X7+ 5
e 2xr1 + 0%2 + a3+ x4 + x5 + 26 + 027 <2 ( 34) + 3x1+2x2+2x3+ x4+ x5+ x6+ x7  + x9 <= 3 ( 58) + 4x1+3x2+3x3+2x4+2x5+ X6+ XT+ 5
( 35) + 3x1+2x2+2x3+ x4+ x5+ x6+ xT+ x8 <= 3 ( 59) + 4x1+3x2+2x3+2x4+ x5+ x6+2x7+ 5
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Lots Of Facets Lots Of Facets
Separation The Separation Problem Separation The Separation Problem

But Wait There's More What to do?

( 60) + bx1+3x2+3x3+3x4+2x5+2x6+ x7+2x8 +x10 <= 6 A
( 61) + 5x1+4x2+3x3+3x4+2xE+2x6+2xT+ X8+ X9+x10 <= 6 @ We often try to solve problems that have knapsack rows with
( 62) + 5x1+3x2+3x3+2x4+2x5+2x6+ x7+2x8+ x9+x10 <= 6 .

( 63) + Bx1+4x2+4x3+3x4+2x5+2x6+ X7+ X8+ x9+x10 <= 6 lots more variables than that...

( 64) + Bbx1+3x2+3x3+2x4+ x5+ x6+2x7+ x8+2x9+x10 <= 6

( 65) + bx1+3x2+3x3+2x4+ x5+ x6+2x7+2x8+ x9+x10 <= 6 H

o e e < 3 @ Obviously | do not want to add all of those facets.
( 67) + 6x1+4x2+4x3+3x4+2x5+2x6+2x7+ x8+2x9+x10 <= 7 2

( 68) + 6x1+4x2+4x3+3x4+2x5+3x6+ xT+2x8+ x9+x10 <= 7 @ What to do?

( 69) + 6x1+4x2+4x3+3x4+3x5+2x6+ x7+2x8+ x9+x10 <= 7 A . ) )

( 70) + Tx1+5x2+4x3+3x4+2x5+2x6+3x7+2x8+2x9+x10 <= 8 @ Given some 7 ¢ P, find an inequality of the form

( 71) + Tx1+5x2+5x3+4x4+3x5+3x6+2x7+2x8+ x9+x10 <= 8 C’ 1 h h ~ C 1

( 72) + Tx1+5x2+5x3+4x4+2x5+3x6+2x7+ x8+2x9+x10 <= 8§ . T < — 1 such that . €Xr;: > — 1.
( 73) + Tx1+5x2+5x3+4xd+3x5+2x6+2xT+ x8+2x9+x10 <= 8 ZJGC J = | ’ ZJEC J | |

( 74) + 8x1+6x2+5x3+4x4+3x5+3x6+3x7+2x8+2x9+x10 <= 9 H H .

( 75) + 8x1+6x2+6x3+5x4+3x5+3x6+2x7+ x8+2x9+x10 <= 9 ° Thls IS Ca”ed a separatlon prOb/em

( 76) + 9x1+7x2+6x3+5x4+3x5+4x6+3x7+2x8+2x9+x10 <= 10 P .

( 77) + Ox1+7x2+6x3+5x4+dx5+3x6+3xT+2x8+2x9+x10 <= 10 @ Note that it is dependent on the particular class of
( 78) + 9x1+7x2+6x3+5x4+4x5+4x6+3x7+2x8+ x9+x10 <= 10 . . . . “ .

( 79) +10x1+8x2+7x3+6x4+4x5+4x6+3xT+2x8+2x0+x10 <= 11 inequalities—In this case cover inequalities.

( 80) +12x1+9x2+8x3+6x4+5x5+5x6+4x7+3x8+2x9+x10 <= 13
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Knapsack Separation Example

o Note that } ;.- x; < [C|—1 can be rewritten as

MYKNAP = {z € B | 1121+ 622 +623+524+575+4x6 +77 < 19}
d (1—az)>1.
jeC
@ Separation Problem: Given a “fractional” LP solution Z, does e £=(0,2/3,0,1,1,1,1)
3 C' C N such that ZjeC a; > b and ZjeC(l - i'j) <17 v = min7{z1—|—1/322+23 ‘ 1121+620+623+524+525+426+27 > 20}.
z€B

o lsy= mianN{Zjec(l — ;) | ZjECaj >b} <1
o Let 2; € {0,1}, z; =1if jeC, 2, =0if j ¢ C.

_ i e y=1/3
o Isy=min{} ;N1 —2)z | D jenajz >b 2B} <17 o »=(0,1,0,1,1,1,1)
e If v > 1, satisfies all cover inequalities © 1o+ x4+ x5+ 26+ 27 < 4

e If v < 1 with optimal solution zg, then ZjeR zj <|R|—1is @ Minimal Cover: x5 + x4 + 25 + 76 < 3

a violated cover inequality. @ You would do the lifting from here.
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Separation

Complexity of Separation

@ How hard is it to separate a fractional LP solution?
@ Is it obvious that it is hard?

o No! Since the point you are trying to separate is not an
“arbitrary” knapsack problem, but instead the profits have a
special form.

e Klabjan, Nemhauser, and Tovey, “The Complexity of Cover
Inequality Separation” show that knapsack separation is
NP-Hard
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