IE418: Integer Programming. Decomposition Techniques.

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

25th April 2005

• Homework questions?

- Final discussion
- Preprocessing
- Decompositions and fun with Mosel

Preprocessing

Decomposition

• Eat some candy

Jeff Linderoth	IE418 Integer Programming	Jeff Linderoth	IE418 Integer Programming
Preprocessing Decomposition	Objective Function Preprocessing Probing Clique Inequalities	Preprocessing Decomposition	Objective Function Preprocessing Probing Clique Inequalities

"Objective Function" Preprocessing

$$3x_1 + 2x_2 - 5x_3$$

subject to

$$x_1 + x_2 + x_3 \leq 1$$

$$-x_1 + 2x_3 \leq 4$$

$$x \in \mathbb{B}^3$$

min

 $\pi_1 + 4\pi_2 + \mu_1 + \mu_2 + \mu_3$

subject to

 $\mu \in \Re^3_+$

Advanced Probing Techniques

- Consider $y_1 + 3y_2 \ge 15$
- $x_1 = 0 \Rightarrow \text{constraint } y_1 + 3y_2 \ge 15 \text{ is redundant.}$
- This implies we can improve the coefficient of x_1 (from 0) in the constraint.
- (From the paper) in "1.2—Improving Coefficients", Savelsbergh argues that the set of feasible solutions of the \leq constraint is not changes if both the coefficient of the probing variable and the RHS (b) are reduced by

•
$$z_k = -60$$

• $b_i = -15$

•
$$-45x_1 - y_1 - 3y_2 \le -60$$

- $|C^o \cap C^c|$ means the set of variables that have both their nodes in the clique
- $T_C = \{k \in B | x_k, \bar{x}_k \in C\}$
- If $|T_C| = 1$, with $k \in T_C$:
 - $x_k + (1 x_k) + \sum_{j \in C^o \setminus k} x_j + \sum_{j \in C^o \setminus k} (1 x_j) \le 1$

•
$$\sum_{j \in C^o \setminus k} x_j + \sum_{j \in C^c \setminus k} (1 - x_j) \le 0$$

•
$$x_j = 0 \ \forall j \in C^o \setminus k$$

•
$$x_j = 1 \ \forall j \in C^c \setminus k$$

• A similar argument shows that if \exists a clique such that $|T_C| > 1$, the problem is infeasible

- of jobs to machines not exceeding the machine capacities
- Each job $j \in N$ requires a_{ij} units of machine $i \in M$'s capacity b_i

N

Relaxation 1

Relax the Knapsacks

• Let
$$X_1 = \{x \in \mathbb{B}^{|M| \times |N|} \mid \sum_{i \in M} x_{ij} = 1 \ \forall j \in N\}$$

• For
$$\mu \in \mathbb{R}^{|\mathcal{N}|}_+$$

$$LR1(\mu) = \max_{x \in X_1} \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{i \in M} \mu_i \left(b_i - \sum_{j \in N} a_{ij} x_{ij} \right)$$

provides an upper bound on z_{GAP}

• $z_{LD1} \stackrel{\text{def}}{=} \min_{\mu \geq 0} LR1(\mu)$ also provides an upper bound

Relaxation 2

Relax the Assignment Constraints• Let
$$X_2 = \{x \in \mathbb{B}^{|M| \times |N|} \mid \sum_{J \in N} a_{ij} x_{ij} \leq b_i \forall i \in M\}$$
• For any $\mu \in \mathbb{R}^{|N|}_+$ $LR2(\mu) = \max_{x \in X_2} \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{j \in N} \mu_j \left(\sum_{i \in M} x_{ij} - 1\right)$ provides an upper bound on z_{GAP} • $z_{LD2} \stackrel{\text{def}}{=} \min_{\mu} LR1(\mu)$ also provides an upper bound

Preprocessing Decomposition

The Tale of the Tape

Relax Knapsacks

- "Subproblem" for fixed μ can be solved in linear time.
- For each $j \in N$) find machine i such that $c_{ij} - \mu_i a_{ij}$ is largest. Call solution x^*
- The vector with components $s_i \stackrel{\text{def}}{=} b_i - \sum_{j \in N} a_{ij} x_{ij}^* \in \partial(LR1(\mu))$
- How small can z_{LD1} get?

Relax Assignment

- "Subproblem" for fixed μ is equivalent to the solution of |M| independent knapsack problems.
- For each $i \in M$ find feasible assignment that maximizes with costs $c_{ij} - \mu_i a_{ij}$. Call solution x^*
- The vector with components $s_j \stackrel{\text{def}}{=} \sum_{i \in M} x_{ij}^* - 1 \in$

• How small can z_{LD2} get?

Jeff Linderoth IE418 Integer Programming Jeff Linderoth

IE418 Integer Programming

Preprocessing Decomposition

Comparing Decomposition Schemes