IE418: Integer Programming. Decomposition Techniques

Jeff Linderoth
Department of Industrial and Systems Engineering
Lehigh University

- Homework questions?
- Final discussion
- Preprocessing
- Decompositions and fun with Mosel
- Eat some candy

25th April 2005

| Jeff Linderoth | IE418 Integer Programming
 OPbective Function Preprocessing
 Pecompossing
 Probing |
| :--- | :--- | Preprocessing

Decomposition

Objective Function Preprocessin
Clique Inequalities

Jeff Linderoth Preprocessing

IE418 Integer Programming
Objective Function Preprocessing
Probing
Probing
Clique Inequalities

Advanced Probing Techniques

- Consider $y_{1}+3 y_{2} \geq 15$
- $x_{1}=0 \Rightarrow$ constraint $y_{1}+3 y_{2} \geq 15$ is redundant
- This implies we can improve the coefficient of x_{1} (from 0) in the constraint.
- (From the paper) in "1.2-Improving Coefficients", Savelsbergh argues that the set of feasible solutions of the \leq constraint is not changes if both the coefficient of the probing variable and the RHS (b) are reduced by
- $z_{k}=-60$
- $b_{i}=-15$
- $-45 x_{1}-y_{1}-3 y_{2} \leq-60$

Fall into the...

- I think the notation is a bit confusing
- $\left|C^{o} \cap C^{c}\right|$ means the set of variables that have both their nodes in the clique
- $T_{C}=\left\{k \in B \mid x_{k}, \bar{x}_{k} \in C\right\}$
- If $\left|T_{C}\right|=1$, with $k \in T_{C}$:
- $x_{k}+\left(1-x_{k}\right)+\sum_{j \in C^{\circ} \backslash k} x_{j}+\sum_{j \in C^{c} \backslash k}\left(1-x_{j}\right) \leq 1$
- $\sum_{j \in C^{\circ} \backslash k} x_{j}+\sum_{j \in C^{c} \backslash k}\left(1-x_{j}\right) \leq 0$
- $x_{j}=0 \forall j \in C^{o} \backslash k$
- $x_{j}=1 \forall j \in C^{c} \backslash k$
- A similar argument shows that if \exists a clique such that $\left|T_{C}\right|>1$, the problem is infeasible
- Given machines M and jobs N, find a least cost assignment of jobs to machines not exceeding the machine capacities
- Each job $j \in N$ requires $a_{i j}$ units of machine $i \in M$'s capacity b_{i}

$$
\begin{aligned}
\max z_{G A P} & \equiv \sum_{i \in M} \sum_{j \in N} c_{i j} x_{i j} \\
\text { s.t. } \sum_{j \in N} a_{i j} x_{i j} & \leq b_{i} \quad \forall i \in M \\
\sum_{i \in M} x_{i j} & =1 \quad \forall j \in N \\
x_{i j} & \in\{0,1\} \quad \forall i \in M, \forall j \in N
\end{aligned}
$$

Jeff Linderoth
Preprocessing
Decomposition

IE418 Integer Programming
Comparing Decomposition Schemes

Jeff Linderoth Preprocessing
Decomposition

IE418 Integer Programming
Comparing Decomposition Schemes

Relaxation 1

Relax the Knapsacks

- Let $X_{1}=\left\{x \in \mathbb{B}^{|M| \times|N|} \mid \sum_{i \in M} x_{i j}=1 \forall j \in N\right\}$
- For $\mu \in \mathbb{R}_{+}^{|M|}$

$$
L R 1(\mu)=\max _{x \in X_{1}} \sum_{i \in M} \sum_{j \in N} c_{i j} x_{i j}+\sum_{i \in M} \mu_{i}\left(b_{i}-\sum_{j \in N} a_{i j} x_{i j}\right)
$$

provides an upper bound on $z_{G A P}$

- $z_{L D 1} \stackrel{\text { def }}{=} \min _{\mu \geq 0} L R 1(\mu)$ also provides an upper bound

Relaxation 2

Relax the Assignment Constraints

- Let $X_{2}=\left\{x \in \mathbb{B}^{|M| \times|N|} \mid \sum_{J \in N} a_{i j} x_{i j} \leq b_{i} \forall i \in M\right\}$
- For any $\mu \in \mathbb{R}_{+}^{|N|}$

$$
L R 2(\mu)=\max _{x \in X_{2}} \sum_{i \in M} \sum_{j \in N} c_{i j} x_{i j}+\sum_{j \in N} \mu_{j}\left(\sum_{i \in M} x_{i j}-1\right)
$$

provides an upper bound on $z_{G A P}$

- $z_{L D 2} \stackrel{\text { def }}{=} \min _{\mu} L R 1(\mu)$ also provides an upper bound

The Tale of the Tape

Relax Knapsacks

- "Subproblem" for fixed μ can be solved in linear time.
- For each $j \in N$) find machine i such that $c_{i j}-\mu_{i} a_{i j}$ is largest. Call solution x^{*}
- The vector with components $s_{i} \stackrel{\text { def }}{=} b_{i}-\sum_{j \in N} a_{i j} x_{i j}^{*} \in$ $\partial(L R 1(\mu))$
- How small can $z_{L D 1}$ get?

Relax Assignment

- "Subproblem" for fixed μ is equivalent to the solution of $|M|$ independent knapsack problems.
- For each $i \in M$ find feasible assignment that maximizes with costs $c_{i j}-\mu_{i} a_{i j}$. Call solution x^{*}
- The vector with components
$s_{j} \stackrel{\text { def }}{=} \sum_{i \in M} x_{i j}^{*}-1 \in$
$\partial(L R 2(\mu))$
- How small can $z_{L D 2}$ get?

