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Today

Homework questions?

Final discussion

Preprocessing

Decompositions and fun with Mosel

Eat some candy
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“Objective Function” Preprocessing

max

3x1 + 2x2 − 5x3

subject to

x1 + x2 + x3 ≤ 1

−x1 + 2x3 ≤ 4

x ∈ B3

min

π1 + 4π2 + µ1 + µ2 + µ3

subject to

π1 − π2 + µ1 ≥ 3

π1 + µ2 ≥ 2

π1 + 2π2 + µ3 ≥ −5

π ∈ <2
+

µ ∈ <3
+
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Advanced Probing Techniques

Consider y1 + 3y2 ≥ 15

x1 = 0 ⇒ constraint y1 + 3y2 ≥ 15 is redundant.

This implies we can improve the coefficient of x1 (from 0) in
the constraint.

(From the paper) in “1.2—Improving Coefficients”,
Savelsbergh argues that the set of feasible solutions of the ≤
constraint is not changes if both the coefficient of the probing
variable and the RHS (b) are reduced by

zk = −60
bi = −15

−45x1 − y1 − 3y2 ≤ −60
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Clique Inequalities

I think the notation is a bit confusing

|Co ∩ Cc| means the set of variables that have both their
nodes in the clique

TC = {k ∈ B|xk, x̄k ∈ C}
If |TC | = 1, with k ∈ TC :

xk + (1− xk) +
∑

j∈Co\k xj +
∑

j∈Cc\k(1− xj) ≤ 1∑
j∈Co\k xj +

∑
j∈Cc\k(1− xj) ≤ 0

xj = 0 ∀j ∈ Co \ k
xj = 1 ∀j ∈ Cc \ k

A similar argument shows that if ∃ a clique such that
|TC | > 1, the problem is infeasible
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Fall into the...

Given machines M and jobs N , find a least cost assignment
of jobs to machines not exceeding the machine capacities

Each job j ∈ N requires aij units of machine i ∈ M ’s
capacity bi

max zGAP ≡
∑
i∈M

∑
j∈N

cijxij

s.t.
∑
j∈N

aijxij ≤ bi ∀i ∈ M

∑
i∈M

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀i ∈ M,∀j ∈ N
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Relaxation 1

Relax the Knapsacks

Let X1 = {x ∈ B|M |×|N | |
∑

i∈M xij = 1 ∀j ∈ N}

For µ ∈ R|M |
+

LR1(µ) = max
x∈X1

∑
i∈M

∑
j∈N

cijxij +
∑
i∈M

µi

bi −
∑
j∈N

aijxij


provides an upper bound on zGAP

zLD1
def
= minµ≥0 LR1(µ) also provides an upper bound
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Relaxation 2

Relax the Assignment Constraints

Let X2 = {x ∈ B|M |×|N | |
∑

J∈N aijxij ≤ bi ∀i ∈ M}

For any µ ∈ R|N |
+

LR2(µ) = max
x∈X2

∑
i∈M

∑
j∈N

cijxij +
∑
j∈N

µj

(∑
i∈M

xij − 1

)

provides an upper bound on zGAP

zLD2
def
= minµ LR1(µ) also provides an upper bound
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The Tale of the Tape

Relax Knapsacks

“Subproblem” for fixed µ
can be solved in linear time.

For each j ∈ N) find
machine i such that
cij − µiaij is largest. Call
solution x∗

The vector with components

si
def
= bi −

∑
j∈N aijx

∗
ij ∈

∂(LR1(µ))

How small can zLD1 get?

Relax Assignment

“Subproblem” for fixed µ is
equivalent to the solution of
|M | independent knapsack
problems.

For each i ∈ M find feasible
assignment that maximizes
with costs cij − µiaij . Call
solution x∗

The vector with components

sj
def
=
∑

i∈M x∗ij − 1 ∈
∂(LR2(µ))

How small can zLD2 get?
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