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Matching

Let’s Consider a New Graph Problem – Matching.

Given a graph G = (V,E) with weights on the edges
we ∀e ∈ E, we are interested in finding a set of edges of
maximum weight such that no two edges are incident on the
same vertex.

maxx∈B|E|{
∑

e∈E wexe |
∑

e∈δ(v) xe ≤ 1 ∀v ∈ V }.
Consider any set of nodes T ⊆ V and add the “not more than
one edge incident upon a vertex” constraint for these nodes.

If e ∈ E(T ), then we will count that edge twice
If e ∈ δ(T, V \ T ), then we count that edge once
If e ∈ E(V \ T ), then we count this edge zero times
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Aggregated Inequality

2
∑

e∈E(T ) xe +
∑

e∈δ(T,V \T ) xe ≤ |T |
2

∑
e∈E(T ) xe ≤ |T |∑

e∈E(T ) xe ≤ |T |/2

Suppose |T | is odd, so |T |/2 6∈ Z∑
e∈E(T ) xe ≤ b|T |/2c is a valid inequality

So What? What’s the Magic Here?
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It Is Magic!

X1 = conv({x ∈ Z|E|
+ |

∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V })

X2 = {x ∈ <|E|+ |
∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V,

∑
e∈E(T )

xe ≤ (|T | − 1)/2 ∀T ⊆ V, |T | = 3, 5, . . . , }

Edmonds’ Matching Polytope Theorme

X1 = X2

The convex hull of matching is described by the degree constraints
and the odd-set constraints

Can we separate over the odd set constraints in polynomial time?

If so, then we can solve the weighted matching problem in
polynomial time? (How?
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Questions?

Questions on Homework?

Banquet? Who is attending?

Final?

Topics:

Aggregation and Rounding
Lagrangian Relaxation
Branch-and-price?
Preprocessing and Probing
Disjunctive Cuts?
IP Duality?
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Basic Procedure
CG for MIP
CG for MILP

The Chvátal-Gomory Procedure

Let the columns of A ∈ <m×n be denoted by {a1, a2, . . . an}
S = {x ∈ Zn

+ | Ax ≤ b}.
1 Choose nonnegative multipliers u ∈ <m

+
2 uT Ax ≤ uT b is a valid inequality (

∑
j∈N uT ajxj ≤ uT b).

3
∑

j∈NbuT ajcxj ≤ uT b (Since x ≥ 0).
4

∑
j∈NbuT ajcxj ≤ buT bc is valid for X since buT ajcxj is an

integer
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The Amazing Fact!

The extremely simple logic/procedure described above is
sufficient to generate all valid inequalities for an integer
program.

Thm. Every valid inequality for S can be obtained by applying
the Chvátal-Gomory procedure a finite number of times.

The number of times that the procedure must be performed to
obtain a certin inequality is called the Chvátal-Gomory rank of
the inequality.
Thus, the odd-set inequalities for the matching polytope are
rank-1 C-G inequalities.
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Gomory’s Cutting Plane Procedure for (Pure) IP

max{x ∈ Zn
+ | Ax = b}

Create the cutting planes directly from the simplex tableau

Given an (optimal) LP basis B, write the (pure) IP as

max cBB−1b +
∑

j∈NB

c̄jxj

xBi
+

∑
j∈NB

āijxj = b̄i ∀i = 1, 2, . . . m

xj ∈ Z ∀j = 1, 2, . . . n

NB is the set of nonbasic variables

c̄j ≤ 0 ∀j
b̄i ≥ 0 ∀i
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Chvátal-Gomory

Mixed Integer Rounding

Basic Procedure
CG for MIP
CG for MILP

Gomory’s Cutting Planes

If the LP solution is not integral, then there exists some row i
with b̄i 6∈ Z
The C-G cut for row i is

xBi +
∑

j∈NB

bāijcxj ≤ bb̄ic.

Substitute for xBi to get∑
j∈NB

(āij − bāijc)xj ≥ b̄i − bb̄ic

Or if fij = āij − bāijc, fi = b̄i − bb̄ic, then∑
j∈NB

fijxj ≥ fi.

Note that since x̂j = 0 ∀j ∈ NB and xBi is fractional, then
this is really a cut!
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Example

max 4x1 − x2

subject to

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1, x2 ∈ Z+
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Optimal Simplex Tableau

max
59

7
−

4

7
x3 −

1

7
x4

x1 +
1

7
x3 +

2

7
x4 =

20

7
x2 + x4 = 3

−
2

7
x3 +

10

7
x4 + x5 =

23

7
x1, x2, x3, x4, x5 ∈ Z+

Cut from the first row of the tableau is

1

7
x3 +

2

7
x4 ≥

6

7
or

x6 = −6

7
+

1

7
x3 +

2

7
x4

with x6 ∈ Z+
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Reoptimizing

max
15

2
−

1

2
x5 − 3x6

x1 + x6 = 2

x2 −
1

2
x5 + x6 =

1

2
x3 − x5 − 5x6 = 1

x4 +
1

2
x5 + 6x6 =

5

2
x1, x2, x3, x4, x5, x6 ∈ Z+

Cut from second row of tableau (in which x2 is fractional) is

1

2
x5 ≥

1

2

or

−1

2
x5 + x7 = −1

2
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Chvátal-Gomory

Mixed Integer Rounding

Basic Procedure
CG for MIP
CG for MILP

Reoptimizing

max 7− 3x6 − x7

x1 + x6 = 2

x2 + x6 − x7 = 1

x3 − 5x6 − 2x7 = 2

x4 + 6x6 + x7 = 2

x5 − x7 = 1

x1, x2, x3, x4, x5, x6, x7 ∈ Z+

Done!
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Extension to Mixed Integer Programs

One can show that the Gomory Mixed Integer Cut is a valid
inequality for MIP.

Given row of (mixed) tableau – (y’s are integers)

T = {(yBi , y, x) ∈ Z×Z|N1|×R|N2|
+ | yBi+

∑
j∈N1

āijyj+
∑
j∈N2

āijxj = b̄i}

Let f0 = b̄i − bb̄ic, fj = āij − bāijc

X
j∈N :fj≤f0

fjyj+
X

j∈N :fj>f0

f0(1− fj)

1− f0
yj+

X
j∈N :āij>0

āijxj+
X

j∈N :āij<0

f0

1− f0
āijxj ≥ f0

Won’t derive this, since we will show it’s validity as a special
case of a Mixed Integer Rounding inequality.
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Simple Motivation
Extension
Mixed Integer Gomory Cuts as MIR

Mixed Integer Rounding—MIR

Almost everything comes from considering the following very
simple set, and very simple observation.

Here, I will switch notation to use y as the integer valued
variable, since that is what Marchand & Wolsey do.

X = {(x, y) ∈ R× Z | y ≤ b + x}
y ≤ bbc+ 1

1−f x is a valid inequality for X
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(Simple) Extension of MIR

X = {(x, y) ∈ R2
+ × Z|N | |

∑
j∈N

ajyj + x+ ≤ b + x−}

f = b− bbc

fj = aj − bajc

The inequality∑
j∈N

(
b(aj)c+

(fj − f)+

1− f

)
yj ≤ bbc+

x−

1− f

is valid for X

X is a one-row relaxation of a general mixed integer program, where
all of the continuous variables have been aggregated into two
variables (one with positive coefficients), one with negative
coefficients.
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Proof.

N1 = {j ∈ N | fj ≤ f}
N2 = N \N1

Let

P = {(x, y) ∈ R2
+ × Z|N | |∑

j∈N1

bajcyj +
∑
j∈N2

dajeyy ≤ b + x− +
∑
j∈N2

(1− fj)yj}

1 Show X ⊆ P
2 Show Simple (2-variable) MIR inequality is valid for P (with

an appropriate variable substitution.
3 Collect the terms
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Chvátal-Gomory

Mixed Integer Rounding

Simple Motivation
Extension
Mixed Integer Gomory Cuts as MIR

Proof 1. X ⊆ P

(x, y) ∈ X ⇒
∑
j∈N1

ajyj +
∑
j∈N2

ajyj + x+ ≤ b + x−

⇒
∑
j∈N1

bajcyj +
∑
j∈N2

ajyj + x+ ≤ b + x−

⇒
∑
j∈N1

bajcyj +
∑
j∈N2

dajeyj −
∑
j∈N2

(1− fj)yj + x+ ≤ b + x−

⇒ (x, y) ∈ P
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Proof 2.

Let w =
∑

j∈N1
bajcyj +

∑
j∈N2

dajeyj . (Note that w ∈ Z).

Consider w ≤ b + x− +
∑

j∈N2
(1− fj)yj

Apply the “simple” MIR inequality to this set.

∑
j∈N1

bajcyj +
∑
j∈N2

dajeyj ≤ bbc+
x− +

∑
j∈N2

(1− fj)yj

1− f
.

This is an equivalent inequality to∑
j∈N

(b(aj)c+
(fj − f)+

1− f
yj ≤ bbc+

x−

1− f
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Proof 3.

Coefficient of yj

bajc if j ∈ N1

daje − 1−fj

1−f if j ∈ N2 (if fj > f)
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Gomory Mixed Integer Cut is a MIR Inequality

Consider the set

X= = {(x, y0, y) ∈ R2
+×Z×Z|N |

+ | y0+
∑
j∈N

ajyj+x+−x− = b}

which is essentially the row of an LP tableau with y0 the basic
variable and x+, x− the sum of the continuous variables with
positive and negative coefficients.

Relax the equality to an inequality and apply MIR
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Proof.

y0 +
∑
j∈N

b
(

ajc+
(fj − f)+

1− f

)
yj ≤ bbc+

x−

1− f

b−
∑
j∈N

ajyj − x+ + x− +
∑
j∈N

(
bajc+

(fj − f)+

1− f

)
yj ≤ bbc+

x−

1− f

−b +
∑
j∈N

ajyj + x+ − x− −
∑
j∈N

b
(

ajc+
(fj − f)+

1− f

)
yj ≥ −bbc − x−

1− f∑
j∈N

fjyj + x+ − x− −
∑
j∈N

(fj − f)+

1− f
yj ≥ f − x−

1− f∑
j∈N

fjyj + x+ +
f

1− f
x− −

∑
j∈N2

fj − f

1− f
yj ≥ f

∑
j∈N1

fjyj + x+ +
f

1− f
x− +

∑
j∈N2

(fj −
fj − f

1− f
)yj ≥ f
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Paper on Web Site

Lots of inequalities are special cases of this inequality:
Network design problems, Mixed cover inequalities, weight
inequalities, etc.

There is lots of interesting work to do to try and develop a
good implementation. In fact the paper describes ways to
aggregate, substitute, complement, and separate in order to
find good inequalities for general MIP
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READ!
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