The Lagrangian Relaxation

|E418: Integer Programming. Decomposition The problem (IP) for now:

Techniques.

2* = max{c'z | Dz < d}
reX

X={zxeZ} | Az < b}
The constraints defining X are “nice” in the sense that we
can solve max,cx{clx} effectively.
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Maybe X is a network problem
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Maybe X is a knapsack problem

Maybe X has an efficient combinatorial algorithm
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Lagrangian Dual Strength of Lagrangian Relaxation
o Consider the problem (LR(w)) (for u € RT) e We'll assume that X is bounded, so that it contains a finite

number of points S = {z!, 22,...2°}.
2(u) = max{c’z + u’ (d — Dz)}
zeX
= min
ZLD uZIO z(u)
e x feasible to IP = x feasible to LR(u). . . T T(q
o x feasible to IP, u >0 = Tz +uT(d — Dx) > 'z - umzlg 215)(({0 z+u (d - Dz)}

° z(u) >2*Vu >0 = min max {CTxS + UT(d - st)}
u>0 s€{1,2,...|S|}

=  min {n|n>c2®+ul(d— Dz®) Vs € S}

@ Since z(u) provides an upper bound Yu > 0, for bound-based u>0mER
algorithms, we would like for it to provide as tight a bound as
possible:

zLp = min z(u)

@ Take the LP Dual of the last problem
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Strength of Lagrangian Relaxation

ZLD = maxZ)\S(chs)
seSs

subject to

YA =1

seS
> A(Dz*—d) < 0
seS
As > 0 Vse S
Jeff Linderoth |E418 Integer Programming

Things We Learned

A Fundamental Concept

Solving the Lagrangian Dual is equivalent to finding a convex
combination of points in X that also satisfy the complicating
constraint Dx < d

@ ZI.pD = minuzo z(u)

o z(u) = maxseq1o sy’ 2° +u’(d — Da*)}

@ z(u) is the maximum of a number of a number of linear
functions, it is therefore a piecewise linear convex function.

@ You can solve these problems using the subgradient method

@ For those of you in Stochastic Programming — this should
look slightly familiar

Jeff Linderoth IE418 Integer Programming

Grouping Terms

21p = maxcl (Z )\sxs>

ses
subject to

ZAS:1

seS

D(Z)\st> < d
sesS

As

Y]

0 Vs e S

r=> A2®Y A=1A>0Vs€S

s€S seS
zrp = max{c'z | Dx < d,z € conv(X)}
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Subgradient Algorithm

@ The idea of the subgradient algorithm is to first choose a w,
then evaluate z(u) and get a direction of improvement.
@ Here is a basic subgradient algorithm for solving LD:

@ Choose initial Lagrange multipliers ©® > 0 and set t = 0.

@ Solve the Lagrangian subproblem LR(u).

© Calculate the current violation of the complicating constraints
s=d— Dzx.

Q Set ult! — ut — ,utﬁ where ! is the chosen step size.

© Sett <« t+1and go to step 2.

e This algorithm is guaranteed to converge to the optimal
solution as long as {pf}32) — 0 and Y ;%) u! = o0

e Convergence is slow

Jeff Linderoth IE418 Integer Programming



Comparing LP relaxation to LR

def

°
@ Dx < d are the complicating constraints

o X ={2xecZ} | Ax < b}

e D={xcZ} | Dx<d}

o zrp min,>o maxzex{c! = +ul(d — Dx)}
o zip Y max{clz | z € conv(X N D)}

o zrpcony € max{c'z Dz <d,z € conv(X)}

Our Key Theorem

LD — ZLPCONV m
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Dantzig-Wolfe Decomposition

@ A way to compute z;,pcony directly.

@ Assume that X is bounded (just for simplicity), with extreme
points T = {pl,pg, .. .p|T|}

e conv(X) =
{a: e R" ’ xr = ZtET )\tpt,zteT At = 17)\t >0Vte T}

def T
zpw S zrpcony = maxc’ (Y iy

teT
ZLPCONV = machx .
subject to
subject to
D A <d
Dz <d <Z tpt>
teT

What About zyp?

R(X)={z e R} | Az < b}
zrp = max{c'z | Dz < d,» € R(X)}
conv(X) C R(X)

= ZLp 2 ZLPCONV = ZLD

Bound obtained from solving Lagrangian Dual is sure to be
at least as tight as that from solving the LP relaxation

e If R(X) = conv(X), i.e. if X has all integer extreme
points, then zrp = zr.p: The bounds are the same!
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Branch-and-Price

° [1]
° [2]
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Operations Research, 46 (1998), pp. 316-329.
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the Dantzig-Wolfe decomposition approach in mixed integer
programming, Operations Research Letters, (2005).
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Benders’ Decomposition Formulating Benders’” Decomposition

@ First, assume x is fixed to obtain the resulting linear program

@ Up until now, we have looked at the

idea of complicating constraints. zpp(r) = max{hy | Gy < b — Az}

@ Benders’ decomposition is based on the max ¢! 2 + hTy and its dual
notion of complicating variables.
subject to ; m
@ Suppose we have the MIP ) min{u(b — Az) | uG > h,u € R}
© Note that for a fixed z, this is a linear Az +Gy < b e Assuming the dual polyhedron is nonempty and bounded, MIP
program. xr € Zf can be restated as
@ Consider the fixed-charge network flow y € RP
problem: if the set of open arcs is * 2 = max (cgj + min fu,l(b — Am))
fixed, the problem becomes easy. wEZY i€l,..,T
where {u’ ;TF:I are the extreme points of the dual polyhedron.
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Formulating Benders' Decomposition (cont.)

@ As before, we can reformulate this as
z=max{n|n<u'(b—Azx),i€l,..., T,z €Z}

@ We can again in theory solve this formulation using constraint
generation.

@ The main use of this technique is when A is block
decomposable and the resulting IP is much easier than the
original.

@ There are also various relaxations to be obtained from this
formulation.
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