Matching Chvátal-Gomory Mixed Integer Rounding

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

18th April 2005

Matching Chvátal-Gomory Mixed Integer Rounding

Matching

- Let's Consider a New Graph Problem Matching.
- Given a graph G = (V, E) with weights on the edges w_e ∀e ∈ E, we are interested in finding a set of edges of maximum weight such that no two edges are incident on the same vertex.
- $\max_{x \in \mathbb{B}^{|E|}} \{ \sum_{e \in E} w_e x_e \mid \sum_{e \in \delta(v)} x_e \le 1 \ \forall v \in V \}.$
- Consider any set of nodes $T \subseteq V$ and add the "not more than one edge incident upon a vertex" constraint for these nodes.
 - If $e \in E(T)$, then we will count that edge twice
 - If $e \in \delta(T, V \setminus T)$, then we count that edge once
 - If $e \in E(V \setminus T)$, then we count this edge zero times

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Matching		Matching	
Chvátal-Gomory Mixed Integer Rounding		Chvátal-Gomory Mixed Integer Rounding	
wixed integer Kounding		wixed integer Kounding	

Aggregated Inequality

- $2\sum_{e \in E(T)} x_e + \sum_{e \in \delta(T, V \setminus T)} x_e \le |T|$
- $2\sum_{e\in E(T)} x_e \leq |T|$
- $\sum_{e \in E(T)} x_e \leq |T|/2$
- \bullet Suppose |T| is odd, so $|T|/2 \not\in \mathbb{Z}$
- $\sum_{e \in E(T)} x_e \leq \lfloor |T|/2 \rfloor$ is a valid inequality
- So What? What's the Magic Here?

It Is Magic!

$$X_1 = \mathsf{conv}(\{x \in \mathbb{Z}^{|E|}_+ \mid \sum_{e \in \delta(v)} x_e \le 1 \; \forall v \in V\})$$

$$egin{aligned} X_2 &= \{ x \in \Re^{|E|}_+ \mid \sum_{e \in \delta(v)} x_e &\leq 1 \; orall v \in V, \ &\sum_{e \in E(T)} x_e &\leq (|T|-1)/2 \; orall T \subseteq V, |T| = 3, 5, \dots, \} \end{aligned}$$

• Edmonds' Matching Polytope Theorme

• $X_1 = X_2$

- The convex hull of matching is described by the degree constraints and the odd-set constraints
- Can we separate over the odd set constraints in polynomial time?

Matching Chvátal-Gomory Mixed Integer Rounding	Matching Chvátal-Gomory Mixed Integer Rounding
	Questions?
IE418: Integer Programming	Questions on Homework?Banquet? Who is attending?
Jeff Linderoth	• Final?
Department of Industrial and Systems Engineering Lehigh University 18th April 2005	 Topics: Aggregation and Rounding Lagrangian Relaxation Branch-and-price? Preprocessing and Probing Disjunctive Cuts?
	• IP Duality?

Jeff Linderoth IE418 Integer Programming Jeff Linderoth IE418 Integer Programming Basic Procedure Basic Procedure Chvátal-Gomory Chvátal-Gomory Mixed Integer Rounding Mixed Integer Rounding

The Chvátal-Gomory Procedure

The Amazing Fact!

- Let the columns of $A \in \Re^{m \times n}$ be denoted by $\{a_1, a_2, \ldots a_n\}$
- $S = \{ x \in \mathbb{Z}^n_+ \mid Ax \le b \}.$
 - **(**) Choose nonnegative multipliers $u \in \Re^m_+$
 - 2 $u^T Ax \le u^T b$ is a valid inequality $(\sum_{j \in N} u^T a_j x_j \le u^T b)$. 3 $\sum_{j \in N} \lfloor u^T a_j \rfloor x_j \le u^T b$ (Since $x \ge 0$).

 - $\sum_{j \in N} \left[u^T a_j \right] x_j \leq \left[u^T b \right]$ is valid for X since $\left[u^T a_j \right] x_j$ is an integer

- The extremely simple logic/procedure described above is sufficient to generate all valid inequalities for an integer program.
- **Thm.** Every valid inequality for S can be obtained by applying the Chvátal-Gomory procedure a finite number of times.
 - The number of times that the procedure must be performed to obtain a certin inequality is called the Chvátal-Gomory rank of the inequality.
 - Thus, the odd-set inequalities for the matching polytope are rank-1 C-G inequalities.

Matching		Matching	
Chvátal-Gomory	CG for MIP	Chvátal-Gomory	CG for MIP
Mixed Integer Rounding	CG for MILP	Mixed Integer Rounding	CG for MILP

Gomory's Cutting Plane Procedure for (Pure) IP

- $\max\{x \in \mathbb{Z}^n_+ \mid Ax = b\}$
- Create the cutting planes directly from the simplex tableau
- Given an (optimal) LP basis *B*, write the (pure) IP as

$$\max c_B B^{-1} b + \sum_{j \in NB} \bar{c}_j x_j$$

$$x_{B_i} + \sum_{j \in NB} \bar{a}_{ij} x_j = \bar{b}_i \ \forall i = 1, 2, \dots m$$
$$x_j \in \mathbb{Z} \ \forall j = 1, 2, \dots n$$

- $\bullet \ NB$ is the set of nonbasic variables
- $\bar{c}_j \leq$ 0 $\forall j$
- $\bar{b}_i \geq 0 \ \forall i$

Gomory's Cutting Planes

- If the LP solution is not integral, then there exists some row i with $\bar{b}_i\not\in\mathbb{Z}$
- $\bullet\,$ The C-G cut for row i is

$$x_{B_i} + \sum_{j \in NB} \lfloor \bar{a}_{ij} \rfloor x_j \le \lfloor \bar{b}_i \rfloor.$$

• Substitute for x_{B_i} to get

$$\sum_{j \in NB} (\bar{a}_{ij} - \lfloor \bar{a}_{ij} \rfloor) x_j \ge \bar{b}_i - \lfloor \bar{b}_i \rfloor$$

• Or if
$$f_{ij} = \bar{a}_{ij} - \lfloor \bar{a}_{ij} \rfloor$$
, $f_i = \bar{b}_i - \lfloor \bar{b}_i \rfloor$, then

$$\sum_{j \in NB} f_{ij} x_j \ge f_i.$$

• Note that since $\hat{x}_j = 0 \ \forall j \in NB$ and x_{B_i} is fractional, then this is really a cut!

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Matching	Basic Procedure	Matching	Basic Procedure
Chvátal-Gomory	CG for MIP	Chvátal-Gomory	
Mixed Integer Rounding	CG for MILP	Mixed Integer Rounding	CG for MILP

Example

$\max 4x_1 - x_2$

subject to

$$7x_1 - 2x_2 \leq 14$$

 $x_2 \leq 3$
 $2x_1 - 2x_2 \leq 3$
 $x_1, x_2 \in \mathbb{Z}_+$

$$\max \frac{59}{7} - \frac{4}{7}x_3 - \frac{1}{7}x_4$$
$$x_1 + \frac{1}{7}x_3 + \frac{2}{7}x_4 = \frac{20}{7}$$
$$x_2 + x_4 = 3$$
$$-\frac{2}{7}x_3 + \frac{10}{7}x_4 + x_5 = \frac{23}{7}$$
$$x_1, x_2, x_3, x_4, x_5 \in \mathbb{Z}_+$$

• Cut from the first row of the tableau is

or

with $x_6 \in \mathbb{Z}_+$

 $\frac{1}{7}x_3 + \frac{2}{7}x_4 \ge \frac{6}{7}$

Matching Basic Procedure Chvátal-Gomory CG for MIP Mixed Integer Rounding CG for MILP	Matching Basic Procedure Chvátal-Gomory CG for MIP Mixed Integer Rounding CG for MILP
Reoptimizing	Reoptimizing
$\max \frac{15}{2} - \frac{1}{2}x_5 - 3x_6$ $x_1 + x_6 = 2$ $x_2 - \frac{1}{2}x_5 + x_6 = \frac{1}{2}$ $x_3 - x_5 - 5x_6 = 1$ $x_4 + \frac{1}{2}x_5 + 6x_6 = \frac{5}{2}$ $x_1, x_2, x_3, x_4, x_5, x_6 \in \mathbb{Z}_+$	$\max 7 - 3x_6 - x_7$ $x_1 + x_6 = 2$ $x_2 + x_6 - x_7 = 1$ $x_3 - 5x_6 - 2x_7 = 2$ $x_4 + 6x_6 + x_7 = 2$
• Cut from second row of tableau (in which x_2 is fractional) is	$x_5 - x_7 = 1$
$rac{1}{2}x_5 \geq rac{1}{2}$	$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \in \mathbb{Z}_+$
or $-\frac{1}{2}x_5 + x_7 = -\frac{1}{2}$	• Done!
Jeff Linderoth IE418 Integer Programming Matching Basic Procedure Chvátal-Gomory CG for MIP	Jeff Linderoth IE418 Integer Programming Matching Simple Motivation Chvátal-Gomory Extension

Extension to Mixed Integer Programs

Mixed Integer Rounding

- One can show that the *Gomory Mixed Integer Cut* is a valid inequality for MIP.
- Given row of (mixed) tableau (y's are integers)

$$T = \{ (y_{B_i}, y, x) \in \mathbb{Z} \times \mathbb{Z}^{|N_1|} \times \mathbb{R}^{|N_2|}_+ \mid y_{B_i} + \sum_{j \in N_1} \bar{a}_{ij} y_j + \sum_{j \in N_2} \bar{a}_{ij} x_j = \bar{b}_i \}$$

CG for MILP

• Let $f_0 = \overline{b}_i - \lfloor \overline{b}_i \rfloor$, $f_j = \overline{a}_{ij} - \lfloor \overline{a}_{ij} \rfloor$

$$\sum_{j \in N: f_j \le f_0} f_j y_j + \sum_{j \in N: f_j > f_0} \frac{f_0(1 - f_j)}{1 - f_0} y_j + \sum_{j \in N: \bar{a}_{ij} > 0} \bar{a}_{ij} x_j + \sum_{j \in N: \bar{a}_{ij} < 0} \frac{f_0}{1 - f_0} \bar{a}_{ij} x_j \ge f_0$$

• Won't derive this, since we will show it's validity as a special case of a **Mixed Integer Rounding** inequality.

Mixed Integer Rounding-MIR

Mixed Integer Rounding

- Almost everything comes from considering the following very simple set, and very simple observation.
- Here, I will switch notation to use y as the integer valued variable, since that is what Marchand & Wolsey do.
- $X = \{(x, y) \in \mathbb{R} \times \mathbb{Z} \mid y \le b + x\}$
- $y \leq \lfloor b \rfloor + \frac{1}{1-f}x$ is a valid inequality for X

Matching	Simple Motivation	Matching	Simple Motivation
Chvátal-Gomory	Extension	Chvátal-Gomory	Extension
Mixed Integer Rounding	Mixed Integer Gomory Cuts as MIR	Mixed Integer Rounding	Mixed Integer Gomory Cuts as MIR

(Simple) Extension of MIR

$$X = \{ (x, y) \in \mathbb{R}^2_+ \times \mathbb{Z}^{|N|} \mid \sum_{j \in N} a_j y_j + x^+ \le b + x^- \}$$

•
$$f = b - \lfloor b \rfloor$$

- $f_j = a_j \lfloor a_j \rfloor$
- The inequality

$$\sum_{j \in N} \left(\lfloor (a_j) \rfloor + \frac{(f_j - f)^+}{1 - f} \right) y_j \le \lfloor b \rfloor + \frac{x^-}{1 - f}$$

is valid for \boldsymbol{X}

• X is a one-row relaxation of a general *mixed* integer program, where all of the continuous variables have been aggregated into two variables (one with positive coefficients), one with negative coefficients.

Proof.

•
$$N_1 = \{j \in N \mid f_j \le f\}$$

•
$$N_2 = N \setminus N_1$$

Let

$$P = \{(x,y) \in \mathbb{R}^2_+ \times \mathbb{Z}^{|N|} \mid$$
$$\sum_{j \in N_1} \lfloor a_j \rfloor y_j + \sum_{j \in N_2} \lceil a_j \rceil y_y \le b + x^- + \sum_{j \in N_2} (1 - f_j) y_j \}$$

 $\textcircled{0} \quad \mathsf{Show} \ X \subseteq P$

- **2** Show Simple (2-variable) MIR inequality is valid for P (with an appropriate variable substitution.
- Ollect the terms

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Matching	Simple Motivation	Matching	Simple Motivation
Chvátal-Gomory	Extension	Chvátal-Gomory	Extension
Mixed Integer Rounding	Mixed Integer Gomory Cuts as MIR	Mixed Integer Rounding	Mixed Integer Gomory Cuts as MIR

Proof 1. $X \subseteq P$

$$\begin{aligned} \langle x, y \rangle \in X \quad \Rightarrow \quad \sum_{j \in N_1} a_j y_j + \sum_{j \in N_2} a_j y_j + x^+ &\leq b + x^- \\ \Rightarrow \quad \sum_{j \in N_1} \lfloor a_j \rfloor y_j + \sum_{j \in N_2} a_j y_j + x^+ &\leq b + x^- \\ \Rightarrow \quad \sum_{j \in N_1} \lfloor a_j \rfloor y_j + \sum_{j \in N_2} \lceil a_j \rceil y_j - \sum_{j \in N_2} (1 - f_j) y_j + x^+ &\leq b + x^- \\ \Rightarrow \quad (x, y) \in P \end{aligned}$$

Proof 2.

- Let $w = \sum_{j \in N_1} \lfloor a_j \rfloor y_j + \sum_{j \in N_2} \lceil a_j \rceil y_j$. (Note that $w \in \mathbb{Z}$).
- Consider $w \le b + x^- + \sum_{j \in N_2} (1 f_j) y_j$
- Apply the "simple" MIR inequality to this set.

$$\sum_{j\in N_1} \lfloor a_j \rfloor y_j + \sum_{j\in N_2} \lceil a_j \rceil y_j \le \lfloor b \rfloor + \frac{x^- + \sum_{j\in N_2} (1-f_j)y_j}{1-f}.$$

• This is an equivalent inequality to

$$\sum_{j \in N} (\lfloor (a_j) \rfloor + \frac{(f_j - f)^+}{1 - f} y_j \le \lfloor b \rfloor + \frac{x^-}{1 - f}$$

	Matching Chvátal-Gomory Mixed Integer Rounding	Simple Motivation Extension Mixed Integer Gomory Cuts as MIR	Matching Chvátal-Gomory Mixed Integer Rounding	
Proof 3.			Gomory Mixed Integer Cu	t is a MIR Inequality

• Consider the set

$$X^{=} = \{ (x, y_0, y) \in \mathbb{R}^2_+ \times \mathbb{Z} \times \mathbb{Z}^{|N|}_+ \mid y_0 + \sum_{j \in N} a_j y_j + x^+ - x^- = b \}$$

which is essentially the row of an LP tableau with y_0 the basic variable and x^+, x^- the sum of the continuous variables with positive and negative coefficients.

• Relax the equality to an inequality and apply MIR

Proof.

• Coefficient of y_i

• $|a_j|$ if $j \in N_1$

• $\lceil a_j \rceil - \frac{1-f_j}{1-f}$ if $j \in N_2$ (if $f_j > f$)

$$y_{0} + \sum_{j \in N} \lfloor \left(a_{j} \rfloor + \frac{(f_{j} - f)^{+}}{1 - f} \right) y_{j} \leq \lfloor b \rfloor + \frac{x^{-}}{1 - f}$$

$$b - \sum_{j \in N} a_{j}y_{j} - x^{+} + x^{-} + \sum_{j \in N} \left(\lfloor a_{j} \rfloor + \frac{(f_{j} - f)^{+}}{1 - f} \right) y_{j} \leq \lfloor b \rfloor + \frac{x^{-}}{1 - f}$$

$$-b + \sum_{j \in N} a_{j}y_{j} + x^{+} - x^{-} - \sum_{j \in N} \lfloor \left(a_{j} \rfloor + \frac{(f_{j} - f)^{+}}{1 - f} \right) y_{j} \geq -\lfloor b \rfloor - \frac{x^{-}}{1 - f}$$

$$\sum_{j \in N} f_{j}y_{j} + x^{+} - x^{-} - \sum_{j \in N} \frac{(f_{j} - f)^{+}}{1 - f} y_{j} \geq f - \frac{x^{-}}{1 - f}$$

$$\sum_{j \in N} f_{j}y_{j} + x^{+} + \frac{f}{1 - f}x^{-} - \sum_{j \in N_{2}} \frac{f_{j} - f}{1 - f} y_{j} \geq f$$

$$\sum_{j \in N} f_{j}y_{j} + x^{+} + \frac{f}{1 - f}x^{-} + \sum_{j \in N_{2}} (f_{j} - \frac{f_{j} - f}{1 - f}) y_{j} \geq f$$

Paper on Web Site

- Lots of inequalities are special cases of this inequality: Network design problems, Mixed cover inequalities, weight inequalities, etc.
- There is *lots* of interesting work to do to try and develop a good implementation. In fact the paper describes ways to aggregate, substitute, complement, and separate in order to find good inequalities for general MIP

READ!

- [1]
- [2]
- H. MARCHAND AND L. WOLSEY, Aggregation and mixed integer rounding to solve MIPs, Operations Research, 49 (2001), pp. 363–371.
- M. W. P. SAVELSBERGH, Preprocessing and probing techniques for mixed integer programming problems, ORSA Journal on Computing, 6 (1994), pp. 445–454.

Jeff Linderoth IE418 Integer Programming