Matching

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University
18th April 2005

- Let's Consider a New Graph Problem - Matching.
- Given a graph $G=(V, E)$ with weights on the edges $w_{e} \forall e \in E$, we are interested in finding a set of edges of maximum weight such that no two edges are incident on the same vertex.
- $\max _{x \in \mathbb{B}|E|}\left\{\sum_{e \in E} w_{e} x_{e} \mid \sum_{e \in \delta(v)} x_{e} \leq 1 \forall v \in V\right\}$.
- Consider any set of nodes $T \subseteq V$ and add the "not more than one edge incident upon a vertex" constraint for these nodes.
- If $e \in E(T)$, then we will count that edge twice
- If $e \in \delta(T, V \backslash T)$, then we count that edge once
- If $e \in E(V \backslash T)$, then we count this edge zero times

IE418 Integer Programming
Chvátal-Gomory

It Is Magic!

$$
\begin{aligned}
& X_{1}=\operatorname{conv}\left(\left\{x \in \mathbb{Z}_{+}^{|E|} \mid \sum_{e \in \delta(v)} x_{e} \leq 1 \forall v \in V\right\}\right) \\
& X_{2}=\left\{x \in \Re_{+}^{|E|} \mid \sum_{e \in \delta(v)} x_{e}\right. \leq 1 \forall v \in V, \\
&\left.\sum_{e \in E(T)} x_{e} \leq(|T|-1) / 2 \forall T \subseteq V,|T|=3,5, \ldots,\right\}
\end{aligned}
$$

- Edmonds' Matching Polytope Theorme
- $X_{1}=X_{2}$
- The convex hull of matching is described by the degree constraints and the odd-set constraints
- Can we separate over the odd set constraints in polynomial time?
- If so, then we can solve the weighted matching problem in polynomial time? (How?

Questions?

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University
18th April 2005

- Questions on Homework?
- Banquet? Who is attending?
- Final?
- Topics:
- Aggregation and Rounding
- Lagrangian Relaxation
- Branch-and-price?
- Preprocessing and Probing
- Disjunctive Cuts?
- IP Duality?

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Matching Chvátal-Gomory Mixed Integer Rounding	Basic Procedure CG for MIP CG for MILP	Matching Chvátal-Gomory Mixed Integer Rounding	Basic Procedure CG for MIP CG for MILP

The Chvátal-Gomory Procedure

- Let the columns of $A \in \Re^{m \times n}$ be denoted by $\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$
- $S=\left\{x \in \mathbb{Z}_{+}^{n} \mid A x \leq b\right\}$.
(1) Choose nonnegative multipliers $u \in \Re_{+}^{m}$
(2) $u^{T} A x \leq u^{T} b$ is a valid inequality $\left(\sum_{j \in N}^{+} u^{T} a_{j} x_{j} \leq u^{T} b\right)$.
(3) $\sum_{j \in N}\left\lfloor u^{T} a_{j}\right\rfloor x_{j} \leq u^{T} b$ (Since $x \geq 0$).
(9) $\sum_{j \in N}\left\lfloor u^{T} a_{j}\right\rfloor x_{j} \leq\left\lfloor u^{T} b\right\rfloor$ is valid for X since $\left\lfloor u^{T} a_{j}\right\rfloor x_{j}$ is an integer

The Amazing Fact!

- The extremely simple logic/procedure described above is sufficient to generate all valid inequalities for an integer program.
- Thm. Every valid inequality for S can be obtained by applying the Chvátal-Gomory procedure a finite number of times.
- The number of times that the procedure must be performed to obtain a certin inequality is called the Chvátal-Gomory rank of the inequality.
- Thus, the odd-set inequalities for the matching polytope are rank-1 C-G inequalities.

Gomory's Cutting Plane Procedure for (Pure) IP

- $\max \left\{x \in \mathbb{Z}_{+}^{n} \mid A x=b\right\}$
- Create the cutting planes directly from the simplex tableau
- Given an (optimal) LP basis B, write the (pure) IP as

$$
\begin{aligned}
\max c_{B} B^{-1} b & +\sum_{j \in N B} \bar{c}_{j} x_{j} \\
x_{B_{i}}+\sum_{j \in N B} \bar{a}_{i j} x_{j} & =\bar{b}_{i} \forall i=1,2, \ldots m \\
x_{j} & \in \mathbb{Z} \forall j=1,2, \ldots n
\end{aligned}
$$

- $N B$ is the set of nonbasic variables
- $\bar{c}_{j} \leq 0 \forall j$
- $\bar{b}_{i} \geq 0 \forall i$

Gomory's Cutting Planes

- If the LP solution is not integral, then there exists some row i with $\bar{b}_{i} \notin \mathbb{Z}$
- The C-G cut for row i is

$$
x_{B_{i}}+\sum_{j \in N B}\left\lfloor\bar{a}_{i j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{i}\right\rfloor
$$

- Substitute for $x_{B_{i}}$ to get

$$
\sum_{j \in N B}\left(\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor\right) x_{j} \geq \bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor
$$

- Or if $f_{i j}=\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor, f_{i}=\bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor$, then

$$
\sum_{j \in N B} f_{i j} x_{j} \geq f_{i}
$$

- Note that since $\hat{x}_{j}=0 \forall j \in N B$ and $x_{B_{i}}$ is fractional, then this is really a cut!

Example

$$
\max 4 x_{1}-x_{2}
$$

subject to

$$
\begin{aligned}
7 x_{1}-2 x_{2} & \leq 14 \\
x_{2} & \leq 3 \\
2 x_{1}-2 x_{2} & \leq 3 \\
x_{1}, x_{2} & \in \mathbb{Z}_{+}
\end{aligned}
$$

$$
\begin{aligned}
& \max \frac{59}{7}-\frac{4}{7} x_{3}-\frac{1}{7} x_{4} \\
& x_{1}+\frac{1}{7} x_{3}+\frac{2}{7} x_{4}=\frac{20}{7} \\
& x_{2}+x_{4}=3 \\
&-\frac{2}{7} x_{3}+\frac{10}{7} x_{4}+x_{5}=\frac{23}{7} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in \mathbb{Z}_{+}
\end{aligned}
$$

- Cut from the first row of the tableau is

$$
\frac{1}{7} x_{3}+\frac{2}{7} x_{4} \geq \frac{6}{7}
$$

or

$$
x_{6}=-\frac{6}{7}+\frac{1}{7} x_{3}+\frac{2}{7} x_{4}
$$

with $x_{6} \in \mathbb{Z}_{+}$

Reoptimizing

$$
\begin{aligned}
& \max \frac{15}{2}-\frac{1}{2} x_{5}-3 x_{6} \\
& x_{1}+x_{6}=2 \\
& x_{2}-\frac{1}{2} x_{5}+x_{6}=\frac{1}{2} \\
& x_{3}-x_{5}-5 x_{6}=1 \\
& x_{4}+\frac{1}{2} x_{5}+6 x_{6}=\frac{5}{2} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \in \mathbb{Z}_{+}
\end{aligned}
$$

- Cut from second row of tableau (in which x_{2} is fractional) is

$$
\frac{1}{2} x_{5} \geq \frac{1}{2}
$$

Reoptimizing

$\max 7-3 x_{6}-x_{7}$

$$
\begin{aligned}
x_{1}+x_{6} & =2 \\
x_{2}+x_{6}-x_{7} & =1 \\
x_{3}-5 x_{6}-2 x_{7} & =2 \\
x_{4}+6 x_{6}+x_{7} & =2 \\
x_{5}-x_{7} & =1
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \in \mathbb{Z}_{+}
$$

$$
-\frac{1}{2} x_{5}+x_{7}=-\frac{1}{2}
$$

Extension to Mixed Integer Programs

- One can show that the Gomory Mixed Integer Cut is a valid inequality for MIP
- Given row of (mixed) tableau - (y's are integers)

$$
T=\left\{\left(y_{B_{i}}, y, x\right) \in \mathbb{Z} \times \mathbb{Z}^{\left|N_{1}\right|} \times \mathbb{R}_{+}^{\left|N_{2}\right|} \mid y_{B_{i}}+\sum_{j \in N_{1}} \bar{a}_{i j} y_{j}+\sum_{j \in N_{2}} \bar{a}_{i j} x_{j}=\bar{b}_{i}\right\}
$$

- Let $f_{0}=\bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor, f_{j}=\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor$

$$
\sum_{j \in N: f_{j} \leq f_{0}} f_{j} y_{j}+\sum_{j \in N: f_{j}>f_{0}} \frac{f_{0}\left(1-f_{j}\right)}{1-f_{0}} y_{j}+\sum_{j \in N: \bar{a}_{i j}>0} \bar{a}_{i j} x_{j}+\sum_{j \in N: \bar{a}_{i j}<0} \frac{f_{0}}{1-f_{0}} \bar{a}_{i j} x_{j} \geq f
$$

- Won't derive this, since we will show it's validity as a special case of a Mixed Integer Rounding inequality.

Mixed Integer Rounding-MIR

- Almost everything comes from considering the following very simple set, and very simple observation.
- Here, I will switch notation to use y as the integer valued variable, since that is what Marchand \& Wolsey do.
- $X=\{(x, y) \in \mathbb{R} \times \mathbb{Z} \mid y \leq b+x\}$
- $y \leq\lfloor b\rfloor+\frac{1}{1-f} x$ is a valid inequality for X
(Simple) Extension of MIR

$$
X=\left\{(x, y) \in \mathbb{R}_{+}^{2} \times \mathbb{Z}^{|N|} \mid \sum_{j \in N} a_{j} y_{j}+x^{+} \leq b+x^{-}\right\}
$$

- $f=b-\lfloor b\rfloor$
- $f_{j}=a_{j}-\left\lfloor a_{j}\right\rfloor$
- The inequality

$$
\sum_{j \in N}\left(\left\lfloor\left(a_{j}\right)\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f}\right) y_{j} \leq\lfloor b\rfloor+\frac{x^{-}}{1-f}
$$

is valid for X

- X is a one-row relaxation of a general mixed integer program, where all of the continuous variables have been aggregated into two variables (one with positive coefficients), one with negative coefficients.

Proof.

- $N_{1}=\left\{j \in N \mid f_{j} \leq f\right\}$
- $N_{2}=N \backslash N_{1}$
- Let

$$
\begin{aligned}
& P=\left\{(x, y) \in \mathbb{R}_{+}^{2} \times \mathbb{Z}^{|N|} \mid\right. \\
& \left.\sum_{j \in N_{1}}\left\lfloor a_{j}\right\rfloor y_{j}+\sum_{j \in N_{2}}\left\lceil a_{j}\right\rceil y_{y} \leq b+x^{-}+\sum_{j \in N_{2}}\left(1-f_{j}\right) y_{j}\right\}
\end{aligned}
$$

(1) Show $X \subseteq P$
(2) Show Simple (2-variable) MIR inequality is valid for P (with an appropriate variable substitution.
Collect the terms

$$
\begin{aligned}
(x, y) \in X & \Rightarrow \sum_{j \in N_{1}} a_{j} y_{j}+\sum_{j \in N_{2}} a_{j} y_{j}+x^{+} \leq b+x^{-} \\
& \Rightarrow \sum_{j \in N_{1}}\left\lfloor a_{j}\right\rfloor y_{j}+\sum_{j \in N_{2}} a_{j} y_{j}+x^{+} \leq b+x^{-} \\
& \Rightarrow \sum_{j \in N_{1}}\left\lfloor a_{j}\right\rfloor y_{j}+\sum_{j \in N_{2}}\left\lceil a_{j}\right\rceil y_{j}-\sum_{j \in N_{2}}\left(1-f_{j}\right) y_{j}+x^{+} \leq b+x^{-} \\
& \Rightarrow(x, y) \in P
\end{aligned}
$$

Proof 2.

- Let $w=\sum_{j \in N_{1}}\left\lfloor a_{j}\right\rfloor y_{j}+\sum_{j \in N_{2}}\left\lceil a_{j}\right\rceil y_{j}$. (Note that $w \in \mathbb{Z}$).
- Consider $w \leq b+x^{-}+\sum_{j \in N_{2}}\left(1-f_{j}\right) y_{j}$
- Apply the "simple" MIR inequality to this set.

$$
\sum_{j \in N_{1}}\left\lfloor a_{j}\right\rfloor y_{j}+\sum_{j \in N_{2}}\left\lceil a_{j}\right\rceil y_{j} \leq\lfloor b\rfloor+\frac{x^{-}+\sum_{j \in N_{2}}\left(1-f_{j}\right) y_{j}}{1-f}
$$

- This is an equivalent inequality to

$$
\sum_{j \in N}\left(\left\lfloor\left(a_{j}\right)\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f} y_{j} \leq\lfloor b\rfloor+\frac{x^{-}}{1-f}\right.
$$

- Coefficient of y_{j}
- $\left\lfloor a_{j}\right\rfloor$ if $j \in N_{1}$
- $\left\lceil a_{j}\right\rceil-\frac{1-f_{j}}{1-f}$ if $j \in N_{2}$ (if $f_{j}>f$)

Gomory Mixed Integer Cut is a MIR Inequality

- Consider the set

$$
X^{=}=\left\{\left(x, y_{0}, y\right) \in \mathbb{R}_{+}^{2} \times \mathbb{Z} \times \mathbb{Z}_{+}^{|N|} \mid y_{0}+\sum_{j \in N} a_{j} y_{j}+x^{+}-x^{-}=b\right\}
$$

which is essentially the row of an LP tableau with y_{0} the basic variable and x^{+}, x^{-}the sum of the continuous variables with positive and negative coefficients.

- Relax the equality to an inequality and apply MIR

IE418 Integer Programming Simple Motivation

Proof.

$$
\begin{aligned}
y_{0}+\sum_{j \in N}\left\lfloor\left(a_{j}\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f}\right) y_{j} & \leq\lfloor b\rfloor+\frac{x^{-}}{1-f} \\
b-\sum_{j \in N} a_{j} y_{j}-x^{+}+x^{-}+\sum_{j \in N}\left(\left\lfloor a_{j}\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f}\right) y_{j} & \leq\lfloor b\rfloor+\frac{x^{-}}{1-f} \\
-b+\sum_{j \in N} a_{j} y_{j}+x^{+}-x^{-}-\sum_{j \in N}\left\lfloor\left(a_{j}\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f}\right) y_{j} & \geq-\lfloor b\rfloor-\frac{x^{-}}{1-f} \\
\sum_{j \in N} f_{j} y_{j}+x^{+}-x^{-}-\sum_{j \in N} \frac{\left(f_{j}-f\right)^{+}}{1-f} y_{j} & \geq f-\frac{x^{-}}{1-f} \\
\sum_{j \in N} f_{j} y_{j}+x^{+}+\frac{f}{1-f} x^{-}-\sum_{j \in N_{2}} \frac{f_{j}-f}{1-f} y_{j} & \geq f \\
\sum_{j \in N_{1}} f_{j} y_{j}+x^{+}+\frac{f}{1-f} x^{-}+\sum_{j \in N_{2}}\left(f_{j}-\frac{f_{j}-f}{1-f}\right) y_{j} & \geq f
\end{aligned}
$$

Paper on Web Site

- Lots of inequalities are special cases of this inequality: Network design problems, Mixed cover inequalities, weight inequalities, etc.
- There is lots of interesting work to do to try and develop a good implementation. In fact the paper describes ways to aggregate, substitute, complement, and separate in order to find good inequalities for general MIP

READ!

- [1]
- [2]

回 H. Marchand and L. Wolsey, Aggregation and mixed integer rounding to solve MIPs, Operations Research, 49 (2001), pp. 363-371.

园 M. W. P. Savelsbergh, Preprocessing and probing techniques for mixed integer programming problems, ORSA Journal on Computing, 6 (1994), pp. 445-454.

