
IE418: Integer Programming. Decomposition
Techniques.

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

20th April 2005

Jeff Linderoth IE418 Integer Programming

The Lagrangian Relaxation

The problem (IP) for now:

z∗ = max
x∈X
{cT x | Dx ≤ d}

X = {x ∈ Zn
+ | Ax ≤ b}

The constraints defining X are “nice” in the sense that we
can solve maxx∈X{cT x} effectively.

Maybe X is a network problem

Maybe X is a knapsack problem

Maybe X has an efficient combinatorial algorithm

Jeff Linderoth IE418 Integer Programming

Lagrangian Dual

Consider the problem (LR(u)) (for u ∈ <m
+)

z(u) = max
x∈X
{cT x + uT (d−Dx)}

x feasible to IP ⇒ x feasible to LR(u).
x feasible to IP, u ≥ 0 ⇒ cT x + uT (d−Dx) ≥ cT x
z(u) ≥ z∗ ∀u ≥ 0

Since z(u) provides an upper bound ∀u ≥ 0, for bound-based
algorithms, we would like for it to provide as tight a bound as
possible:

zLD = min
u≥0

z(u)

Jeff Linderoth IE418 Integer Programming

Strength of Lagrangian Relaxation

We’ll assume that X is bounded, so that it contains a finite
number of points S = {x1, x2, . . . xs}.

zLD = min
u≥0

z(u)

= min
u≥0

max
x∈X
{cT x + uT (d−Dx)}

= min
u≥0

max
s∈{1,2,...|S|}

{cT xs + uT (d−Dxs)}

= min
u≥0,η∈<

{η | η ≥ cT xs + uT (d−Dxs) ∀s ∈ S}

Take the LP Dual of the last problem

Jeff Linderoth IE418 Integer Programming

Strength of Lagrangian Relaxation

zLD = max
∑
s∈S

λs(c
T xs)

subject to ∑
s∈S

λs = 1∑
s∈S

λs(Dxs − d) ≤ 0

λs ≥ 0 ∀s ∈ S

Jeff Linderoth IE418 Integer Programming

Grouping Terms

zLD = max cT

(∑
s∈S

λsx
s

)
subject to ∑

s∈S

λs = 1

D

(∑
s∈S

λsx
s

)
≤ d

λs ≥ 0 ∀s ∈ S

x =
∑
s∈S

λsx
s,
∑
s∈S

λs = 1, λs ≥ 0 ∀s ∈ S

zLD = max{cT x | Dx ≤ d, x ∈ conv(X)}

Jeff Linderoth IE418 Integer Programming

Things We Learned

A Fundamental Concept

Solving the Lagrangian Dual is equivalent to finding a convex
combination of points in X that also satisfy the complicating
constraint Dx ≤ d

zLD = minu≥0 z(u)

z(u) = maxs∈{1,2,...|S|}{cT xs + uT (d−Dxs)}
z(u) is the maximum of a number of a number of linear
functions, it is therefore a piecewise linear convex function.

You can solve these problems using the subgradient method

For those of you in Stochastic Programming – this should
look slightly familiar

Jeff Linderoth IE418 Integer Programming

Subgradient Algorithm

The idea of the subgradient algorithm is to first choose a u,
then evaluate z(u) and get a direction of improvement.

Here is a basic subgradient algorithm for solving LD:
1 Choose initial Lagrange multipliers u0 ≥ 0 and set t = 0.
2 Solve the Lagrangian subproblem LR(u).
3 Calculate the current violation of the complicating constraints

s = d−Dx.
4 Set ut+1 ← ut − µt s

‖s‖ where µt is the chosen step size.
5 Set t← t + 1 and go to step 2.

This algorithm is guaranteed to converge to the optimal
solution as long as {µt}∞t=0 → 0 and

∑∞
t=0 µt =∞

Convergence is slow

Jeff Linderoth IE418 Integer Programming

Comparing LP relaxation to LR

zIP
def
= max{cT x | Ax ≤ b, Dx ≤ d, x ∈ Zn

+}
Dx ≤ d are the complicating constraints

X = {x ∈ Zn
+ | Ax ≤ b}

D = {x ∈ Zn
+ | Dx ≤ d}

zLD
def
= minu≥0 maxx∈X{cT x + uT (d−Dx)}

zIP
def
= max{cT x | x ∈ conv(X ∩ D)}

zLPCONV
def
= max{cT x Dx ≤ d, x ∈ conv(X)}

Our Key Theorem

zLD = zLPCONV

Jeff Linderoth IE418 Integer Programming

What About zLP?

R(X) = {x ∈ Rn
+ | Ax ≤ b}

zLP = max{cT x | Dx ≤ d, x ∈ R(X)}
conv(X) ⊆ R(X)

⇒ zLP ≥ zLPCONV = zLD

Two key points

Bound obtained from solving Lagrangian Dual is sure to be
at least as tight as that from solving the LP relaxation

If R(X) = conv(X), i.e. if X has all integer extreme
points, then zLP = zLD: The bounds are the same!

Jeff Linderoth IE418 Integer Programming

Dantzig-Wolfe Decomposition

A way to compute zLPCONV directly.
Assume that X is bounded (just for simplicity), with extreme
points T = {p1, p2, . . . p|T |}
conv(X) ={
x ∈ Rn | x =

∑
t∈T λtpt,

∑
t∈T λt = 1, λt ≥ 0 ∀t ∈ T

}

zLPCONV = max cT x

subject to

Dx ≤ d

x ∈ conv(X)

zDW
def
= zLPCONV = max cT

(∑
t∈T

λtpt

)

subject to

D

(∑
t∈T

λtpt

)
≤ d∑

t∈T

λt = 1

λt ≥ 0 ∀t ∈ T
Advantage: Tight reformulation: zDW ≤ zLP

Disadvantage: How to solve it.

Jeff Linderoth IE418 Integer Programming

Branch-and-Price

[1]

[2]

C. Barnhart, E. L. Johnson, G. L. Nemhauser,
M. W. P. Savelsbergh, and P. H. Vance, Branch and
price: Column generation for solving huge integer programs,
Operations Research, 46 (1998), pp. 316–329.

F. Vanderbeck and M. Savelsbergh, A generic view at
the Dantzig-Wolfe decomposition approach in mixed integer
programming, Operations Research Letters, (2005).
Submitted.

Jeff Linderoth IE418 Integer Programming

Benders’ Decomposition

Up until now, we have looked at the
idea of complicating constraints.

Benders’ decomposition is based on the
notion of complicating variables.

Suppose we have the MIP

Note that for a fixed x, this is a linear
program.

Consider the fixed-charge network flow
problem: if the set of open arcs is
fixed, the problem becomes easy.

max cT x + hT y

subject to

Ax + Gy ≤ b

x ∈ Zn
+

y ∈ Rp
+

Jeff Linderoth IE418 Integer Programming

Formulating Benders’ Decomposition

First, assume x is fixed to obtain the resulting linear program

zLP (x) = max{hy | Gy ≤ b−Ax}

and its dual

min{u(b−Ax) | uG ≥ h, u ∈ <m
+}

Assuming the dual polyhedron is nonempty and bounded, MIP
can be restated as

z = max
x∈Zn

+

(
cx + min

i∈1,...,T
ui(b−Ax)

)
where {ui}Ti=1 are the extreme points of the dual polyhedron.

Jeff Linderoth IE418 Integer Programming

Formulating Benders’ Decomposition (cont.)

As before, we can reformulate this as

z = max{η | η ≤ ui(b−Ax), i ∈ 1, . . . , T, x ∈ Zn
+}

We can again in theory solve this formulation using constraint
generation.

The main use of this technique is when A is block
decomposable and the resulting IP is much easier than the
original.

There are also various relaxations to be obtained from this
formulation.

Jeff Linderoth IE418 Integer Programming

