IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

31st January 2005

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations Branch and Bound Variable Selection Node Selection	

Review

- Name an application for modeling a set covering problem?
 - What *is* a set-covering problem?
- What is TSP?
 - How to model "connected"?
- What is an SOS2
 - What are they used for?
- Recite the "slide of tricks" from memory.

• Any questions on the homeworks?

Relaxation Review Good Formulations Big M's

A Pure Integer Program

Note: z(S) = z(conv(S))
What is conv(S)??

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations Branch and Bound Variable Selection Node Selection	Relaxation Review Good Formulations Big M's

Review

• $z_T \stackrel{\mathsf{def}}{=} \min f(x) : x \in T$

- What can we say about z_S and z_T ?
- If $x_T^* = \arg\min f(x) : x \in T$
- And $x_T^* \in S$, then
- $x_T^* = \arg\min f(x) : x \in S$

Relaxation Review Big M's

How to Solve Integer Programs?

- Relaxations!

 - $\hat{S} \supseteq S \Rightarrow z(S) \le z(\hat{S})$ \hat{x} optimal with \hat{S} , $\hat{x} \in S \Rightarrow \hat{x}$ optimal with S.
 - People commonly use the linear programming relaxation:

 $z(LP(S)) = \max\{c^T x : x \in LP(S)\},\$ $LP(S) = \{x \in \mathbb{R}^n_+ : Ax \le b\}$

• If $LP(S) = \operatorname{conv}(S)$, we are done.

- We need only know conv(S) in the direction of c.
- The "closer" LP(S) is to conv(S) the better.

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations Branch and Bound Variable Selection Node Selection	Relaxation Review Good Formulations Big M's

GREAT Formulations

- There are a number of integer programs for which $LP(S) = \operatorname{conv}(S).$
 - The Assignment Problem
 - Spanning Tree Problem
 - Matching Problem

$$S = \{x \in \{0,1\}^{|N| \times |N|} \mid \sum_{i \in N} x_{ij} = 1 \ \forall j \in N, \sum_{j \in N} x_{ij} = 1 \ \forall i \in N\}$$

$$LP(S) = \{x \in \mathbb{R}^{|N| \times |N|}_+ \mid \sum_{i \in N} x_{ij} = 1 \ \forall j \in N, \sum_{j \in N} x_{ij} = 1 \ \forall i \in N\}$$

- $\operatorname{conv}(S) = LP(S)$
 - We can solve the (IP) Assignment problem by solving its LP relaxation.

• Why is this not surprising?

Solving IPs—The 3 Most Important Things

- Formulation
- Pormulation
- Formulation
- PPP (Production Planning Problem).
- Suppose we wish to add the constraint that we wish to make at most two products.
 - (At most two of the five x_j can be positive).

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations Branch and Bound Variable Selection Node Selection	Relaxation Review Good Formulations Big M's

Short Modeling Review

• $z_j = \begin{cases} 1 & \text{Make product } j \\ 0 & \text{Otherwise} \end{cases}$

•
$$x_j > \mathbf{0} \Rightarrow z_j = 1$$

•
$$x_j \ge \epsilon \Rightarrow z_j = 1$$

• $\sum_{j \in N} a_j x_j \ge b \Rightarrow \delta = 1 \Leftrightarrow \sum_{j \in N} a_j x_j - (M + -\epsilon + \epsilon) \delta \le b - \epsilon$

•
$$x_j \leq M z_j$$

- Add constraints
 - $x_j \leq M_j z_j \quad \forall j = 1, 2, \dots 5.$
 - Note: There is no need for all of the M's to be the same.
 - $\sum_{j=1}^5 z_j \leq 2.$

Relaxation Review Good Formulations Big M's

What about the M's?

- $M_i = 10^4$ $\forall i = 1, 2, \dots 5?$
- Can we make M_i smaller?

A <mark>Key</mark> Point.

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations Branch and Bound Variable Selection Node Selection	Relaxation Review Good Formulations Big M's

• Let's look at the geometry.

$$P = \{ x \in \mathbb{R}_+, z \in \{0, 1\} : x \le Mz, x \le u \}$$

$$LP(P) = \{x \in \mathbb{R}_+, z \in [0, 1] : x \le Mz, x \le u\}$$

$$\operatorname{conv}(P) = \{ x \in \mathbb{R}_+, z \in \{0, 1\} : x \le uz \}$$

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations Branch and Bound Variable Selection Node Selection	Relaxation Review Good Formulations Big M's

Relaxation Review Good Formulations Big M's

UFL: Uncapacitated Facility Location

- Facilities: I
- Customers: J

- Which formulation is to be preferred?
- I = J = 40. Costs random.
 - Formulation 1. 53,121 seconds, optimal solution.
 - Formulation 2. 2 seconds, optimal solution.

Feeling Lucky?

- What if we don't get an integer solution to the relaxation?
- Branch and Bound!

- Lots of ways to divide search space. People usually...
 - Partition the search space into two pieces
 - Change bounds on the variables to do this. The LP relaxations remain easy to solve.

The Algorithm Bounding Branching

Branch-and-Bound

- Branch-and-bound is a divide-and-conquer approach.
- Suppose S is the feasible region for some MILP: $z_{IP} \stackrel{\text{def}}{=} \max_{x \in S} c^T x$
- Consider a partition of S into subsets $S_1, \ldots S_k$. Then

$$\max_{x \in S} c^T x = \max_{\{1 \le i \le k\}} \{\max_{x \in S_i} c^T x\}$$

- In other words, we can optimize over each subset separately.
- Dividing the original problem into subproblems is called branching

The Importance of Bounding

- Any feasible solution to the problem provides an lower bound L on the optimal solution value. ($\hat{x} \in S \Rightarrow z_{IP} \ge c^T \hat{x}$).
 - We can use approximate methods to obtain an lower bound.
- After branching, we obtain an upper bound $u(S_i)$ on the optimal solution value for each of the subproblems. (Why?)
 - Overall Bound: $U^t = \max_i u(S_i)$
- If $u(S_i) \leq L$, then we don't need to consider subproblem *i*.
- We get the upper bound by solving the LP relaxation, but there are other ways too.

The Algorithm Bounding Branching

LP-based Branch and Bound

- In LP-based branch and bound, we first solve the LP relaxation of the original problem. The result is one of the following:
 - **1** The LP in unbounded \Rightarrow the MILP is unbounded. $(z_{IP} = \infty)$
 - **2** The LP is infeasible \Rightarrow MILP is infeasible. ($S = \emptyset$)
 - **③** We obtain a feasible solution for the MILP \Rightarrow it is an optimal solution to MILP. ($L = z_{IP} = U$)
 - **④** We obtain an optimal solution to the LP that is not feasible for the MILP \Rightarrow Upper Bound. $(U = z_{LP})$.
- In the first three cases, we are finished.
- In the final case, we must **branch** and recursively solve the resulting subproblems.

Terminology

- If we picture the subproblems graphically, they form a search tree.
- Eliminating a problem from further consideration is called **pruning**.
- The act of bounding and then branching is called **processing**.
- A subproblem that has not yet been processed is called a **candidate**.
- The set of candidates is the **candidate list**.

LP-based Branch and Bound Algorithm

- To start, derive an lower bound L using a heuristic method (if possible).
- Put the original problem on the candidate list.
- **③** Select a problem S from the candidate list and solve the LP relaxation to obtain the bound u(S)
 - If the LP is infeasible \Rightarrow node can be pruned.
 - Otherwise, if $u(S) \leq L \Rightarrow$ node can be pruned.
 - Otherwise, if u(S) > L and the solution is feasible for the MILP ⇒ set L ← u(S).
 - Otherwise, branch. Add the new subproblems to the list.
- If the candidate list in nonempty, go to Step 2. Otherwise, the algorithm is completed.

Choices in Branch and Bound. Bounding

- Lower Bound
 - This is often called a primal heuristic.
 - Rounding, Diving, etc.
 - Often heuristics are problem dependent.
 - How do you communicate your heuristic to the IP solver?
 - Can use *metaheuristics*—Simulated Annealing, Tabu Search, Genetic Algorithms, etc...
- Upper Bound
 - Tighter is better!
 - You read about one way to tighten the relaxation—Preprocessing.

You read N&W, I.1, right!?

• We will spend a good amount of time speaking of ways to "tighten" the LP relaxation.

The Algorithr Bounding Branching

Choices in Branch-and-Bound: Branching

- If our "relaxed" solution $\hat{x} \notin S$, we must decide how to partition the search space into smaller subproblems
- Our strategy for doing this is called a Branching Rule
 - Branching wisely is very important
 - It is most important at the top of the branch and bound tree
- $\hat{x} \notin S \Rightarrow \exists j \in N \text{ such that } f_j \stackrel{\text{def}}{=} \hat{x}_j \lfloor \hat{x}_j \rfloor > 0$
- So create two problems with additional constraints
 - **1** $x_j \leq \lfloor \hat{x}_j \rfloor$ on one branch
 - **2** $x_j \ge \lceil \hat{x}_j \rceil$ on other branch

More Branching Info

- In the case of 0-1 IP, this dichotomy reduces to

 - 2 $x_j = 1$ on other branch
- In general IP, branching on a variable involves imposing new bound constraints in each one of the subproblems.
- This is easily handled implicitly in most cases. Why?
- This is (by far) the most common method of branching.

The Algorithr Bounding Branching

Let's Do An Example

maximize

 $z = 5x_1 + 4x_2 + x_3 + 7x_4$

subject to

$x_1 + x_2$	\leq	5
$x_{3} + x_{4}$	\leq	3
$x_1 - x_3 + x_4$	\leq	16
$10x_1 + 6x_2$	\leq	45
x_1, x_2	\geq	0
x_1, x_2, x_3, x_4	\in	\mathbb{Z}

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations Branch and Bound Variable Selection Node Selection	The Algorithm Bounding Branching

A Software Interlude...

- In this class, you will do computing.
- It will be easiest if you do your computing in COR@L Lab
 - Computation Optimization Research @ Lehigh
 - Room 362 Mohler
 - http://coral.ie.lehigh.edu
- For those of you who are Linux Neophytes, I want to schedule a training session.
- I will be passing around a signup sheet...
 - Name
 - 2 Do you want to take training class?
 - What three hour periods in the next 7-10 days can you not do a traning class?

The Algorithn Bounding Branching

More Software Stuff

- COR@L has lots of cool IP software like, CPLEX, XPRESS-MP, COIN-OR, MINTO, symphony, and AMPL
- More software "coming soon".
- For the time being, I'll assume you know AMPL, since I need to use *something* to demonstrate branch and bound

Solving the Example with B&B

• Your picture(s) here...

Why? Strong Branching Pseudo Costs Branching Finale

The Goal of Branching

- We want to divide the current problem into two or more subproblems that are easier than the original.
- We would like to choose the branching that minimizes the sum of the solution times of all the created subproblems.
 - This is the solution of the *entire subtree* rooted at the node.
- How do we know how long it will take to solve each subproblem?
 - Answer: We don't.
 - Idea: Try to predict the difficulty of a subproblem.

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations	Why?
Branch and Bound	Strong Branching
Variable Selection	Pseudo Costs
Node Selection	Branching Finale

A Good Branching

- Imagine that when I branch, the value of the linear programming relaxation changes *a lot*!
 - I can prune the node, or should be able to prune it quickly
- So, for a given potential branching, I would like to know the upper bound that would result from processing each subproblem.
 - The branching that changes these bounds "the most" is the best branching.

Why? Strong Branching Pseudo Costs Branching Finale

Predicting the Difficulty of a Subproblem

- How can I (quickly?) estimate the upper bounds that would result?
 - Partially solve the LP relaxation in each of the subproblems by performing a given number of dual simplex pivots.
 - Since we are using dual simplex, this gives us a valid bound. Why?
- This technique is usually called **strong branching**.
- A cheaper alternative is to use **pseudo-costs**.

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations Branch and Bound	Why? Strong Branching
Variable Selection	Pseudo Costs
Node Selection	Branching Finale

Strong Branching Details

- In the case of strong branching, it may be too expensive to evaluate all possible candidates for branching.
- How do we choose the candidates to evaluate?
 - We choose them based on an estimate of their effectiveness that is very cheap to evaluate.
 - One method is to choose inequalities whose left hand side is furthest from being an integer
 - For 0-1 variables, this means those whose values are closest to 0.5.
 - We might also account for the size of the objective function coefficient.

Why? **Strong Branching** Pseudo Costs Branching Finale

Strong Branching Details

- The number of candidates to evaluate must be determined empirically.
 - Effective branching is more important near the top of the tree.
 - We might want to evaluate more candidates near the top of the tree.
 - More candidates almost always results in smaller trees, but the expense eventually causes an increase in running time.
- How many dual simplex pivots should we do?

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations Branch and Bound	Why? Strong Branching
Variable Selection	Pseudo Costs
Nodo Soloction	Branching Finalo

Using Pseudo Costs

- The **pseudo-cost** of a variable is an estimate of the per-unit change in the objective function from forcing the value of the variable to be rounded up or down. Like a gradient!
- For each variable x_j, we maintain an up and a down pseudo-cost, denoted P⁺_i and P⁻_i.
- Let f_j be the current (fractional) value of variable x_j .
- An estimate of the change in objective function in each of the subproblems resulting from branching on x_j is given by

$$D_j^+ = P_j^+ (1 - f_j)$$

 $D_j^- = P_j^- f_j.$

• The question is how to get the pseudo-costs.

Why? Strong Branching **Pseudo Costs** Branching Finale

Obtaining and Updating Pseudo Costs

- Typically, the pseudo-costs are obtained from empirical data.
 - We observe the actual change that occurs after branching on each one of the variables and use that as the pseudo-cost.
- We can either choose to update the pseudo-cost as the calculation progresses or just use the first pseudo-cost found.
 - Several authors have noted that the pseudo-costs tend to remain fairly constant.
- The only remaining question is how to initialize. Possibilities:
 - Use the objective function coefficient.
 - Use the average of all known pseudo-costs.
 - Explicity initialize the pseudocosts using strong branching

What Does "The Most" Mean

- If we are doing typical variable branching, we create two children and have estimates of the amount the bound will change for each child
- How do we combine the two nunbers together to form one measure of goodness for a potential branch?
- Suggest to branch on the variable

 $j^* = \arg \max\{\alpha_1 \min\{D_j^+, D_j^-\} + \alpha_2 \max\{D_j^+, D_j^-\}.$

 α₂ = 0 ⇒ we want to maximize the minimum degradation on the branch

Why? Strong Branching Pseudo Costs Branching Finale

Putting it All Together

- Here are the choices we've discussed in branching:
 - Should we use strong branching or pseudo-costs?
 - Pseudo-costs
 - How should we initialize?
 - How should we update?
 - Strong branching
 - How do we choose the list of branching candidates?
 - How many pivots to do on each?
 - Once we have the bound estimates, how do we choose the final branching?
- Ultimately, we must use empirical evidence and intuition to answer these questions.

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations	Why?
Branch and Bound	Strong Branching
Variable Selection	Pseudo Costs
Node Selection	Branching Finale

Other important branching features

- Priority Order
 - You often want to order the variables, so that important variables are branched on first.
 - First decide which warehouses to open, then decide the vehicle routing
 - Branch on earlier (time-based) decisions first.
- GUB or SOS Branching

Choices in Branch and Bound Node Selection

- Another important parameter to consider in branch and bound is the strategy for selecting the next subproblem to be processed.
- In choosing a search strategy, we might consider two different goals:
 - Minimizing overall solution time.
 - Finding a good feasible solution quickly.

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations	Why?
Branch and Bound	Best First
Variable Selection	Depth-First
Node Selection	Best Estimate

The Best First Approach

- One way to minimize overall solution time is to try to minimize the size of the search tree.
 - We can achieve this choose the subproblem with the best bound (highest upper bound if we are maximizing).
- A candidate node is said to be *critical* if its bound exceeds the value of an optimal solution solution to the IP.
- Every critical node will be processed no matter what the search order.
- Best first is guaranteed to examine only critical nodes, thereby minimizing the size of the search tree.

Why? **Best First** Depth-First Best Estimate

Drawbacks of Best First

- Doesn't necessarily find feasible solutions quickly
 - Feasible solutions are "more likely" to be found deep in the tree
- Node setup costs
 - The linear program being solved may change quite a bit more one iteration to the next
- Memory usage.
 - It can require a lot of memory to store the candidate list

Jeff Linderoth	IE418 Integer Programming
IP and Relaxations	Why?
Branch and Bound	Best First
Variable Selection	Depth-First
Node Selection	Best Estimate

The Depth First Approach

- The depth first approach is to always choose the deepest node to process next.
 - Just dive until you prune, then back up and go the other way
- This avoids most of the problems with best first:
 - The number of candidate nodes is minimized (saving memory).
 - The node set-up costs are minimized
 - LPs change very little from one iteration to the next
 - Feasible solutions are usually found quickly
- Unfortunately, if the initial lower bound is not very good, then we may end up processing lots of non-critical nodes.
- We want to avoid this extra expense if possible.

Why? Best First Depth-First Best Estimate

Estimate-based Strategies: Finding Feasible Solutions

- Let's focus on a strategy for finding feasible solutions quickly.
- One approach is to try to estimate the value of the optimal solution to each subproblem and pick the best.
- For any subproblem S_i , let
 - $s^i = \sum_j \min(f_j, 1 f_j)$ be the sum of the integer infeasibilities,
 - z_U^i be the upper bound, and
 - z_L the global lower bound.
- Also, let S_0 be the root subproblem.
- The best projection criterion is $E_i = z_U^i + \left(\frac{z_L z_U^0}{s^0}\right) s^i$
- The best estimate criterion uses the pseudo-costs to obtain $E_i = z_U^i + \sum_j \min\left(P_j^- f_j, P_j^+ (1 - f_j)\right)$

Jeff Linderoth	IE418 Integer Programming	
IP and Relaxations Branch and Bound Variable Selection Node Selection	Why? Best First Depth-First Best Estimate	

Next Time

- Software for solving IPs
- A few more examples of solving
- Start working on the homework!
 - I'll probably give you more homework to do

Why? Best First Depth-First Best Estimate

Read Please!

- Earthshattering, Groundbreaking, Seminal Papers to read.
- (They are on the course web page).
 - J. T. Linderoth and M. W. P. Savelsbergh, "A Computational Study of Branch and Bound Search Strategies for Mixed Integer Programming," INFORMS Journal on Computing, 11 (1999) pp. 173-187.
 - A. Atamtürk and M. W. P. Savelsbergh, "Integer Programming Software Systems", *Annals of Operations Research*, forthcoming.
 - J. T. Linderoth and T. K. Ralphs, "Noncommercial Software for Mixed-Integer Linear Programming", Technical Report 04T-023, Department of Industrial and Systems Engineering, Lehigh University, December, 2004.
- If you don't think I'll ask questions about these papers on the mid-term, Just Try Me! :-)

Jeff Linderoth IE418 Integer Programming