IE418: Integer Programming

Jeff Linderoth
Department of Industrial and Systems Engineering
Lehigh University
31st January 2005

Review

- Name an application for modeling a set covering problem?
- What is a set-covering problem?
- What is TSP?
- How to model "connected"?
- What is an SOS2
- What are they used for?
- Recite the "slide of tricks" from memory.
- Any questions on the homeworks?

A Pure Integer Program

$$
z(S)=\max \left\{c^{T} x: x \in S\right\}, \quad S=\left\{x \in \mathcal{Z}_{+}^{n}: A x \leq b\right\}
$$

$$
\begin{aligned}
S= & \left\{\left(x_{1}, x_{2}\right) \in \mathcal{Z}_{+}^{2}: 6 x_{1}+x_{2} \leq 15\right. \\
& \left.5 x_{1}+8 x_{2} \leq 20, x_{2} \leq 2\right\} \\
= & \{(0,0),(0,1),(0,2),(1,0) \\
& (1,1),(1,2),(2,0)\}
\end{aligned}
$$

- Note: $z(S)=z(\operatorname{conv}(S))$
- What is $\operatorname{conv}(S)$??

Review

- $z_{S} \stackrel{\text { def }}{=} \min f(x): x \in S$
- $z_{T} \stackrel{\text { def }}{=} \min f(x): x \in T$

- What can we say about z_{S} and z_{T} ?
- If $x_{T}^{*}=\arg \min f(x): x \in T$
- And $x_{T}^{*} \in S$, then
- $x_{T}^{*}=\arg \min f(x): x \in S$

How to Solve Integer Programs?

- Relaxations!
- $\hat{S} \supseteq S \Rightarrow z(S) \leq z(\hat{S})$
- \hat{x} optimal with $\hat{S}, \hat{x} \in S \Rightarrow \hat{x}$ optimal with S.
- People commonly use the linear programming relaxation:

$$
\begin{aligned}
z(L P(S)) & =\max \left\{c^{T} x: x \in L P(S)\right\} \\
L P(S) & =\left\{x \in \mathbb{R}_{+}^{n}: A x \leq b\right\}
\end{aligned}
$$

- We need only know $\operatorname{conv}(S)$ in the direction of c.
- The "closer" $L P(S)$ is to $\operatorname{conv}(S)$ the better.

Jeff Linderoth
IP and Relaxations
Branch and Bound
Variable Selection
Node Selection
IE418 Integer Programming
Relaxation Review
Good Formulations
Big M's

GREAT Formulations

- There are a number of integer programs for which $L P(S)=\operatorname{conv}(S)$.
- The Assignment Problem
- Spanning Tree Problem
- Matching Problem

$$
\begin{aligned}
& S=\left\{x \in\{0,1\}^{|N| \times|N|} \mid \sum_{i \in N} x_{i j}=1 \forall j \in N, \sum_{j \in N} x_{i j}=1 \forall i \in N\right\} \\
& L P(S)=\left\{x \in \mathbb{R}_{+}^{|N| \times|N|} \mid \sum_{i \in N} x_{i j}=1 \forall j \in N, \sum_{j \in N} x_{i j}=1 \forall i \in N\right\}
\end{aligned}
$$

- $\operatorname{conv}(S)=L P(S)$
- We can solve the (IP) Assignment problem by solving its LP relaxation.
- Why is this not surprising?

Solving IPs—The 3 Most Important Things

(1) Formulation
(2) Formulation
(3) Formulation

- PPP (Production Planning Problem).
- Suppose we wish to add the constraint that we wish to make at most two products.
- (At most two of the five x_{j} can be positive).

Jeff Linderoth
IP and Relaxations
Branch and Bound
Variable Selection Node Selection

IE418 Integer Programming
Relaxation Review
Good Formulations
Big M's

Short Modeling Review

- $z_{j}= \begin{cases}1 & \text { Make product } j \\ 0 & \text { Otherwise }\end{cases}$
- $x_{j}>0 \Rightarrow z_{j}=1$
- $x_{j} \geq \epsilon \Rightarrow z_{j}=1$
- $\sum_{j \in N} a_{j} x_{j} \geq b \Rightarrow \delta=1 \Leftrightarrow \sum_{j \in N} a_{j} x_{j}-(M+-\epsilon+\epsilon) \delta \leq b-\epsilon$
- $x_{j} \leq M z_{j}$
- Add constraints
- $x_{j} \leq M_{j} z_{j} \quad \forall j=1,2, \ldots 5$.
- Note: There is no need for all of the M 's to be the same.
- $\sum_{j=1}^{5} z_{j} \leq 2$.

What about the M's?

- $M_{i}=10^{4} \quad \forall i=1,2, \ldots 5 ?$
- Can we make M_{i} smaller?

$$
\begin{array}{rlrl}
12 x_{1}+20 x_{2}+0 x_{3}+25 x_{4}+15 x_{5} & \leq 288 & & \text { (Grinding) } \\
10 x_{1}+8 x_{2}+16 x_{3}+0 x_{4}+0 x_{5} & \leq 192 & & \text { (Drilling) } \\
20 x_{1}+20 x_{2}+20 x_{3}+20 x_{4}+20 x_{5} & \leq 384 & \text { Final Assembly } \\
x_{i} & \geq 0 & \forall i=1,2, \ldots 5
\end{array}
$$

A Key Point.

Small M's good, Big M's baaaaaaaaaaaaaaaaaaaaaad!

IE418 Integer Programming
Relaxation Review
Good Formulations
Big M's

Small M's Good. Big M's Baaaaaaaaaaaaaaaaaad!

- Let's look at the geometry.

$$
\begin{gathered}
P=\left\{x \in \mathbb{R}_{+}, z \in\{0,1\}: x \leq M z, x \leq u\right\} \\
L P(P)=\left\{x \in \mathbb{R}_{+}, z \in[0,1]: x \leq M z, x \leq u\right\} \\
\operatorname{conv}(P)=\left\{x \in \mathbb{R}_{+}, z \in\{0,1\}: x \leq u z\right\}
\end{gathered}
$$

$$
P=\left\{x \in \mathbb{R}_{+}, z \in\{0,1\}: x \leq M z, x \leq u\right\}
$$

Jeff Linderoth
IP and Relaxations
Branch and Bound
Variable Selection Node Selection

IE418 Integer Programming
Relaxation Review
Good Formulations
Big M's

LP Versus Conv

$$
L P(P)=\left\{x \in \mathbb{R}_{+}, z \in[0,1]: x \leq M z, x \leq u\right\}
$$

$$
\operatorname{conv}(\mathrm{P})=\left\{x \in \mathbb{R}_{+}, z \in[0,1]: x \leq u z\right\}
$$

A Key Point.

If $M=u, L P(P)=\operatorname{conv}(P)$!

UFL: Uncapacitated Facility Location

- Facilities: I
- Customers: J

$$
\begin{align*}
& \min \sum_{j \in J} f_{j} x_{j}+\sum_{i \in I} \sum_{j \in J} f_{i j} y_{i j} \\
& \sum_{j \in N} y_{i j}=1 \quad \forall i \in I \\
& \sum_{i \in I} y_{i j} \leq|I| x_{j} \quad \forall j \in J \tag{4}\\
& \text { OR } y_{i j} \leq x_{j} \quad \forall i \in I, j \in J \tag{5}
\end{align*}
$$

- Which formulation is to be preferred?
- $I=J=40$. Costs random.
- Formulation 1. 53,121 seconds, optimal solution.
- Formulation 2. 2 seconds, optimal solution.

Jeff Linderoth
 IP and Relaxations
 Branch and Bound
 Variable Selection Node Selection

IE418 Integer Programming
The Algorithm
Bounding
Branching

Feeling Lucky?

- What if we don't get an integer solution to the relaxation?
- Branch and Bound!

- Lots of ways to divide search space. People usually...
- Partition the search space into two pieces
- Change bounds on the variables to do this. The LP relaxations remain easy to solve.

Branch-and-Bound

- Branch-and-bound is a divide-and-conquer approach.
- Suppose S is the feasible region for some MILP:
$z_{I P} \stackrel{\text { def }}{=} \max _{x \in S} c^{T} x$
- Consider a partition of S into subsets $S_{1}, \ldots S_{k}$. Then

$$
\max _{x \in S} c^{T} x=\max _{\{1 \leq i \leq k\}}\left\{\max _{x \in S_{i}} c^{T} x\right\}
$$

- In other words, we can optimize over each subset separately.
- Dividing the original problem into subproblems is called branching

Jeff Linderoth
IP and Relaxations
Branch and Bound
Variable Selection Node Selection

IE418 Integer Programming
The Algorithm
Bounding
Branching

The Importance of Bounding

- Any feasible solution to the problem provides an lower bound L on the optimal solution value. $\left(\hat{x} \in S \Rightarrow z_{I P} \geq c^{T} \hat{x}\right)$.
- We can use approximate methods to obtain an lower bound.
- After branching, we obtain an upper bound $u\left(S_{i}\right)$ on the optimal solution value for each of the subproblems. (Why?)
- Overall Bound: $U^{t}=\max _{i} u\left(S_{i}\right)$
- If $u\left(S_{i}\right) \leq L$, then we don't need to consider subproblem i.
- We get the upper bound by solving the LP relaxation, but there are other ways too.

LP-based Branch and Bound

- In LP-based branch and bound, we first solve the LP relaxation of the original problem. The result is one of the following:
(1) The LP in unbounded \Rightarrow the MILP is unbounded. $\left(z_{I P}=\infty\right)$
(2) The LP is infeasible \Rightarrow MILP is infeasible. $(S=\emptyset)$
(3) We obtain a feasible solution for the MILP \Rightarrow it is an optimal solution to MILP. $\left(L=z_{I P}=U\right)$
(4) We obtain an optimal solution to the LP that is not feasible for the MILP \Rightarrow Upper Bound. $\left(U=z_{L P}\right)$.
- In the first three cases, we are finished.
- In the final case, we must branch and recursively solve the resulting subproblems.
IE418 Integer Programming
The Algorithm
Bounding Branching

Terminology

- If we picture the subproblems graphically, they form a search tree.
- Eliminating a problem from further consideration is called pruning.
- The act of bounding and then branching is called processing.

- A subproblem that has not yet been processed is called a candidate.
- The set of candidates is the candidate list.

LP-based Branch and Bound Algorithm

(1) To start, derive an lower bound L using a heuristic method (if possible).
(2) Put the original problem on the candidate list.
(3) Select a problem S from the candidate list and solve the LP relaxation to obtain the bound $u(S)$

- If the LP is infeasible \Rightarrow node can be pruned.
- Otherwise, if $u(S) \leq L \Rightarrow$ node can be pruned.
- Otherwise, if $u(S)>L$ and the solution is feasible for the MILP \Rightarrow set $L \leftarrow u(S)$.
- Otherwise, branch. Add the new subproblems to the list.
(4) If the candidate list in nonempty, go to Step 2. Otherwise, the algorithm is completed.

The "Global" upper bound

$U^{t}=\max _{S}$ is in candidate list at step $t^{u(\operatorname{parent}(S))}$

Choices in Branch and Bound. Bounding

- Lower Bound
- This is often called a primal heuristic.
- Rounding, Diving, etc.
- Often heuristics are problem dependent.
- How do you communicate your heuristic to the IP solver?
- Can use metaheuristics-Simulated Annealing, Tabu Search, Genetic Algorithms, etc...
- Upper Bound
- Tighter is better!
- You read about one way to tighten the relaxation-Preprocessing.
- We will spend a good amount of time speaking of ways to "tighten" the LP relaxation.
- Others include Lagrangian relaxation, duality-based, ...

Choices in Branch-and-Bound: Branching

- If our "relaxed" solution $\hat{x} \notin S$, we must decide how to partition the search space into smaller subproblems
- Our strategy for doing this is called a Branching Rule
- Branching wisely is very important
- It is most important at the top of the branch and bound tree
- $\hat{x} \notin S \Rightarrow \exists j \in N$ such that $f_{j} \stackrel{\text { def }}{=} \hat{x}_{j}-\left\lfloor\hat{x}_{j}\right\rfloor>0$
- So create two problems with additional constraints
(1) $x_{j} \leq\left\lfloor\hat{x}_{j}\right\rfloor$ on one branch
(2) $x_{j} \geq\left\lceil\hat{x}_{j}\right\rceil$ on other branch

Jeff Linderoth
IP and Relaxations
Branch and Bound
Variable Selection Node Selection

IE418 Integer Programming
The Algorithm
Bounding
Branching

More Branching Info

- In the case of 0-1 IP, this dichotomy reduces to
(1) $x_{j}=0$ on one branch
(2) $x_{j}=1$ on other branch
- In general IP, branching on a variable involves imposing new bound constraints in each one of the subproblems.
- This is easily handled implicitly in most cases. Why?
- This is (by far) the most common method of branching.

Let's Do An Example

maximize

$$
z=5 x_{1}+4 x_{2}+x_{3}+7 x_{4}
$$

subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 5 \\
x_{3}+x_{4} & \leq 3 \\
x_{1}-x_{3}+x_{4} & \leq 16 \\
10 x_{1}+6 x_{2} & \leq 45 \\
x_{1}, x_{2} & \geq 0 \\
x_{1}, x_{2}, x_{3}, x_{4} & \in \mathbb{Z}
\end{aligned}
$$

Jeff Linderoth
IP and Relaxations
Branch and Bound
Variable Selection Node Selection

IE418 Integer Programming
The Algorithm
Bounding
Branching

A Software Interlude...

- In this class, you will do computing.
- It will be easiest if you do your computing in COR@L Lab
- Computation Optimization Research @ Lehigh
- Room 362 Mohler
- http://coral.ie.lehigh.edu
- For those of you who are Linux Neophytes, I want to schedule a training session.
- I will be passing around a signup sheet...
(1) Name
(2) Do you want to take training class?
(3) What three hour periods in the next 7-10 days can you not do a traning class?

More Software Stuff

- COR@L has lots of cool IP software like, CPLEX, XPRESS-MP, COIN-OR, MINTO, symphony, and AMPL
- More software "coming soon".
- For the time being, I'll assume you know AMPL, since I need to use something to demonstrate branch and bound

Jeff Linderoth
IP and Relaxations
Branch and Bound
Variable Selection Node Selection

Solving the Example with $\mathrm{B} \& \mathrm{~B}$

- Your picture(s) here...

The Goal of Branching

- We want to divide the current problem into two or more subproblems that are easier than the original.
- We would like to choose the branching that minimizes the sum of the solution times of all the created subproblems.
- This is the solution of the entire subtree rooted at the node.
- How do we know how long it will take to solve each subproblem?
- Answer: We don't.
- Idea: Try to predict the difficulty of a subproblem.

[^0]IE418 Integer Programming
Why?
Strong Branching
Pseudo Costs
Branching Finale

A Good Branching

- Imagine that when I branch, the value of the linear programming relaxation changes a lot!
- I can prune the node, or should be able to prune it quickly
- So, for a given potential branching, I would like to know the upper bound that would result from processing each subproblem.
- The branching that changes these bounds "the most" is the best branching.

Predicting the Difficulty of a Subproblem

- How can I (quickly?) estimate the upper bounds that would result?
- Partially solve the LP relaxation in each of the subproblems by performing a given number of dual simplex pivots.
- Since we are using dual simplex, this gives us a valid bound. Why?
- This technique is usually called strong branching.
- A cheaper alternative is to use pseudo-costs.

Jeff Linderoth
IP and Relaxations Branch and Bound Variable Selection Node Selection

IE418 Integer Programming
Why?
Strong Branching
Pseudo Costs
Branching Finale

Strong Branching Details

- In the case of strong branching, it may be too expensive to evaluate all possible candidates for branching.
- How do we choose the candidates to evaluate?
- We choose them based on an estimate of their effectiveness that is very cheap to evaluate.
- One method is to choose inequalities whose left hand side is furthest from being an integer
- For 0-1 variables, this means those whose values are closest to 0.5 .
- We might also account for the size of the objective function coefficient.

Strong Branching Details

- The number of candidates to evaluate must be determined empirically.
- Effective branching is more important near the top of the tree.
- We might want to evaluate more candidates near the top of the tree.
- More candidates almost always results in smaller trees, but the expense eventually causes an increase in running time.
- How many dual simplex pivots should we do?

Jeff Linderoth
 IP and Relaxations
 Branch and Bound
 Variable Selection Node Selection

```
IE418 Integer Programming Why?
Strong Branching
Pseudo Costs
Branching Finale
```


Using Pseudo Costs

- The pseudo-cost of a variable is an estimate of the per-unit change in the objective function from forcing the value of the variable to be rounded up or down. Like a gradient!
- For each variable x_{j}, we maintain an up and a down pseudo-cost, denoted P_{j}^{+}and P_{j}^{-}.
- Let f_{j} be the current (fractional) value of variable x_{j}.
- An estimate of the change in objective function in each of the subproblems resulting from branching on x_{j} is given by

$$
\begin{aligned}
D_{j}^{+} & =P_{j}^{+}\left(1-f_{j}\right) \\
D_{j}^{-} & =P_{j}^{-} f_{j}
\end{aligned}
$$

- The question is how to get the pseudo-costs.

Obtaining and Updating Pseudo Costs

- Typically, the pseudo-costs are obtained from empirical data.
- We observe the actual change that occurs after branching on each one of the variables and use that as the pseudo-cost.
- We can either choose to update the pseudo-cost as the calculation progresses or just use the first pseudo-cost found.
- Several authors have noted that the pseudo-costs tend to remain fairly constant.
- The only remaining question is how to initialize. Possibilities:
- Use the objective function coefficient.
- Use the average of all known pseudo-costs.
- Explicity initialize the pseudocosts using strong branching

Jeff Linderoth
 IP and Relaxations Branch and Bound Variable Selection Node Selection

IE418 Integer Programming
Why?
Strong Branching
Pseudo Costs
Branching Finale

What Does "The Most" Mean

- If we are doing typical variable branching, we create two children and have estimates of the amount the bound will change for each child
- How do we combine the two nunbers together to form one measure of goodness for a potential branch?
- Suggest to branch on the variable

$$
j^{*}=\arg \max \left\{\alpha_{1} \min \left\{D_{j}^{+}, D_{j}^{-}\right\}+\alpha_{2} \max \left\{D_{j}^{+}, D_{j}^{-}\right\}\right.
$$

- $\alpha_{2}=0 \Rightarrow$ we want to maximize the minimum degradation on the branch
- $\left(\alpha_{1}, \alpha_{2}\right)=(2,1)$ seems pretty good

Putting it All Together

- Here are the choices we've discussed in branching:
- Should we use strong branching or pseudo-costs?
- Pseudo-costs
- How should we initialize?
- How should we update?
- Strong branching
- How do we choose the list of branching candidates?
- How many pivots to do on each?
- Once we have the bound estimates, how do we choose the final branching?
- Ultimately, we must use empirical evidence and intuition to answer these questions.

Jeff Linderoth
IP and Relaxations
Branch and Bound
Variable Selection Node Selection

IE418 Integer Programming
Why?
Strong Branching
Pseudo Costs
Branching Finale

Other important branching features

- Priority Order
- You often want to order the variables, so that important variables are branched on first.
- First decide which warehouses to open, then decide the vehicle routing
- Branch on earlier (time-based) decisions first.
- GUB or SOS Branching

Choices in Branch and Bound Node Selection

- Another important parameter to consider in branch and bound is the strategy for selecting the next subproblem to be processed.
- In choosing a search strategy, we might consider two different goals:
- Minimizing overall solution time.
- Finding a good feasible solution quickly.

Jeff Linderoth
 IP and Relaxations Branch and Bound Variable Selection Node Selection

```
IE418 Integer Programming
Why?
Best First
Depth-First
Best Estimate
```


The Best First Approach

- One way to minimize overall solution time is to try to minimize the size of the search tree.
- We can achieve this choose the subproblem with the best bound (highest upper bound if we are maximizing).
- A candidate node is said to be critical if its bound exceeds the value of an optimal solution solution to the IP.
- Every critical node will be processed no matter what the search order.
- Best first is guaranteed to examine only critical nodes, thereby minimizing the size of the search tree.

Drawbacks of Best First

- Doesn't necessarily find feasible solutions quickly
- Feasible solutions are "more likely" to be found deep in the tree
- Node setup costs
- The linear program being solved may change quite a bit more one iteration to the next
- Memory usage.
- It can require a lot of memory to store the candidate list

Jeff Linderoth
 IP and Relaxations
 Branch and Bound
 Variable Selection
 Node Selection

IE418 Integer Programming
Why?
Best First
Depth-First
Best Estimate

The Depth First Approach

- The depth first approach is to always choose the deepest node to process next.
- Just dive until you prune, then back up and go the other way
- This avoids most of the problems with best first:
- The number of candidate nodes is minimized (saving memory).
- The node set-up costs are minimized
- LPs change very little from one iteration to the next
- Feasible solutions are usually found quickly
- Unfortunately, if the initial lower bound is not very good, then we may end up processing lots of non-critical nodes.
- We want to avoid this extra expense if possible.

Estimate-based Strategies: Finding Feasible

Solutions

- Let's focus on a strategy for finding feasible solutions quickly.
- One approach is to try to estimate the value of the optimal solution to each subproblem and pick the best.
- For any subproblem S_{i}, let
- $s^{i}=\sum_{j} \min \left(f_{j}, 1-f_{j}\right)$ be the sum of the integer infeasibilities,
- z_{U}^{i} be the upper bound, and
- z_{L} the global lower bound.
- Also, let S_{0} be the root subproblem.
- The best projection criterion is $E_{i}=z_{U}^{i}+\left(\frac{z_{L}-z_{U}^{0}}{s^{0}}\right) s^{i}$
- The best estimate criterion uses the pseudo-costs to obtain $E_{i}=z_{U}^{i}+\sum_{j} \min \left(P_{j}^{-} f_{j}, P_{j}^{+}\left(1-f_{j}\right)\right)$
- Software for solving IPs
- A few more examples of solving
- Start working on the homework!
- I'll probably give you more homework to do

Read Please!

- Earthshattering, Groundbreaking, Seminal Papers to read.
- (They are on the course web page).
- J. T. Linderoth and M. W. P. Savelsbergh, "A Computational Study of Branch and Bound Search Strategies for Mixed Integer Programming," INFORMS Journal on Computing, 11 (1999) pp. 173-187.
- A. Atamtürk and M. W. P. Savelsbergh, "Integer Programming Software Systems", Annals of Operations Research, forthcoming.
- J. T. Linderoth and т. к. Ralphs, "Noncommercial Software for Mixed-Integer Linear Programming", Technical Report 04T-023, Department of Industrial and Systems Engineering, Lehigh University, December, 2004.
- If you don't think l'll ask questions about these papers on the mid-term, Just Try Me! :-)

[^0]: Jeff Linderoth
 IP and Relaxations
 Branch and Bound
 Variable Selection Node Selection

