General Lifting and SuperAdditivity

IE418: Integer Programming

Jeff Linderoth
Department of Industrial and Systems Engineering
Lehigh University
13th April 2005

- $K=\operatorname{conv}\left(\left\{x \in \mathbb{Z}_{+}^{|N|}, y \in \Re_{+}^{|M|} \mid a^{T} x+g^{T} y \leq b, x \leq u\right\}\right)$
- Partition N into $[L, U, R]$
- $L=\left\{i \in N \mid x_{i}=0\right\}$
- $U=\left\{i \in N \mid x_{i}=u_{i}\right\}$
- $R=N \backslash L \backslash U$
- We will use the notation: x_{R} to mean the vector of variables that are in the set R.

$$
\text { - } a_{R}^{T} x_{R}=\sum_{j \in R} a_{j} x_{j}
$$

$$
\begin{aligned}
& K(L, U)=\operatorname{conv}\left(\left\{x \in \mathbb{Z}_{+}^{|N|}, y \in \Re_{+}^{|M|} \mid\right.\right. \\
& \left.\left.a_{R}^{T} x+g^{T} y \leq d, x_{R} \leq u_{R}, x_{i}=0 \forall i \in L, x_{i}=u_{i} \forall i \in U .\right\}\right)
\end{aligned}
$$

- So $d=b-a_{U}^{T} x_{U}$

Jeff Linderoth	IE418 Integer Programming Definitions General Lifting Separation
Superadditive Lifting Theorem Example	

Lifting

- Let $\pi^{T} x_{R}-\sigma^{T} y \leq \pi_{0}$ be a valid inequality for $K(L, U)$.
- Consider the lifting function $\Phi: \Re \rightarrow \Re \cup\{\infty\}$

$$
\begin{aligned}
& \Phi(\alpha)=\pi_{0}-\max \left\{\pi_{R}^{T} x_{R}+\sigma^{T} y \mid\right. \\
& \left.a_{R}^{T} x_{R}+g^{T} y \leq d-\alpha, x_{R} \leq u_{R}, x_{R} \in \mathbb{Z}_{+}^{|R|}, y \in \Re_{+}^{|M|}\right\}
\end{aligned}
$$

- (∞) if lifting problem is infeasible
- In words, $\Phi(\alpha)$ is the maximum value of the LHS of the valid inequality if the RHS in K is reduced by α.

Φ, Schmi

- Why do we care about Φ ?

$$
\pi_{R}^{T} x_{R}+\pi_{L}^{T} x_{L}+\pi_{U}^{T}\left(u_{U}-x_{U}\right)+\sigma^{T} y \leq \pi_{0}
$$

is a valid inequality for K if and only if

$$
\pi_{L}^{T} x_{L}+\pi_{U}^{T}\left(u_{U}-x_{U}\right) \leq \Phi\left(a_{L}^{T} x_{L}+a_{U}^{T}\left(x_{U}-u_{U}\right)\right) \forall(x, y) \in K .
$$

Proof.

$$
\begin{aligned}
& \Phi\left(a_{L}^{T} x_{L}+a_{U}^{T}\left(x_{U}-u_{U}\right)\right)=\pi_{0}-\max \left\{\pi_{R}^{T} x_{R}+\sigma^{T} y \mid\right. \\
& a_{R}^{T} x_{R}+g^{T} y \leq b-a_{L} x_{L}-a_{U} x_{U}, \\
& \left.x_{R} \leq u_{R}, x_{R} \in \mathbb{Z}_{+}^{|R|}, y \in \mathbb{R}_{+}^{|M|}\right\}
\end{aligned}
$$

So if there exists (\hat{x}, \hat{y}) such that $\pi_{L}^{T} \hat{x}_{L}+\pi_{U}^{T}\left(u_{U}-\hat{x}_{U}\right)+\max \{ \}>\pi_{0}$, then $\pi_{L}^{T} \hat{x}_{L}+\pi_{U}^{T}\left(u_{U}-\hat{x}_{U}\right)+\pi_{R}^{T} x_{R}+\sigma^{T} y \leq \pi_{0}$ cannot be a valid inequality.

Sequential Lifting. Example

- Suppose that we are doing sequential lifting for $0-1$ IP like we have done so far.
- If x_{k} fixed at 0 . (Lower bound). $\alpha x_{k}+\pi_{R}^{T} x_{R} \leq \pi_{0}$ is valid for $P \Leftrightarrow \alpha x_{k} \leq \Phi\left(a_{k} x_{k}\right) \forall x \in P$
- $x_{k}=0, \quad 0 \leq \Phi(0)$ is always true.
- $x_{k}=1, \quad \Rightarrow \alpha \leq \Phi\left(a_{k}\right)$
- If x_{k} fixed at one (Upper Bound), then $\alpha\left(1-x_{k}\right)+\pi_{R}^{T} x_{R} \leq \pi_{0}$ is valid for $P \Leftrightarrow \alpha\left(1-x_{k}\right) \leq \Phi\left(a_{k}\left(x_{k}-1\right)\right) \forall x \in P$
- $x_{k}=1, \quad 0 \leq \Phi(0)$ is always true.
- $x_{k}=0, \quad \Rightarrow \alpha \leq \Phi\left(-a_{k}\right)$
- For some classes of inequalities, we have closed form solution for the lifting function.
- If I "know" $\Phi(q)(\forall q \in \Re)$, I can just "lookup" the value of the lifting coefficient for variable x_{k}

Lifting Functions (Sequential)

- Note that if I have restricted more than one variable, then this "lookup" logic is not necessarily true
- For lifting two (0-1) variables, I would have to look at four possible values
- In general, the lifting function Φ for some valid inequality $\pi_{R}^{T} x_{R}+g^{T} y \leq \pi_{0}$ changes as I lift variables:
$\Phi_{i+1}(\alpha) \neq \Phi_{i}(\alpha) \forall i, \alpha$
- This implies that if I lift the variables in different orders, I can get different facets.
- What do we know about relationships between lifting functions?
- It is monotonically decreasing: $\Phi_{i+1}(\alpha) \leq \Phi_{i}(\alpha) \forall i, \alpha$. (Why?-N\&W II.2, Proposition 1.3)
- The highest value a coefficient can have when I lift it comes when I lift it first.

Jeff Linderoth	IE418 Integer Programming Definitions General Lifting Separation
Superadditive Lifting Theorem Example	

Lifting Functions

- Suppose the lifting function doesn't change when I lift a variable.
- If this happens, I can use the same lifting function again to determine the next coefficient.
- If the lifting function never changes, then I can use the same function to lift all of the variables.
- This happens if and only if Φ is a superadditive

Jeff Linderoth	IE418 Integer Programming Definitions General Lifting Separation
Superadditive Lifting Theorem Example	

Superadditivity

- A function $\phi: \Re \rightarrow \Re$ is superadditive if

$$
\phi\left(q_{1}\right)+\phi\left(q_{2}\right) \leq \phi\left(q_{1}+q_{2}\right)
$$

- Superadditive functions play a significant role in the theory of integer programming. (See N\&W page 229).
- Example: $\lfloor\cdot\rfloor$ is a superadditive function.
- Superadditive Fact:

$$
\sum_{j \in N} \phi\left(a_{j}\right) x_{j} \leq \sum_{j \in N} \phi\left(a_{j} x_{j}\right) \leq \phi\left(\sum_{j \in N} a_{j} x_{j}\right) .
$$

"Multiple Lookup"-Superadditivity

- Suppose that ϕ is a superadditive lower bound on Φ that satisfies $\pi_{i}=\phi\left(a_{i}\right) \forall i \in L$ and $\pi_{i}=\phi\left(-a_{i}\right) \forall i \in U$

$$
\begin{aligned}
\sum_{i \in L} \phi\left(a_{i}\right) x_{i}+\sum_{i \in U} \phi\left(-a_{i}\right)\left(u_{i}-x_{i}\right) & \leq \phi\left(a_{L}^{T} x_{L}+a_{U}^{T}\left(x_{U}-u_{U}\right)\right) \\
& \leq \Phi\left(a_{L}^{T} x_{L}+a_{U}^{T}\left(x_{U}-u_{U}\right)\right)
\end{aligned}
$$

- So

$$
\pi_{R}^{T} x_{R}+\pi_{L}^{T} x_{L}+\pi_{U}^{T}\left(u_{U}-x_{U}\right)+\sigma^{T} y \leq \pi_{0}
$$

is a valid inequality for K

The Main Result

- If ϕ is a superadditive lower bound on Φ, any inequality of the form $\pi_{R}^{T} x_{R}-\sigma^{T} y \leq \pi_{0}$, which is valid for $K(L, U)$, can be extended to the inequality

$$
\pi_{R}^{T} x_{R}+\sum_{j \in L} \phi\left(a_{j}\right) x_{j}+\sum_{j \in U} \phi\left(-a_{j}\right)\left(u_{j}-x_{j}\right)+\sigma^{T} y \leq \pi_{0}
$$

which is valid for K.

- If $\phi\left(a_{i}\right)=\Phi\left(a_{i}\right) \forall i \in L$ and $\phi\left(-a_{i}\right)=\Phi\left(a_{i}\right) \forall i \in U$ and $\pi^{T} x_{R}-\sigma^{T} y=\pi_{0}$ defines a k-dimensional face of $K(L, U)$, then the lifted inequality defines a face of dimension at least $k+|L|+|U|$ of K

Jeff Linderoth	IE418 Integer Programmin Definitions General Lifting Separation
Superadditive Lifting Theorem Example	

This Is Soooooooooo Cool

- What does this imply?
- If the lifting function itself is superadditive, I can lift all of the variables in one pass (if I know the lifting function, of course).
- Even if I don't know the lifting function, if I can get a superadditive function that is a lower bound, then I can lift all the variables at once.
- Often, by examining the special structure of the lifting problem, one can fairly easily deduce a (closed form) solution for the lifting function.

Jeff Linderoth
 General Lifting
 Separation
 IE418 Integer Programming Definitions Superadditive Liftio
 Theorem Example

Example—Lifted Knapsack Covers

$$
\begin{aligned}
& P=\operatorname{conv}\left(\left\{x \in \mathbb{B}^{10} \mid 35 x_{1}+27 x_{2}+23 x_{3}+19 x_{4}+15 x_{5}+15 x_{6}\right.\right. \\
& \left.\left.+12 x_{7}+8 x_{8}+6 x_{9}+3 x_{10} \leq 39\right\}\right) \\
& \\
& \quad C=\{4,5,6\} \text {, so } \lambda=10 \\
& \quad \Theta(\alpha)=20-\max \left\{10 x_{4}+10 x_{5}+10 x_{6} \mid 35 x_{1}+27 x_{2}+23 x_{3}\right. \\
& \left.\quad+19 x_{4}+15 x_{5}+15 x_{6}+12 x_{7}+8 x_{8}+6 x_{9}+3 x_{10} \leq 39-\alpha\right\}
\end{aligned}
$$

- Then one can also deduce a superadditive lower bound
- Is $\Theta(\alpha)$ superadditive?
- No! $\alpha_{1}=10, \alpha_{2}=25$

$$
\phi(\alpha)=\left\{\begin{array}{cl}
0 & \text { if } 0 \leq \alpha \leq 9 \\
10+\alpha-19 & \text { if } 9 \leq \alpha \leq 19 \\
10 & \text { if } 19 \leq \alpha \leq 24 \\
20+\alpha-34 & \text { if } 24 \leq \alpha \leq 34 \\
20 & \text { if } 34 \leq \alpha \leq 39 \\
30+\alpha-49 & \text { if } \alpha \geq 39
\end{array}\right.
$$

- Using ϕ we get an inequality

$$
\text { - } 2 x_{1}+\frac{13}{10} x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+\frac{3}{10} x_{7} \leq 2
$$

Lots Of Facets
The Separation Problem

But Wait There's More

What to do?

- We often try to solve problems that have knapsack rows with lots more variables than that..
- Obviously I do not want to add all of those facets.
- What to do?
- Given some $\hat{x} \notin P$, find an inequality of the form $\sum_{j \in C} x_{j} \leq|C|-1$ such that $\sum_{j \in C} \hat{x}_{j}>|C|-1$.
- This is called a separation problem
- Note that it is dependent on the particular class of inequalities-In this case cover inequalities

Knapsack Separation

- Note that $\sum_{j \in C} x_{j} \leq|C|-1$ can be rewritten as

$$
\sum_{j \in C}\left(1-x_{j}\right) \geq 1 .
$$

- Separation Problem: Given a "fractional" LP solution \hat{x}, does $\exists C \subseteq N$ such that $\sum_{j \in C} a_{j}>b$ and $\sum_{j \in C}\left(1-\hat{x}_{j}\right)<1$?
- Is $\gamma=\min _{C \subseteq N}\left\{\sum_{j \in C}\left(1-\hat{x}_{j}\right) \mid \sum_{j \in C} a_{j}>b\right\}<1$
- Let $z_{j} \in\{0,1\}, z_{j}=1$ if $j \in C, z_{j}=0$ if $j \notin C$.
- Is $\gamma=\min \left\{\sum_{j \in N}\left(1-\hat{x}_{j}\right) z_{j} \mid \sum_{j \in N} a_{j} z_{j}>b, z \in \mathbb{B}^{n}\right\}<1$?
- If $\gamma \geq 1, \hat{x}$ satisfies all cover inequalities
- If $\gamma<1$ with optimal solution z_{R}, then $\sum_{j \in R} x_{j} \leq|R|-1$ is a violated cover inequality.

Example

$$
\text { MYKNAP }=\left\{x \in \mathbb{B}^{7} \mid 11 x_{1}+6 x_{2}+6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6}+x_{7} \leq 19\right\}
$$

- $\hat{x}=(0,2 / 3,0,1,1,1,1)$
$\gamma=\min _{z \in \mathbb{B}^{7}}\left\{z_{1}+1 / 3 z_{2}+z_{3} \mid 11 z_{1}+6 z_{2}+6 z_{3}+5 z_{4}+5 z_{5}+4 z_{6}+z_{7} \geq 20\right\}$.
- $\gamma=1 / 3$
- $z=(0,1,0,1,1,1,1)$
- $x_{2}+x_{4}+x_{5}+x_{6}+x_{7} \leq 4$
- Minimal Cover: $x_{2}+x_{4}+x_{5}+x_{6} \leq 3$
- You would do the lifting from here.

Complexity of Separation

- How hard is it to separate a fractional LP solution?
- Is it obvious that it is hard?
- No! Since the point you are trying to separate is not an "arbitrary" knapsack problem, but instead the profits have a special form.
- Klabjan, Nemhauser, and Tovey, "The Complexity of Cover Inequality Separation" show that knapsack separation is $N P$-Hard

