IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

24th January 2005

Jeff Linderoth	IE418 Integer Programming
Review Combinatorial Optimization Problems Special Ordered Sets "Algorithmic" Modeling	

Review

- Name two reasons why anyone would want to "program with integers"?
- What is the knapsack problem?
- (MIP): $\max\{c^T x + h^T y \mid Ax + Gy \le b, x \in \mathbb{Z}^n_+, y \in \mathbb{R}^p_+\}$
 - What is Mixed 0-1 Programming?
 - What is Pure Integer Programming
 - What is Binary Programming?
 - What is 0-1 Programming?
- What is \mathbb{Q}^n_+ ?
- What is my son's name?

Outline

- Combinatorial Optimization Problems
 - Set {Packing, Covering, Partitioning}
 - TSP
- Special Ordered Sets
 - Models of Choice—"Pick one!"
 - Piecewise Linear Functions
- Algorithimic Modeling
 - The Bag of Tricks
 - A couple examples

	Jeff Linderoth	
Combinatorial Optimiz Specia "Algorith	Review ation Problems al Ordered Sets nmic" Modeling	

IE418 Integer Programming Set {Pack,Cover,Partition}ing Traveling Salesman

Selecting from a Set

- We can use constraints of the form $\sum_{j \in T} x_j \ge 1$ to represent that at least one item should be chosen from a set T.
 - Similarly, we can also model that at most one or exactly one item should be chosen.
- <u>Example</u>: Set covering problem
- If A in a 0-1 matrix, then a set covering problem is any problem of the form

$$\begin{array}{ll} \min & c^T x \\ s.t. & Ax \geq e^1 \\ & x_j \in \{0,1\} \quad \forall j \end{array}$$

• Set Packing: $Ax \leq e$

 $^1\mathrm{lt}$ is common to denote the vector of 1's as e

Review Combinatorial Optimization Problems Special Ordered Sets "Algorithmic" Modeling

Set {Pack,Cover,Partition}ing Traveling Salesman

COP—Set{Cover, Pack, Partition}ing

- A combinatorial optimization problem CP = (N, F) consists of
 - A finite ground set *N*,
 - A set $\mathcal{F} \subseteq 2^N$ of feasible solutions, and
 - A cost function \boldsymbol{c}

- Each row of ${\cal A}$ represents an item from ${\cal N}$
- Each column A_j represents a subset N_j ∈ 𝔅 of the items.
- Each variable x_j represents selecting subset N_j .
- The constraints (for covering and partitioning) say that
 ∪_{j|x_j=1}N_j = N.
- In other words, each item must appear in at least, (or exactly one selected subset.

Jeff Linderoth	IE418 Integer Programming
Review Combinatorial Optimization Problems Special Ordered Sets "Algorithmic" Modeling	Set {Pack,Cover,Partition}ing Traveling Salesman

Vehicle Routing

	x_1	x_2	x_3	•••		
Customer 1 :	1	0	0	÷	=	1
Customer 2 :	0	1	0	÷	=	1
Customer 3 :	0	1	1	÷	=	1
Customer 4 :	0	1	0	÷	=	1
Customer 5 :	1	0	1		=	1

- This is a very flexible modeling trick
- You can list all feasible routes, allowing you to handle "weird" constraints like time windows, strange precedence rules, nonlinear cost functions, etc.

Set {Pack,Cover,Partition}ing Traveling Salesman

The Farmer's Daughter

- This is *The Most Famous Problem in Combinatorial Optimization!*
- A traveling salesman must visit all his cities at minimum cost.
- Given directed (complete) graph with node set N.
 (G = (N, N × N))
- Given costs c_{ij} of traveling from city i to city j
- Find a minimum cost Hamiltonian Cycle in G
- Variables: $x_{ij} = 1$ if and only if salesman goes from city i to city j

Jeff Linderoth	IE418 Integer Programming
Review Combinatorial Optimization Problems Special Ordered Sets "Algorithmic" Modeling	Set {Pack,Cover,Partition}ing Traveling Salesman

TSP (cont.)

$$\min\sum_{i\in N}\sum_{j\in N}c_{ij}x_{ij}$$

$$\sum_{i \in N} x_{ij} = 1 \quad \forall j \in N \quad \text{Enter Each City}$$
$$\sum_{j \in N} x_{ij} = 1 \quad \forall i \in N \quad \text{Leave Each City}$$
$$x_{ij} = 1 \quad \forall i \in N \quad \text{Leave Each City}$$

$$x_{ij} \in \{0,1\} \quad \forall i \in N, \forall j \in N$$

Subtour elimination constraint:

("No Beaming")

("No Beaming"

$$\sum_{i \in S} \sum_{j \notin S} x_{ij} \ge 1 \quad \forall S \subseteq N, 2 \le |S| \le |N| - 2$$

Alternatively:

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1 \quad \forall S \subseteq N, 2 \le |S| \le |N| - 2$$

Set {Pack,Cover,Partition}ing Traveling Salesman

IE418 Integer Programming

Traveling Salesman

TSP Trivia Time!

What is This Number?

 $\begin{array}{c} 101851798816724304313422284420468908052573419683296\\ 8125318070224677190649881668353091698688. \end{array}$

- Is this...
 - a) The number of times an undergraduate student asked me where room 355 was this week?
 - b) The number of subatomic particles in the universe?
 - c) The number of subtour elimination constraints when |N| = 299.
 - d) All of the above?
 - e) None of the above?

Jeff Linderoth	
Review Combinatorial Optimization Problems Special Ordered Sets "Alexation in Madelian	
Algorithmic Wodeling	

Answer Time

- The answer is (e). (a)–(c) are all too small (as far as I know)
 :-). (It is (c), for |N| = 300).
- "Exponential" is **really** big.
- Yet people have solved TSP's with $\left|N\right|>16,000!$
- You will learn how to solve these problems too!
- The "trick" is to only add the subset of constraints that are necessary to prove optimality.
 - This is a trick known as branch-and-cut, and you will learn lots about branch-and-cut in this course.

Modeling a Restricted Set of Values

• We may want variable x to only take on values in the set $\{a_1, \ldots, a_m\}$.

SOS1

SOS2

• We introduce m binary variables $y_j, j = 1, \ldots, m$ and the constraints

$$x = \sum_{j=1}^{m} a_j y_j,$$
$$\sum_{j=1}^{m} y_j = 1,$$
$$y_j \in \{0, 1\}$$

The set of variables {y₁, y₂, ... y_m} is called a special ordered set (SOS) of variables.

Jeff Linderoth	IE418 Integer Programming
Review Combinatorial Optimization Problems Special Ordered Sets "Algorithmic" Modeling	SOS1 SOS2

Example—Building a warehouse

- Suppose we are modeling a facility location problem in which we must decide on the size of a warehouse to build.
- The choices of sizes and their associated cost are shown below:

Size	Cost
10	100
20	180
40	320
60	450
80	600

Warehouse sizes and costs

Warehouse Modeling

• Using binary decision variables x_1, x_2, \ldots, x_5 , we can model the cost of building the warehouse as

SOS1

SOS2

 $\mathsf{COST} \equiv 100x_1 + 180x_2 + 320x_3 + 450x_4 + 600x_5.$

• The warehouse will have size

 $\mathsf{SIZE} \equiv 10x_1 + 20x_2 + 40x_3 + 60x_4 + 80x_5,$

• and we have the SOS constraint

 $x_1 + x_2 + x_3 + x_4 + x_5 = 1.$

Jeff Linderoth	IE418 Integer Programming
Review Combinatorial Optimization Problems Special Ordered Sets "Algorithmic" Modeling	SOS1 SOS2

Piecewise Linear Cost Functions

• We can use binary variables to model $f(a_6)$ arbitrary $f(a_5)$ piecewise linear $f(a_{5})$ functions. f(x)The function is $f(a_3)$ specified by ordered pairs $f(a_2)$ $(a_i, f(a_i))$ • We have a binary variable y_i , which $f(a_1)$ indicates whether a_2 a_3 *a*₄ *x* a_5 a_6 a_1

 $a_i \le x \le a_{i+1}.$

Minimizing Piecewise Linear Cost Functions

SOS2

- To evaluate the function, we will take linear combinations $\sum_{i=1}^{k} \lambda_i f(a_i)$ of the given functions values.
- This only works if the only two nonzero λ'_is are the ones corresponding to the endpoints of the interval in which x lies.

If $y_j = 1$, then $\lambda_i = 0, \; \forall i \neq j, j{+}1.$

$$egin{array}{rll} \min \sum_{i=1}^k \lambda_i f(a_i) \ {
m s.t.} \sum_{i=1}^k \lambda_i &=& 1, \ \lambda_1 &\leq& y_1, \ \lambda_1 &\leq& y_{i-1}+y_i, \ i=2,\ldots,k-1, \ \lambda_k &\leq& y_{k-1}, \ \lambda_k &\leq& y_{k-1}, \ \lambda_k &\leq& y_{k-1}, \ \sum_{i=1}^{k-1} y_i &=& 1, \ \lambda_i &\geq& 0, \ y_i &\in& \{0,1\}. \end{array}$$

Jeff Linderoth	IE418 Integer Programming
Review Combinatorial Optimization Problems Special Ordered Sets "Algorithmic" Modeling	SOS1 SOS2

SOS2

The Key Idea!

• A "better" formulation involves the use of special ordered sets of type 2

SOS2

A set of variables of which at most two can be positive. If two are positive, they must be adjacent in the set.

- The adjacency conditions of SOS2 are enforced by the solution algorithm
- (All) commercial solvers allow you to specify SOS2

Modeling Disjunctive Constraints

- We are given two constraints $a^T x \ge b$ and $c^T x \ge d$ with nonnegative coefficients.
- Instead of insisting both constraints be satisfied, we want at least one of the two constraints to be satisfied.
- To model this, we define a binary variable y and impose

$$egin{array}{rcl} a^Tx&\geq yb,\ c^Tx&\geq (1-y)d,\ y&\in \{0,1\}. \end{array}$$

 $\bullet\,$ More generally, we can impose that at least k out of m constraints be satisfied with

$$(a'_i)^T x \geq b_i y_i, \quad i \in \{1, 2, \dots m\}$$

 $\sum_{i=1}^m y_i \geq k,$
 $y_i \in \{0, 1\}$

The Bag of Tricks

- There are lots of things you can model with binary variables:
- Indicator variables (Positivity of variables)
 - Limiting the Number of Positive Variables
 - "Fixed Charge" problems
 - Minimum production level
- Indicator variables (Validity of constraints)
 - Either-or
 - If-then
 - k out of n

Review Combinatorial Optimization Problems Special Ordered Sets "Algorithmic" Modeling Disjunctions The Bag of Tricks Example #1 Example #2: PPP

The Bag of Tricks

- Special Ordered Sets
- Nonconvex regions
- Economies of Scale
- Discrete Capacity Extensions
- Maximax or Minimin
- The problem is that sometimes to see the modeling "trick" is difficult. For example...
- Use a 0-1 variable δ to indicate whether *or not* the constraint $2x_1 + 3x_2 \le 1$ is satisfied.
 - x_1, x_2 are nonnegative continuous variables that are ≤ 1
- $\delta = 1 \Leftrightarrow 2x_1 + 3x_2 \le 1$

Jeff Linderoth	IE418 Integer Programming
Review	Disjunctions
Combinatorial Optimization Problems	The Bag of Tricks
Special Ordered Sets	Example #1
"Algorithmic" Modeling	Example #2: PPP

The Slide of Tricks. Indicator Variables...

•
$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \leq b$$

• $\sum_{j \in N} a_j x_j + M\delta \leq M + b$
• $\sum_{j \in N} a_j x_j \leq b \Rightarrow \delta = 1$
• $\sum_{j \in N} a_j x_j - (m - \epsilon)\delta \geq b + \epsilon$
• $\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \geq b$
• $\sum_{j \in N} a_j x_j + m\delta \geq m + b$
• $\sum_{j \in N} a_j x_j \geq b \Rightarrow \delta = 1$
• $\sum_{j \in N} a_j x_j - (M + \epsilon)\delta \leq b - \epsilon$

Definitions

- δ : Indicator variable $(\delta \in \{0, 1\}).$
- M: Upper bound on $\sum_{j \in N} a_j x_j b$
- m: Lower bound on $\sum_{j \in N} a_j x_j b$
- e: Small tolerance beyond which we regard the constraint as haven been broken.
 - If $a_j \in \mathbb{Z}$, $x_j \in \mathbb{Z}$, then we can take $\epsilon = 1$.

NI)

The Bag of Tricks Example #1 Example #2: PPP

Modeling Trick #1

- Indicating Constraint (Non)violation
- Suppose we wish to indicate whether or not an inequality $\sum_{i \in N} a_j x_j \leq b$ holds by means of an indicator variable δ .

$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \le b$$

 This can be represented by the constraint • >

$$\sum_{j \in N} a_j x_j + M\delta \le M + b$$

ReviewDisjunctionsCombinatorial Optimization ProblemsThe Bag of TricksSpecial Ordered SetsExample #1"Algorithmic" ModelingExample #2: PPP	

Trick #1... The Logic

$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \le b \Leftrightarrow \sum_{j \in N} a_j x_j + M\delta \le M + b$$

• (Thinking)...

- $\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j b \leq 0$ $1 \delta = 0 \Rightarrow \sum_{j \in N} a_j x_j b \leq 0$ $\sum_{j \in N} a_j x_j b \leq M(1 \delta)$
- Does it work?
 - $\delta = \mathbf{0} \Rightarrow \sum_{j \in N} a_j x_j b \le M$
 - (true by definition of M)
 - $\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j b \leq 0$

Modeling Trick #2

$$\sum_{j \in N} a_j x_j \le b \Rightarrow \delta = 1$$

- $\delta = \mathbf{0} \Rightarrow \sum_{j \in N} a_j x_j \not\leq b$
- $\delta = \mathbf{0} \Rightarrow \sum_{j \in N} a_j x_j > b$
- $\delta = 0 \Rightarrow \sum_{j \in N} a_j x_j \ge b + \epsilon$ • If a_j, x_j are integer, we can choose $\epsilon = 1$
- Model as $\sum_{j \in N} a_j x_j (m \epsilon) \delta \ge b + \epsilon$
 - m is a lower bound for the expression $\sum_{j \in N} a_j x_j b$

Jeff Linderoth	IE418 Integer Programming
Review Combinatorial Optimization Problems Special Ordered Sets	Disjunctions The Bag of Tricks Example #1
"Algorithmic" Modeling	Example #2: PPP

Some Last Modeling Tricks

$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \ge b$$

• Model as $\sum_{j \in N} a_j x_j + m \delta \ge m + b$

 $\sum_{j \in N} a_j x_j \ge b \Rightarrow \delta = 1$

- Model as $\sum_{j \in N} a_j x_j (M + \epsilon) \delta \le b \epsilon$
- You can obtain these by just transforming the constraints to ≤ form and using the first two tricks.

Back To Our Example...

- Use a 0-1 variable δ to indicate whether *or not* the constraint $2x_1 + 3x_2 \le 1$ is satisfied.
 - x_1, x_2 are nonnegative continuous variables that cannot exceed 1.
- $\delta = 1 \Leftrightarrow 2x_1 + 3x_2 \le 1$
- M: Upper Bound on $2x_1 + 3x_2 1$. 4 works
- m: Lower Bound on $2x_1 + 3x_2 1$. -1 works.
- *\epsilon* : 0.1

Jeff Linderoth	IE418 Integer Programming
Review	Disjunctions
Combinatorial Optimization Problems	The Bag of Tricks
Special Ordered Sets	Example #1
"Algorithmic" Modeling	Example #2: PPP

Example, Cont.

• (
$$\Rightarrow$$
) Recall the trick.
• $\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \le b \Leftrightarrow \sum_{j \in N} a_j x_j + M\delta \le M + b$
• $2x_1 + 3x_2 + 4\delta \le 5$
• (\Leftarrow). Recall the trick.
• $\sum_{j \in N} a_j x_j \le b \Rightarrow \delta = 1 \Leftrightarrow \sum_{j \in N} a_j x_j - (m - \epsilon)\delta \ge b + \epsilon$
• $2x_1 + 3x_2 + 1.1\delta \ge 1.1$

$$\begin{array}{rcl} 2x_1 + 3x_2 + 4\delta &\leq & 5\\ 2x_1 + 3x_2 + 1.1\delta &\geq & 1.1 \end{array}$$

A More Realistic Example

- PPP—Production Planning Problem. (A simple linear program).
- An engineering plant can produce five types of products: *p*₁, *p*₂, ..., *p*₅ by using two production processes: grinding and drilling. Each product requires the following number of hours of each process, and contributes the following amount (in hundreds of dollars) to the net total profit.

	p_1	p_2	p_3	p_4	p_5
Grinding	12	20	0	25	15
Drilling	10	8	16	0	0
Profit	55	60	35	40	20

PPP – More Info

- Each unit of each product take 20 manhours for final assembly.
- The factory has three grinding machines and two drilling machines.
- The factory works a six day week with two shifts of 8 hours/day. Eight workers are employed in assembly, each working one shift per day.

PPP

maximize

$$55x_1 + 60x_2 + 35x_3 + 40x_4 + 20x_5$$
 (Profit/week)

subject to

$12x_1 + 20x_2 + 0x_3 + 25x_4 + 15x_5$	\leq	288	(Grinding)
$10x_1 + 8x_2 + 16x_3 + 0x_4 + 0x_5$	\leq	192	(Drilling)
$20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5$	\leq	384	Final Assembly
x_i	\geq	0	$orall i=1,2,\dots 5$

Jeff Linderoth	IE418 Integer Programming
Review	Disjunctions
Combinatorial Optimization Problems	The Bag of Tricks
Special Ordered Sets	Example #1
"Algorithmic" Modeling	Example #2: PPP

Another PPP Modeling Example

- Let's model the following situation.
 - If we manufacture P1 or P2 (or both), then at least one of P3, P4, P5 must also be manufactured.
- We first need an indicator variable z_j that indicate when each of the x_j > 0.
 - How do we model $x_j > 0 \Rightarrow z_j = 1$?.
 - Hint: This is equivalent to $z_j = 0 \Rightarrow x_j = 0$

Modeling the Logic

Answer: $x_j \leq M z_j$

- Given that we have included the constraints $x_j \leq M z_j$, we'd like to model the following implication:
 - $z_1 + z_2 \ge 1 \Rightarrow z_3 + z_4 + z_5 \ge 1$
- Can you just "see" the answer?
- I can't. So let's try our "formulaic" approach.
- Think of it in two steps
 - $z_1 + z_2 \ge 1 \Rightarrow \delta = 1$
 - $\delta = 1 \Rightarrow z_3 + z_4 + z_5 \ge 1.$

Jeff Linderoth	IE418 Integer Programming
Review	Disjunctions
Combinatorial Optimization Problems	The Bag of Tricks
Special Ordered Sets	Example #1
"Algorithmic" Modeling	Example #2: PPP

Look up the Tricks

- First we model the following:
 - $z_1 + z_2 \ge 1 \Rightarrow \delta = 1$
- The formula from the bag o' tricks
- $\sum_{j \in N} a_j x_j \ge b \Rightarrow \delta = 1 \Leftrightarrow \sum_{j \in N} a_j x_j (M + \epsilon) \delta \le b \epsilon$
- M : Upper Bound on $\sum_{j \in N} a_j z_j b$
 - M = 1 in this case. $(z_1 \le 1, z_2 \le 1, b = 1)$.
- ϵ : "Tolerance Level" indicating the minimum about by which the constraint can be violated.
 - $\epsilon = 1$ in this case!
 - If the constraint is going to be violated, then it will be violated by at least one.

Modeling $z_1 + z_2 \ge 1 \Rightarrow \delta = 1$, Cont.

- Just plug in the formula $\sum_{j \in N} a_j x_j (M + \epsilon)\delta \le b \epsilon$ • $z_1 + z_2 - 2\delta \le 0$
- Does this do what we want?

z_1	z_2	δ
0	0	\geq 0
0	1	$\geq 1/2 (\Rightarrow = 1)$
1	0	$\geq 1/2 (\Rightarrow = 1)$
1	1	≥ 1

Jeff Linderoth	IE418 Integer Programming
Review	Disjunctions
Combinatorial Optimization Problems	The Bag of Tricks
Special Ordered Sets	Example #1
"Algorithmic" Modeling	Example #2: PPP

Second Part

- Want to model the following:
 - $\delta = 1 \Rightarrow z_3 + z_4 + z_5 \ge 1$.
- The formula from the bag o' tricks

•
$$\delta = 1 \Rightarrow \sum_{j \in N} a_j x_j \ge b \Leftrightarrow \sum_{j \in N} a_j x_j + m\delta \ge m + b$$

- m: lower bound on $\sum_{j \in N} a_j x_j b$.
 - m = -1. $(z_1 \ge 0, z_2 \ge 0, b = 1)$.
- Plug in the formula:
 - $z_3 + z_4 + z_5 \delta \ge 0$
- It works! (Check for $\delta = 0, \delta = 1$).

PPP, Make 1 or 2 \Rightarrow make 3, 4, or 5 maximize

$$55x_1 + 60x_2 + 35x_3 + 40x_4 + 20x_5$$
 (Profit/week)

subject to

$$\begin{array}{rcl} 12x_1 + 20x_2 + 0x_3 + 25x_4 + 15x_5 &\leq 288\\ 10x_1 + 8x_2 + 16x_3 + 0x_4 + 0x_5 &\leq 192\\ 20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 &\leq 384\\ & x_i &\leq M_i z_i \quad \forall i = 1, 2, \dots 5\\ & z_1 + z_2 - 2\delta &\leq 0\\ & z_3 + z_4 + z_5 - \delta &\geq 0\\ & x_i &\geq 0 \quad \forall i = 1, 2, \dots 5\\ & z_i &\in \{0, 1\} \forall i = 1, 2, \dots 5\\ & \delta &\in \{0, 1\} \end{array}$$

Jeff Linderoth	IE418 Integer Programming
Review	Disjunctions
Combinatorial Optimization Problems	The Bag of Tricks
Special Ordered Sets	Example #1
"Algorithmic" Modeling	Example #2: PPP

Cool Things You Can Now Do

- Either constraint 1 or constraint 2 must hold
 - Create indicators δ_1, δ_2 , then $\delta_1 + \delta_2 \geq 1$
- $\bullet\,$ At least one constraint of all the constraints in M should hold
 - $\sum_{i \in M} \delta_i \geq 1$
- At least k of the constraints in M must hold
 - $\sum_{i \in M} \delta_i \ge k$
- If x, then y
 - $\delta_y \ge \delta_x$

Review Combinatorial Optimization Problems Special Ordered Sets "Algorithmic" Modeling Disjunctions The Bag of Tricks Example #1 Example #2: PPP

That's All Folks!

- That's it for modeling.
- You should have read N&W I.1.1 by now.
- Those of you who want to get a jump start on the homeworks can consider doing problems
 - ???
 - ???

Jeff Linderoth IE418 Integer Programming