IE418: Integer Programming

Jeff Linderoth
Department of Industrial and Systems Engineering
Lehigh University

24th January 2005

Review

- Name two reasons why anyone would want to "program with integers"?
- What is the knapsack problem?
- (MIP): $\max \left\{c^{T} x+h^{T} y \mid A x+G y \leq b, x \in \mathbb{Z}_{+}^{n}, y \in \mathbb{R}_{+}^{p}\right\}$
- What is Mixed 0-1 Programming?
- What is Pure Integer Programming
- What is Binary Programming?
- What is 0-1 Programming?
- What is \mathbb{Q}_{+}^{n} ?
- What is my son's name?

Outline

- Combinatorial Optimization Problems
- Set \{Packing, Covering, Partitioning\}
- TSP
- Special Ordered Sets
- Models of Choice-"Pick one!"
- Piecewise Linear Functions
- Algorithimic Modeling
- The Bag of Tricks
- A couple examples

IE418 Integer Programming
Set \{Pack, Cover,Partition\}ing Traveling Salesman

Selecting from a Set

- We can use constraints of the form $\sum_{j \in T} x_{j} \geq 1$ to represent that at least one item should be chosen from a set T.
- Similarly, we can also model that at most one or exactly one item should be chosen.
- Example: Set covering problem
- If A in a 0-1 matrix, then a set covering problem is any problem of the form

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & A x \geq e^{1} \\
& x_{j} \in\{0,1\} \quad \forall j
\end{array}
$$

- Set Packing: $A x \leq e$
- Set Partitioning: $A x=e$

[^0]
COP—Set\{Cover, Pack, Partition\}ing

- A combinatorial optimization problem
$C P=(N, \mathcal{F})$ consists of
- A finite ground set N,
- A set $\mathcal{F} \subseteq 2^{N}$ of feasible solutions, and
- A cost function c
- Each row of A represents an item from N
- Each column A_{j} represents a subset $N_{j} \in \mathcal{F}$ of the items.
- Each variable x_{j} represents selecting subset N_{j}.
- The constraints (for covering and partitioning) say that $\cup_{\left\{j \mid x_{j}=1\right\}} N_{j}=N$.
- In other words, each item must appear in at least, (or exactly one selected subset.

IE418 Integer Programming
Set \{Pack, Cover, Partition\}ing Traveling Salesman

Vehicle Routing

	x_{1}	x_{2}	x_{3}	\ldots	
Customer 1:	1	0	0	\vdots	$=$
Customer 2 :	0	1	0	\vdots	$=1$
Customer 3:	0	1	1	\vdots	$=1$
Customer 4:	0	1	0	\vdots	$=1$
Customer 5:	1	0	1	\vdots	$=1$

- This is a very flexible modeling trick
- You can list all feasible routes, allowing you to handle "weird" constraints like time windows, strange precedence rules, nonlinear cost functions, etc.

The Farmer's Daughter

- This is The Most Famous Problem in Combinatorial Optimization!
- A traveling salesman must visit all his cities at minimum cost.
- Given directed (complete) graph with node set N. $(G=(N, N \times N))$
- Given costs $c_{i j}$ of traveling from city i to city j
- Find a minimum cost Hamiltonian Cycle in G
- Variables: $x_{i j}=1$ if and only if salesman goes from city i to city j

TSP (cont.)

$$
\begin{aligned}
& \min \sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j} \\
\sum_{i \in N} x_{i j}= & 1 \quad \forall j \in N \quad \text { Enter Each City } \\
\sum_{j \in N} x_{i j}= & 1 \quad \forall i \in N \quad \text { Leave Each City } \\
x_{i j} \in & \{0,1\} \quad \forall i \in N, \forall j \in N
\end{aligned}
$$

("No Beaming")

$$
\sum_{i \in S} \sum_{j \notin S} x_{i j} \geq 1 \quad \forall S \subseteq N, 2 \leq|S| \leq|N|-2
$$

Alternatively:
("No Beaming")

$$
\sum_{i \in S} \sum_{j \in S} x_{i j} \leq|S|-1 \quad \forall S \subseteq N, 2 \leq|S| \leq|N|-2
$$

TSP Trivia Time!

What is This Number?

101851798816724304313422284420468908052573419683296
8125318070224677190649881668353091698688.

- Is this...
a) The number of times an undergraduate student asked me where room 355 was this week?
b) The number of subatomic particles in the universe?
c) The number of subtour elimination constraints when $|N|=299$.
d) All of the above?
e) None of the above?

Answer Time

- The answer is (e). (a)-(c) are all too small (as far as I know) $:-$). (It is (c), for $|N|=300$).
- "Exponential" is really big.
- Yet people have solved TSP's with $|N|>16,000$!
- You will learn how to solve these problems too!
- The "trick" is to only add the subset of constraints that are necessary to prove optimality.
- This is a trick known as branch-and-cut, and you will learn lots about branch-and-cut in this course.

Modeling a Restricted Set of Values

- We may want variable x to only take on values in the set $\left\{a_{1}, \ldots, a_{m}\right\}$.
- We introduce m binary variables $y_{j}, j=1, \ldots, m$ and the constraints

$$
\begin{array}{r}
x=\sum_{j=1}^{m} a_{j} y_{j}, \\
\sum_{j=1}^{m} y_{j}=1, \\
y_{j} \in\{0,1\}
\end{array}
$$

- The set of variables $\left\{y_{1}, y_{2}, \ldots y_{m}\right\}$ is called a special ordered set (SOS) of variables.

Example—Building a warehouse

- Suppose we are modeling a facility location problem in which we must decide on the size of a warehouse to build.
- The choices of sizes and their associated cost are shown below:

Size	Cost
10	100
20	180
40	320
60	450
80	600

Warehouse sizes and costs

Warehouse Modeling

- Using binary decision variables $x_{1}, x_{2}, \ldots, x_{5}$, we can model the cost of building the warehouse as

$$
\text { COST } \equiv 100 x_{1}+180 x_{2}+320 x_{3}+450 x_{4}+600 x_{5} .
$$

- The warehouse will have size

$$
\text { SIZE } \equiv 10 x_{1}+20 x_{2}+40 x_{3}+60 x_{4}+80 x_{5},
$$

- and we have the SOS constraint

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=1
$$

Piecewise Linear Cost Functions

- We can use binary variables to model arbitrary piecewise linear functions.
- The function is specified by ordered pairs $\left(a_{i}, f\left(a_{i}\right)\right)$
- We have a binary variable y_{i}, which indicates whether
 $a_{i} \leq x \leq a_{i+1}$

Minimizing Piecewise Linear Cost Functions

- To evaluate the function, we will take linear combinations $\sum_{i=1}^{k} \lambda_{i} f\left(a_{i}\right)$ of the given functions values.
- This only works if the only two nonzero $\lambda_{i}^{\prime} s$ are the ones corresponding to the endpoints of the interval in which x lies.

The Key Idea!

If $y_{j}=1$, then $\lambda_{i}=0, \forall i \neq j, j+1$.

$$
\begin{aligned}
\text { s.t. } \sum_{i=1}^{k} \lambda_{i} & =1, \\
\lambda_{1} & \leq y_{1}, \\
\lambda_{i} & \leq y_{i-1}+y_{i}, i=2, \ldots, k-1, \\
\lambda_{k} & \leq y_{k-1}, \\
\sum_{i=1}^{k-1} y_{i} & =1, \\
\lambda_{i} & \geq 0, \\
y_{i} & \in\{0,1\} .
\end{aligned}
$$

SOS2

- A "better" formulation involves the use of special ordered sets of type 2

SOS2

A set of variables of which at most two can be positive. If two are positive, they must be adjacent in the set.

$$
\begin{array}{r}
\min \sum_{i=1}^{k} \lambda_{i} f\left(a_{i}\right) \\
\text { s.t. } \sum_{i=1}^{k} \lambda_{i}=1 \\
\lambda_{i} \geq 0 \\
\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}
\end{array} \quad \text { SOS2 }
$$

- The adjacency conditions of SOS2 are enforced by the solution algorithm
- (All) commercial solvers allow you to specify SOS2

Modeling Disjunctive Constraints

- We are given two constraints $a^{T} x \geq b$ and $c^{T} x \geq d$ with nonnegative coefficients.
- Instead of insisting both constraints be satisfied, we want at least one of the two constraints to be satisfied.
- To model this, we define a binary variable y and impose

$$
\begin{aligned}
a^{T} x & \geq y b \\
c^{T} x & \geq(1-y) d \\
y & \in\{0,1\}
\end{aligned}
$$

- More generally, we can impose that at least k out of m constraints be satisfied with

$$
\begin{aligned}
\left(a_{i}^{\prime}\right)^{T} x & \geq b_{i} y_{i}, \quad i \in\{1,2, \ldots m\} \\
\sum_{i=1}^{m} y_{i} & \geq k \\
y_{i} & \in\{0,1\}
\end{aligned}
$$

- There are lots of things you can model with binary variables:
- Indicator variables (Positivity of variables)
- Limiting the Number of Positive Variables
- "Fixed Charge" problems
- Minimum production level
- Indicator variables (Validity of constraints)
- Either-or
- If-then
- k out of n

The Bag of Tricks

- Special Ordered Sets

- Nonconvex regions
- Economies of Scale
- Discrete Capacity Extensions
- Maximax or Minimin
- The problem is that sometimes to see the modeling "trick" is difficult. For example...
- Use a 0-1 variable δ to indicate whether or not the constraint $2 x_{1}+3 x_{2} \leq 1$ is satisfied.
- x_{1}, x_{2} are nonnegative continuous variables that are ≤ 1
- $\delta=1 \Leftrightarrow 2 x_{1}+3 x_{2} \leq 1$

Combinatorial Optimization Problems
Special Ordered Sets
"Algorithmic" Modeling

IE418 Integer Programming
Disjunctions
The Bag of Tricks
Example \#1
Example \#2: PPP

The Slide of Tricks. Indicator Variables...

Definitions

- $\delta=1 \Rightarrow \sum_{j \in N} a_{j} x_{j} \leq b$

$$
\cdot \sum_{j \in N} a_{j} x_{j}+M \delta \leq M+b
$$

- $\sum_{j \in N} a_{j} x_{j} \leq b \Rightarrow \delta=1$
- $\sum_{j \in N} a_{j} x_{j}-(m-\epsilon) \delta \geq b+\epsilon$
- $\delta=1 \Rightarrow \sum_{j \in N} a_{j} x_{j} \geq b$

$$
\text { - } \sum_{j \in N} a_{j} x_{j}+m \delta \geq m+b
$$

- $\sum_{j \in N} a_{j} x_{j} \geq b \Rightarrow \delta=1$
- $\sum_{j \in N} a_{j} x_{j}-(M+\epsilon) \delta \leq b-\epsilon$
- δ : Indicator variable $(\delta \in\{0,1\})$.
- M : Upper bound on $\sum_{j \in N} a_{j} x_{j}-b$
- m : Lower bound on $\sum_{j \in N} a_{j} x_{j}-b$
- ϵ : Small tolerance beyond which we regard the constraint as haven been broken.

$$
\begin{aligned}
& \text { - If } a_{j} \in \mathbb{Z} \text {, } \\
& x_{j} \in \mathbb{Z} \text {, then we } \\
& \text { can take } \epsilon=1 \text {. }
\end{aligned}
$$

Modeling Trick \#1

- Indicating Constraint (Non)violation
- Suppose we wish to indicate whether or not an inequality $\sum_{j \in N} a_{j} x_{j} \leq b$ holds by means of an indicator variable δ.

Implication We Wish to Model

$$
\delta=1 \Rightarrow \sum_{j \in N} a_{j} x_{j} \leq b
$$

- This can be represented by the constraint

$$
\text { - } \sum_{j \in N} a_{j} x_{j}+M \delta \leq M+b
$$

Trick \#1... The Logic

$$
\delta=1 \Rightarrow \sum_{j \in N} a_{j} x_{j} \leq b \Leftrightarrow \sum_{j \in N} a_{j} x_{j}+M \delta \leq M+b
$$

- (Thinking) ...
- $\delta=1 \Rightarrow \sum_{j \in N} a_{j} x_{j}-b \leq 0$
- $1-\delta=0 \Rightarrow \sum_{j \in N} a_{j} x_{j}-b \leq 0$
- $\sum_{j \in N} a_{j} x_{j}-b \leq M(1-\delta)$
- Does it work?
- $\delta=0 \Rightarrow \sum_{j \in N} a_{j} x_{j}-b \leq M$
- (true by definition of M)
- $\delta=1 \Rightarrow \sum_{j \in N} a_{j} x_{j}-b \leq 0$

$$
\sum_{j \in N} a_{j} x_{j} \leq b \Rightarrow \delta=1
$$

- $\delta=0 \Rightarrow \sum_{j \in N} a_{j} x_{j} \not \leq b$
- $\delta=0 \Rightarrow \sum_{j \in N} a_{j} x_{j}>b$
- $\delta=0 \Rightarrow \sum_{j \in N} a_{j} x_{j} \geq b+\epsilon$
- If a_{j}, x_{j} are integer, we can choose $\epsilon=1$
- Model as $\sum_{j \in N} a_{j} x_{j}-(m-\epsilon) \delta \geq b+\epsilon$
- m is a lower bound for the expression $\sum_{j \in N} a_{j} x_{j}-b$

Jeff Linderoth
Review
Combinatorial Optimization Problems
Special Ordered Sets
"Algorithmic" Modeling

IE418 Integer Programming
Disjunctions
The Bag of Tricks
Example \#1
Example \#2: PPP

Some Last Modeling Tricks

$$
\delta=1 \Rightarrow \sum_{j \in N} a_{j} x_{j} \geq b
$$

- Model as $\sum_{j \in N} a_{j} x_{j}+m \delta \geq m+b$

$$
\sum_{j \in N} a_{j} x_{j} \geq b \Rightarrow \delta=1
$$

- Model as $\sum_{j \in N} a_{j} x_{j}-(M+\epsilon) \delta \leq b-\epsilon$
- You can obtain these by just transforming the constraints to \leq form and using the first two tricks.

Back To Our Example...

- Use a $0-1$ variable δ to indicate whether or not the constraint $2 x_{1}+3 x_{2} \leq 1$ is satisfied.
- x_{1}, x_{2} are nonnegative continuous variables that cannot exceed 1.
- $\delta=1 \Leftrightarrow 2 x_{1}+3 x_{2} \leq 1$
- M: Upper Bound on $2 x_{1}+3 x_{2}-1$. 4 works
- m : Lower Bound on $2 x_{1}+3 x_{2}-1$. -1 works.
- $\epsilon: 0.1$

IE418 Integer Programming

Example, Cont.

- (\Rightarrow) Recall the trick.

$$
\text { - } \delta=1 \Rightarrow \sum_{j \in N} a_{j} x_{j} \leq b \Leftrightarrow \sum_{j \in N} a_{j} x_{j}+M \delta \leq M+b
$$

- $2 x_{1}+3 x_{2}+4 \delta \leq 5$
- (\Leftarrow). Recall the trick.

$$
\text { - } \sum_{j \in N} a_{j} x_{j} \leq b \Rightarrow \delta=1 \Leftrightarrow \sum_{j \in N} a_{j} x_{j}-(m-\epsilon) \delta \geq b+\epsilon
$$

- $2 x_{1}+3 x_{2}+1.1 \delta \geq 1.1$

$$
\begin{aligned}
2 x_{1}+3 x_{2}+4 \delta & \leq 5 \\
2 x_{1}+3 x_{2}+1.1 \delta & \geq 1.1
\end{aligned}
$$

A More Realistic Example

- PPP—Production Planning Problem. (A simple linear program).
- An engineering plant can produce five types of products: $p_{1}, p_{2}, \ldots p_{5}$ by using two production processes: grinding and drilling. Each product requires the following number of hours of each process, and contributes the following amount (in hundreds of dollars) to the net total profit.

	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
Grinding	12	20	0	25	15
Drilling	10	8	16	0	0
Profit	55	60	35	40	20

PPP - More Info

- Each unit of each product take 20 manhours for final assembly.
- The factory has three grinding machines and two drilling machines.
- The factory works a six day week with two shifts of 8 hours/day. Eight workers are employed in assembly, each working one shift per day.

PPP

maximize

$$
55 x_{1}+60 x_{2}+35 x_{3}+40 x_{4}+20 x_{5} \quad \text { (Profit/week) }
$$

subject to

$$
\begin{array}{rll}
12 x_{1}+20 x_{2}+0 x_{3}+25 x_{4}+15 x_{5} & \leq 288 & \\
10 x_{1}+8 x_{2}+16 x_{3}+0 x_{4}+0 x_{5} & \leq 192 & \text { (Grinding) } \\
20 x_{1}+20 x_{2}+20 x_{3}+20 x_{4}+20 x_{5} & \leq 384 & \text { Final Assembly } \\
x_{i} & \geq 0 \quad \forall i=1,2, \ldots 5
\end{array}
$$

Another PPP Modeling Example

- Let's model the following situation.
- If we manufacture $P 1$ or $P 2$ (or both), then at least one of $P 3, P 4, P 5$ must also be manufactured.
- We first need an indicator variable z_{j} that indicate when each of the $x_{j}>0$.
- How do we model $x_{j}>0 \Rightarrow z_{j}=1$?.
- Hint: This is equivalent to $z_{j}=0 \Rightarrow x_{j}=0$

Modeling the Logic

Answer: $x_{j} \leq M z_{j}$

- Given that we have included the constraints $x_{j} \leq M z_{j}$, we'd like to model the following implication:

$$
\text { - } z_{1}+z_{2} \geq 1 \Rightarrow z_{3}+z_{4}+z_{5} \geq 1
$$

- Can you just "see" the answer?
- I can't. So let's try our "formulaic" approach.
- Think of it in two steps
- $z_{1}+z_{2} \geq 1 \Rightarrow \delta=1$
- $\delta=1 \Rightarrow z_{3}+z_{4}+z_{5} \geq 1$.

Look up the Tricks

- First we model the following:

$$
\text { - } z_{1}+z_{2} \geq 1 \Rightarrow \delta=1
$$

- The formula from the bag o' tricks
- $\sum_{j \in N} a_{j} x_{j} \geq b \Rightarrow \delta=1 \Leftrightarrow \sum_{j \in N} a_{j} x_{j}-(M+\epsilon) \delta \leq b-\epsilon$
- M : Upper Bound on $\sum_{j \in N} a_{j} z_{j}-b$
- $M=1$ in this case. $\left(z_{1} \leq 1, z_{2} \leq 1, b=1\right)$.
- ϵ : "Tolerance Level" indicating the minimum about by which the constraint can be violated.
- $\epsilon=1$ in this case!
- If the constraint is going to be violated, then it will be violated by at least one.

Modeling $z_{1}+z_{2} \geq 1 \Rightarrow \delta=1$, Cont.

- Just plug in the formula $\sum_{j \in N} a_{j} x_{j}-(M+\epsilon) \delta \leq b-\epsilon$

$$
\text { - } z_{1}+z_{2}-2 \delta \leq 0
$$

- Does this do what we want?

z_{1}	z_{2}	δ
0	0	≥ 0
0	1	$\geq 1 / 2(\Rightarrow=1)$
1	0	$\geq 1 / 2(\Rightarrow=1)$
1	1	≥ 1

IE418 Integer Programming

Second Part

- Want to model the following:

$$
\text { - } \delta=1 \Rightarrow z_{3}+z_{4}+z_{5} \geq 1
$$

- The formula from the bag o' tricks
- $\delta=1 \Rightarrow \sum_{j \in N} a_{j} x_{j} \geq b \Leftrightarrow \sum_{j \in N} a_{j} x_{j}+m \delta \geq m+b$
- m : lower bound on $\sum_{j \in N} a_{j} x_{j}-b$.

$$
\text { - } m=-1 .\left(z_{1} \geq 0, z_{2} \geq 0, b=1\right)
$$

- Plug in the formula:

$$
\text { - } z_{3}+z_{4}+z_{5}-\delta \geq 0
$$

- It works! (Check for $\delta=0, \delta=1$).

PPP, Make 1 or $2 \Rightarrow$ make 3,4 , or 5

maximize

$$
55 x_{1}+60 x_{2}+35 x_{3}+40 x_{4}+20 x_{5} \quad \text { (Profit/week) }
$$

subject to

$$
\begin{aligned}
12 x_{1}+20 x_{2}+0 x_{3}+25 x_{4}+15 x_{5} & \leq 288 \\
10 x_{1}+8 x_{2}+16 x_{3}+0 x_{4}+0 x_{5} & \leq 192 \\
20 x_{1}+20 x_{2}+20 x_{3}+20 x_{4}+20 x_{5} & \leq 384 \\
x_{i} & \leq M_{i} z_{i} \quad \forall i=1,2, \ldots 5 \\
z_{1}+z_{2}-2 \delta & \leq 0 \\
z_{3}+z_{4}+z_{5}-\delta & \geq 0 \\
x_{i} & \geq 0 \quad \forall i=1,2, \ldots 5 \\
z_{i} & \in\{0,1\} \forall i=1,2, \ldots 5 \\
\delta & \in\{0,1\}
\end{aligned}
$$

Jeff Linderoth
Combinatorial Optimization Problems
Special Ordered Sets
"Algorithmic" Modeling

IE418 Integer Programming
Disjunctions
The Bag of Tricks
Example \#1
Example \#2: PPP

Cool Things You Can Now Do

- Either constraint 1 or constraint 2 must hold
- Create indicators δ_{1}, δ_{2}, then $\delta_{1}+\delta_{2} \geq 1$
- At least one constraint of all the constraints in M should hold
- $\sum_{i \in M} \delta_{i} \geq 1$
- At least k of the constraints in M must hold
- $\sum_{i \in M} \delta_{i} \geq k$
- If x, then y
- $\delta_{y} \geq \delta_{x}$

That's All Folks!

- That's it for modeling.
- You should have read N\&W I.1.1 by now.
- Those of you who want to get a jump start on the homeworks can consider doing problems
- ???
- ???

[^0]: ${ }^{1}$ It is common to denote the vector of 1 's as e

