IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

31st January 2005

Jeff Linderoth IE418 Integer Programming

Review

@ Name an application for modeling a set covering problem?
e What is a set-covering problem?

@ What is TSP?

e How to model “connected”?

@ What is an SOS2
e What are they used for?

@ Recite the “slide of tricks” from memory.

@ Any questions on the homeworks?

Jeff Linderoth IE418 Integer Programming

IP and Relaxations Relaxation Review

Good Formulations

Big M's

A Pure Integer Program

2(9) = max{clz : x € S}, S={zxeZl:Ax <b}

S = {(r1,722) € ZEL : 621 + x5 < 15,
bay + 8wy < 20,25 < 2}
X X = {(0,0),(0,1),(0,2),(1,0),
(1,1),(1,2),(2,0)}

Y

e Note: z(5) = z(conv(S5))

o What is conv(S5)??

Jeff Linderoth IE418 Integer Programming

IP and Relaxations Relaxation Review

Good Formulations
Big M's

Review

ozgdéfminf(a:)::cES

o z2p ¥ min f(z) 1z €T

@ What can we say about zg
and zp?

o If . =argminf(x) :xeT
S @ And 7, € S, then

@ x =argmin f(z) :z €S

Jeff Linderoth IE418 Integer Programming

IP and Relaxations Relaxation Review

Good Formulations

Big M's

How to Solve Integer Programs?

@ Relaxations!
o §D85=2(5) < 2(5)
o i optimal with S, # € S = # optimal with S.
e People commonly use the linear programming relaxation:

2(LP(S)) = max{c'z:x e LP(S)},
LP(S) = {zeR}:Ax <b}

X
_ o If LP(S) = conv(S), we are done.
@ We need only know conv(S) in the direction of c.
@ The “closer” LP(S) is to conv(S) the better.

Jeff Linderoth IE418 Integer Programming

IP and Relaxation . .
and Relaxations Relaxation Review

Good Formulations
Big M's

GREAT Formulations

@ There are a number of integer programs for which
LP(S) = conv(S5).
e The Assignment Problem
e Spanning Tree Problem
e Matching Problem

S={z {0,V N g, =1Vj e N, wy=1Vie N}

iEN jEN
LP(S) ={z e RN N 2 =1vj e N ayy = 1vie N}
iEN jEN

e conv(S) = LP(S)

o We can solve the (IP) Assignment problem by solving its LP
relaxation. %

@ Why is this not surprising?

IP and Relaxations Relaxation Review

Good Formulations

Big M's

Solving IPs—The 3 Most Important Things

© Formulation
@ Formulation

© Formulation

e PPP (Production Planning Problem).
@ Suppose we wish to add the constraint that we wish to make

at most two products.

o (At most two of the five z; can be positive).

Jeff Linderoth IE418 Integer Programming

IP and Relaxation . .
and Relaxations Relaxation Review

Good Formulations
Big M's

Short Modeling Review

o s — 1 Make product j
771 0 Otherwise
® I >0= zj = 1
o r; >e=>z; =1
Y ZjeN a;x; > b=0=1& ZjEN &jl‘j—(M+—€+€)5 < b—e
Ty S MZj
@ Add constraints
o x; < Mjz; Vj=1,2,...5

@ Note: There is no need for all of the M's to be the same.
5
(<) E j=1 Zj S 2.

Jeff Linderoth IE418 Integer Programming

IP and Relaxations Relaxation Review

Good Formulations

Big M's

What about the M’s?

o M; =10* Vi=1,2,...57

@ Can we make M; smaller?

1221 + 2025 + 0x3 + 2524 + 1525 < 288 (Grinding)
1021 + 8z + 1623 + 0z4 + 025 < 192 (Drilling)
201 + 20xy + 203 + 204 + 2025 < 384 Final Assembly
z; > 0 Vi=1,2,...5
Small M’s good, Big M's baaaaaaaaaaaaaaaaaaaaaad! \

Jeff Linderoth IE418 Integer Programming

IP and Relaxation . .
and Relaxations Relaxation Review

Good Formulations
Big M's

Small M's Good. Big M's Baaaaaaaaaaaaaaaaaad!

@ Let's look at the geometry.
P={xeRy,z€{0,1} :x < Mz,z < u}
LP(P)={zeRy,z€[0,1]: 2 < Mz,x < u}
conv(P)={z € Ry, 2 € {0,1} : x < wuz}

Jeff Linderoth IE418 Integer Programming

IP and Relaxations Relaxation Review

Good Formulations

Big M's

M ______________________________________
u ______________________________________
X
&
0 1 z
P={xeRy,z€{0,1} :x < Mz,z <u}

Jeff Linderoth IE418 Integer Programming

IP and Relaxation . .
and Relaxations Relaxation Review

Good Formulations
Big M's

LP Versus Conv

LP(P)={xeRy,z€[0,1]: o < Mz, x < u}

conv(P) ={z e R,z €[0,1] : x < uz}

If M = u, LP(P) = conv(P)!

Jeff Linderoth IE418 Integer Programming

IP and Relaxations Relaxation Review

Good Formulations

Big M's

UFL: Uncapacitated Facility Location

e Facilities: [

@ Customers: J min Z fiz;+ Z Z Fiivij

Q jeJ el jed
 wy = 1 Viel

O i
d wiy <y Vied (4)
el

Q ORyij < xj Viel, jeJ (5)

@ Which formulation is to be preferred?

@ [= J = 40. Costs random.
e Formulation 1. 53,121 seconds, optimal solution. %

e Formulation 2. 2 seconds, optimal solution.

Jeff Linderoth IE418 Integer Programming

The Algorithm
Bounding
Branching

Branch and Bound

Feeling Lucky?

@ What if we don’t get an integer solution to the relaxation?
@ Branch and Bound!

@ Lots of ways to divide search space.
LP Sol'n People usually...
e Partition the search space into two
pieces
e Change bounds on the variables to
do this. The LP relaxations remain

easy to solve.

Y

Jeff Linderoth IE418 Integer Programming

The Algorithm

Branch and Bound B

Branching

Branch-and-Bound

@ Branch-and-bound is a divide-and-conquer approach.
@ Suppose S is the feasible region for some MILP:
ZIP dgc MaXycs cTac

@ Consider a partition of .S into subsets S1,...S5k. Then

maxclz = max {maxclz}

z€S {1<i<k} z€S;

@ In other words, we can optimize over each subset separately.

@ Dividing the original problem into subproblems is called

branching

Jeff Linderoth IE418 Integer Programming

The Algorithm
Bounding
Branching

Branch and Bound

The Importance of Bounding

@ Any feasible solution to the problem provides an lower bound
L on the optimal solution value. (Z € S = z;p > cTa“c).

e We can use approximate methods to obtain an lower bound.

@ After branching, we obtain an upper bound u(S;) on the
optimal solution value for each of the subproblems. (Why?)

o Overall Bound: U* = max; u(S;)
o If u(S;) < L, then we don't need to consider subproblem i.

@ We get the upper bound by solving the LP relaxation, but
there are other ways too.

Jeff Linderoth IE418 Integer Programming

The Algorithm

Branch and Bound B

Branching

| P-based Branch and Bound

@ In LP-based branch and bound, we first solve the LP
relaxation of the original problem. The result is one of the
following:

© The LP in unbounded = the MILP is unbounded. (z;p = o0)

@ The LP is infeasible = MILP is infeasible. (S = ()

© We obtain a feasible solution for the MILP =- it is an optimal
solution to MILP. (L = z;p = U)

@ We obtain an optimal solution to the LP that is not feasible
for the MILP =- Upper Bound. (U = z1p).

@ In the first three cases, we are finished.

@ In the final case, we must branch and recursively solve the

resulting subproblems.

Jeff Linderoth IE418 Integer Programming

The Algorithm
Bounding
Branching

Branch and Bound

Terminology

@ If we picture the
subproblems graphically,
they form a search tree.

@ Eliminating a problem from
further consideration is
called pruning.

@ The act of bounding and
then branching is called
processing.

@ A subproblem that has not
yet been processed is called
a candidate.

@ The set of candidates is the

candidate list.

Jeff Linderoth IE418 Integer Programming

The Algorithm

Branch and Bound B

Branching

LP-based Branch and Bound Algorithm

@ To start, derive an lower bound L using a heuristic method (if
possible).

@ Put the original problem on the candidate list.

© Select a problem S from the candidate list and solve the LP
relaxation to obtain the bound wu/(.5)

e If the LP is infeasible = node can be pruned.

o Otherwise, if u(S) < L = node can be pruned.

o Otherwise, if u(.S) > L and the solution is feasible for the
MILP = set L « u(JS5).

e Otherwise, branch. Add the new subproblems to the list.

© |If the candidate list in nonempty, go to Step 2. Otherwise, the
algorithm is completed.

The “Global” upper bound
U = max u(parent(S))

S is in candidate list at step ¢

Jeff Linderoth IE418 Integer Programming

The Algorithm
Bounding
Branching

Branch and Bound

Choices in Branch and Bound. Bounding

@ Lower Bound

e This is often called a primal heuristic.
@ Rounding, Diving, etc.
e Often heuristics are problem dependent.
@ How do you communicate your heuristic to the IP solver?

e Can use metaheuristics—Simulated Annealing, Tabu Search,
Genetic Algorithms, etc...

@ Upper Bound

e Tighter is better!
e You read about one way to tighten the
relaxation—Preprocessing. You read N&W, 1.1, right!?

e We will spend a good amount of time speaking of ways to
“tighten” the LP relaxation.

e Others include Lagrangian relaxation, duality-based, ...

Jeff Linderoth IE418 Integer Programming

The Algorithm

Branch and Bound Senehi

Branching

Choices in Branch-and-Bound: Branching

@ If our “relaxed” solution Z ¢ S, we must decide how to
partition the search space into smaller subproblems
@ Our strategy for doing this is called a Branching Rule

e Branching wisely is very important
e It is most important at the top of the branch and bound tree

o #¢ S = 3je Nsuchthat f; € 2, — |2;] >0

@ So create two problems with additional constraints

©Q z; < |%;] on one branch
@ z,; > [Z;] on other branch

Jeff Linderoth IE418 Integer Programming

The Algorithm
Bounding
Branching

Branch and Bound

More Branching Info

@ In the case of 0-1 IP, this dichotomy reduces to

© =z, =0 on one branch
@ =z, =1 on other branch

@ In general IP, branching on a variable involves imposing new
bound constraints in each one of the subproblems.

@ This is easily handled implicitly in most cases. Why?

@ This is (by far) the most common method of branching.

Jeff Linderoth IE418 Integer Programming

The Algorithm

Branch and Bound Senehi

Branching

Let's Do An Example

maximize
z=br1+4xr +x3+ (x4
subject to
r1+2x2 <
r3+ x4 <
r1—x3+xa < 16
1021 + 620 < 45
x1,r2 > 0

X1,x2,x3,T4

€ Z

Jeff Linderoth IE418 Integer Programming

The Algorithm
Bounding
Branching

Branch and Bound

A Software Interlude...

@ In this class, you will do computing.

@ It will be easiest if you do your computing in COR@L Lab

e Computation Optimization Research © Lehigh
e Room 362 Mohler

e http://coral.ie.lehigh.edu
@ For those of you who are Linux Neophytes, | want to schedule
a training session.

@ | will be passing around a signup sheet...

@ Name
@ Do you want to take training class?
© What three hour periods in the next 7-10 days can you not do

a traning class?

Jeff Linderoth IE418 Integer Programming

The Algorithm

Branch and Bound Senehi

Branching

More Software Stuff

@ CORQGL has lots of cool IP software like, CPLEX,
XPRESS-MP, COIN-OR, MINTO, symphony, and AMPL

@ More software “coming soon”.

@ For the time being, I'll assume you know AMPL, since | need
to use something to demonstrate branch and bound

Jeff Linderoth IE418 Integer Programming

The Algorithm
Bounding
Branching

Branch and Bound

Solving the Example with B&B

@ Your picture(s) here...

Jeff Linderoth IE418 Integer Programming

Why?

Strong Branching
Variable Selection Pseudo Costs
Branching Finale

The Goal of Branching

@ We want to divide the current problem into two or more
subproblems that are easier than the original.

@ We would like to choose the branching that minimizes the
sum of the solution times of all the created subproblems.

e This is the solution of the entire subtree rooted at the node.

@ How do we know how long it will take to solve each
subproblem?

e Answer: We don't.
e ldea: Try to predict the difficulty of a subproblem.

Jeff Linderoth IE418 Integer Programming
Why?

Strong Branching
Variable Selection Pseudo Costs
Branching Finale

A Good Branching

@ Imagine that when | branch, the value of the linear
programming relaxation changes a /ot!

e | can prune the node, or should be able to prune it quickly

@ So, for a given potential branching, | would like to know the
upper bound that would result from processing each
subproblem.

e The branching that changes these bounds “the most” is the
best branching.

Jeff Linderoth IE418 Integer Programming

Why?

Strong Branching
Variable Selection Pseudo Costs
Branching Finale

Predicting the Difficulty of a Subproblem

@ How can | (quickly?) estimate the upper bounds that would
result?

e Partially solve the LP relaxation in each of the subproblems by
performing a given number of dual simplex pivots.

e Since we are using dual simplex, this gives us a valid bound.
Why?

@ This technique is usually called strong branching.

@ A cheaper alternative is to use pseudo-costs.

Jeff Linderoth IE418 Integer Programming

Why?

Strong Branching
Variable Selection Pseudo Costs

Branching Finale

Strong Branching Details

@ In the case of strong branching, it may be too expensive to
evaluate all possible candidates for branching.

@ How do we choose the candidates to evaluate?

e We choose them based on an estimate of their effectiveness
that is very cheap to evaluate.

e One method is to choose inequalities whose left hand side is
furthest from being an integer

e For 0-1 variables, this means those whose values are closest to

e We might also account for the size of the objective function

coefficient.

Why?
Strong Branching

Variable Selection Pseudo Costs
Branching Finale

Strong Branching Details

@ The number of candidates to evaluate must be determined
empirically.
e Effective branching is more important near the top of the tree.
e We might want to evaluate more candidates near the top of
the tree.
e More candidates almost always results in smaller trees, but the
expense eventually causes an increase in running time.

@ How many dual simplex pivots should we do?

Jeff Linderoth IE418 Integer Programming
Why?

Strong Branching
Variable Selection Pseudo Costs
Branching Finale

Using Pseudo Costs

@ The pseudo-cost of a variable is an estimate of the per-unit change
in the objective function from forcing the value of the variable to be
rounded up or down. Like a gradient!

@ For each variable x;, we maintain an up and a down pseudo-cost,
denoted P;r and P,

@ Let f; be the current (fractional) value of variable x;.

@ An estimate of the change in objective function in each of the
subproblems resulting from branching on z; is given by

Df = P11,

D7 = P f;.

@ The question is how to get the pseudo-costs.

Jeff Linderoth IE418 Integer Programming

Why?
Strong Branching

Variable Selection Pseudo Costs
Branching Finale

Obtaining and Updating Pseudo Costs

@ Typically, the pseudo-costs are obtained from empirical data.

e We observe the actual change that occurs after branching on
each one of the variables and use that as the pseudo-cost.

@ We can either choose to update the pseudo-cost as the
calculation progresses or just use the first pseudo-cost found.

e Several authors have noted that the pseudo-costs tend to
remain fairly constant.

@ The only remaining question is how to initialize. Possibilities:

e Use the objective function coefficient.
e Use the average of all known pseudo-costs.

e Explicity initialize the pseudocosts using strong branching

Jeff Linderoth IE418 Integer Programming
Why?

Strong Branching
Variable Selection Pseudo Costs
Branching Finale

What Does “The Most” Mean

@ If we are doing typical variable branching, we create two
children and have estimates of the amount the bound will
change for each child

@ How do we combine the two nunbers together to form one
measure of goodness for a potential branch?

@ Suggest to branch on the variable

j° = argmax{a min{D;r, D7} +az max{D;', D> }.

@ ap = 0 = we want to maximize the minimum degradation on

the branch
o (a1,a2) =(2,1) seems pretty good

Jeff Linderoth IE418 Integer Programming

Why?
Strong Branching

Variable Selection Pseudo Costs
Branching Finale

Putting it All Together

@ Here are the choices we've discussed in branching:

e Should we use strong branching or pseudo-costs?
e Pseudo-costs

@ How should we initialize?
@ How should we update?

e Strong branching

e How do we choose the list of branching candidates?
@ How many pivots to do on each?

e Once we have the bound estimates, how do we choose the
final branching?

@ Ultimately, we must use empirical evidence and intuition to

answer these questions.

Jeff Linderoth IE418 Integer Programming
Why?

Strong Branching
Variable Selection Pseudo Costs

Branching Finale

Other important branching features

@ Priority Order

e You often want to order the variables, so that important
variables are branched on first.

e First decide which warehouses to open, then decide the vehicle
routing

o Branch on earlier (time-based) decisions first.

@ GUB or SOS Branching

Jeff Linderoth IE418 Integer Programming

Why?

Best First
Depth-First
Node Selection Best Estimate

Choices in Branch and Bound Node Selection

@ Another important parameter to consider in branch and bound
is the strategy for selecting the next subproblem to be
processed.

@ In choosing a search strategy, we might consider two different
goals:

e Minimizing overall solution time.
e Finding a good feasible solution quickly.

Jeff Linderoth IE418 Integer Programming
Why?

Best First
Depth-First
Node Selection Best Estimate

The Best First Approach

@ One way to minimize overall solution time is to try to
minimize the size of the search tree.

e We can achieve this choose the subproblem with the best
bound (highest upper bound if we are maximizing).

@ A candidate node is said to be critical if its bound exceeds the
value of an optimal solution solution to the IP.

@ Every critical node will be processed no matter what the
search order.

@ Best first is guaranteed to examine only critical nodes, thereby
minimizing the size of the search tree.

Jeff Linderoth IE418 Integer Programming

Why?
Best First

Depth-First
Node Selection Best Estimate

Drawbacks of Best First

@ Doesn't necessarily find feasible solutions quickly
e Feasible solutions are “more likely” to be found deep in the tree
@ Node setup costs

e The linear program being solved may change quite a bit more
one iteration to the next

@ Memory usage.
e It can require a lot of memory to store the candidate list

Jeff Linderoth IE418 Integer Programming

Why?

Best First

Depth-First
Node Selection Best Estimate

The Depth First Approach

@ The depth first approach is to always choose the deepest node to
process next.

e Just dive until you prune, then back up and go the other way
@ This avoids most of the problems with best first:

e The number of candidate nodes is minimized (saving memory).
e The node set-up costs are minimized

@ LPs change very little from one iteration to the next

e Feasible solutions are usually found quickly

@ Unfortunately, if the initial lower bound is not very good, then we
may end up processing lots of non-critical nodes.

@ We want to avoid this extra expense if possible.

Jeff Linderoth IE418 Integer Programming

Why?

Best First
Depth-First
Node Selection Best Estimate

Estimate-based Strategies: Finding Feasible
Solutions

@ Let's focus on a strategy for finding feasible solutions quickly.

@ One approach is to try to estimate the value of the optimal
solution to each subproblem and pick the best.
@ For any subproblem S;, let
o s' =3 min(f;,1 — f;) be the sum of the integer
infeasibilities,
o 2!; be the upper bound, and
e z; the global lower bound.

@ Also, let Sy be the root subproblem.

. _ .0 .
@ The best projection criterion is E; = z}; + (ZLSOZU> s

@ The best estimate criterion uses the pseudo-costs to obtain
E; =z, + Y min (Pj—fj, Pi(1- fj))

Jeff Linderoth IE418 Integer Programming
Why?

Best First
Depth-First
Node Selection Best Estimate

Next Time

@ Software for solving IPs

@ A few more examples of solving

@ Start working on the homework!
e |'ll probably give you more homework to do

Jeff Linderoth IE418 Integer Programming

Why?
Best First

Depth-First
Node Selection Best Estimate

Read Please!

@ Earthshattering, Groundbreaking, Seminal Papers to read.
@ (They are on the course web page).

e J. T. Linderoth and M. W. P. Savelsbergh, " A Computational
Study of Branch and Bound Search Strategies for Mixed
Integer Programming,” INFORMS Journal on Computing, 11
(1999) pp. 173-187.

o A. Atamtirk and M. W. P. Savelsbergh, " Integer
Programming Software Systems”, Annals of Operations
Research, forthcoming.

o J. T. Linderoth and .« raiphs, “Noncommercial Software for
Mixed-Integer Linear Programming”, Technical Report
04T-023, Department of Industrial and Systems Engineering,
Lehigh University, December, 2004.

@ If you don't think I'll ask questions about these papers on the

mid-term, Just Try Me! :-)

Jeff Linderoth IE418 Integer Programming

