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Review

Name an application for modeling a set covering problem?

What is a set-covering problem?

What is TSP?

How to model “connected”?

What is an SOS2

What are they used for?

Recite the “slide of tricks” from memory.

Any questions on the homeworks?
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A Pure Integer Program

z(S) = max{cT x : x ∈ S}, S = {x ∈ Zn
+ : Ax ≤ b}

S = {(x1, x2) ∈ Z2
+ : 6x1 + x2 ≤ 15,

5x1 + 8x2 ≤ 20, x2 ≤ 2}
= {(0, 0), (0, 1), (0, 2), (1, 0),

(1, 1), (1, 2), (2, 0)}

Note: z(S) = z(conv(S))

What is conv(S)??
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Review

zS
def
= min f(x) : x ∈ S

zT
def
= min f(x) : x ∈ T

S

T

What can we say about zS

and zT ?

If x∗T = arg min f(x) : x ∈ T

And x∗T ∈ S, then

x∗T = arg min f(x) : x ∈ S
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How to Solve Integer Programs?

Relaxations!

Ŝ ⊇ S ⇒ z(S) ≤ z(Ŝ)
x̂ optimal with Ŝ, x̂ ∈ S ⇒ x̂ optimal with S.
People commonly use the linear programming relaxation:

z(LP (S)) = max{cT x : x ∈ LP (S)},
LP (S) = {x ∈ Rn

+ : Ax ≤ b}

If LP (S) = conv(S), we are done.

We need only know conv(S) in the direction of c.

The “closer” LP (S) is to conv(S) the better.
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GREAT Formulations
There are a number of integer programs for which
LP (S) = conv(S).

The Assignment Problem
Spanning Tree Problem
Matching Problem

S = {x ∈ {0, 1}|N |×|N | |
∑
i∈N

xij = 1 ∀j ∈ N,
∑
j∈N

xij = 1 ∀i ∈ N}

LP (S) = {x ∈ R|N |×|N |
+ |

∑
i∈N

xij = 1 ∀j ∈ N,
∑
j∈N

xij = 1 ∀i ∈ N}

conv(S) = LP (S)
We can solve the (IP) Assignment problem by solving its LP
relaxation.

Why is this not surprising?

Jeff Linderoth IE418 Integer Programming



IP and Relaxations
Branch and Bound
Variable Selection

Node Selection

Relaxation Review
Good Formulations
Big M’s

Solving IPs—The 3 Most Important Things

1 Formulation

2 Formulation

3 Formulation

PPP (Production Planning Problem).

Suppose we wish to add the constraint that we wish to make
at most two products.

(At most two of the five xj can be positive).
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Short Modeling Review

zj =

{
1 Make product j
0 Otherwise

xj > 0⇒ zj = 1
xj ≥ ε⇒ zj = 1∑

j∈N ajxj ≥ b⇒ δ = 1⇔
∑

j∈N ajxj−(M+−ε+ε)δ ≤ b−ε
xj ≤Mzj

Add constraints
xj ≤Mjzj ∀j = 1, 2, . . . 5.

Note: There is no need for all of the M ’s to be the same.∑5
j=1 zj ≤ 2.
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What about the M’s?

Mi = 104 ∀i = 1, 2, . . . 5?

Can we make Mi smaller?

12x1 + 20x2 + 0x3 + 25x4 + 15x5 ≤ 288 (Grinding)

10x1 + 8x2 + 16x3 + 0x4 + 0x5 ≤ 192 (Drilling)

20x1 + 20x2 + 20x3 + 20x4 + 20x5 ≤ 384 Final Assembly

xi ≥ 0 ∀i = 1, 2, . . . 5

A Key Point.

Small M’s good, Big M’s baaaaaaaaaaaaaaaaaaaaaad!
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Small M’s Good. Big M’s Baaaaaaaaaaaaaaaaaad!

Let’s look at the geometry.

P = {x ∈ R+, z ∈ {0, 1} : x ≤Mz, x ≤ u}

LP (P ) = {x ∈ R+, z ∈ [0, 1] : x ≤Mz, x ≤ u}

conv(P ) = {x ∈ R+, z ∈ {0, 1} : x ≤ uz}
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P

z

M

u

x

0 1

P = {x ∈ R+, z ∈ {0, 1} : x ≤Mz, x ≤ u}
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LP Versus Conv

z

M

u

x

0 1

LP (P ) = {x ∈ R+, z ∈ [0, 1] : x ≤Mz, x ≤ u}

z

M

u

x

0 1

conv(P) = {x ∈ R+, z ∈ [0, 1] : x ≤ uz}

A Key Point.

If M = u, LP (P ) = conv(P )!
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UFL: Uncapacitated Facility Location
Facilities: I

Customers: J min
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

fijyij

∑
j∈N

yij = 1 ∀i ∈ I

∑
i∈I

yij ≤ |I|xj ∀j ∈ J (4)

OR yij ≤ xj ∀i ∈ I, j ∈ J (5)

Which formulation is to be preferred?
I = J = 40. Costs random.

Formulation 1. 53,121 seconds, optimal solution.
Formulation 2. 2 seconds, optimal solution.
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Feeling Lucky?

What if we don’t get an integer solution to the relaxation?

Branch and Bound!

LP Sol’n
Lots of ways to divide search space.
People usually...

Partition the search space into two
pieces
Change bounds on the variables to
do this. The LP relaxations remain
easy to solve.
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Branch-and-Bound

Branch-and-bound is a divide-and-conquer approach.

Suppose S is the feasible region for some MILP:

zIP
def
= maxx∈S cT x

Consider a partition of S into subsets S1, . . . Sk. Then

max
x∈S

cT x = max
{1≤i≤k}

{max
x∈Si

cT x}

In other words, we can optimize over each subset separately.

Dividing the original problem into subproblems is called
branching
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The Importance of Bounding

Any feasible solution to the problem provides an lower bound
L on the optimal solution value. (x̂ ∈ S ⇒ zIP ≥ cT x̂).

We can use approximate methods to obtain an lower bound.

After branching, we obtain an upper bound u(Si) on the
optimal solution value for each of the subproblems. (Why?)

Overall Bound: U t = maxi u(Si)

If u(Si) ≤ L, then we don’t need to consider subproblem i.

We get the upper bound by solving the LP relaxation, but
there are other ways too.
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LP-based Branch and Bound

In LP-based branch and bound, we first solve the LP
relaxation of the original problem. The result is one of the
following:

1 The LP in unbounded ⇒ the MILP is unbounded. (zIP =∞)
2 The LP is infeasible ⇒ MILP is infeasible. (S = ∅)
3 We obtain a feasible solution for the MILP ⇒ it is an optimal

solution to MILP. (L = zIP = U)
4 We obtain an optimal solution to the LP that is not feasible

for the MILP ⇒ Upper Bound. (U = zLP ).

In the first three cases, we are finished.

In the final case, we must branch and recursively solve the
resulting subproblems.
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Terminology

If we picture the
subproblems graphically,
they form a search tree.

Eliminating a problem from
further consideration is
called pruning.

The act of bounding and
then branching is called
processing.

A subproblem that has not
yet been processed is called
a candidate.

The set of candidates is the
candidate list.
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LP-based Branch and Bound Algorithm
1 To start, derive an lower bound L using a heuristic method (if

possible).

2 Put the original problem on the candidate list.

3 Select a problem S from the candidate list and solve the LP
relaxation to obtain the bound u(S)

If the LP is infeasible ⇒ node can be pruned.
Otherwise, if u(S) ≤ L⇒ node can be pruned.
Otherwise, if u(S) > L and the solution is feasible for the
MILP ⇒ set L← u(S).
Otherwise, branch. Add the new subproblems to the list.

4 If the candidate list in nonempty, go to Step 2. Otherwise, the
algorithm is completed.

The “Global” upper bound

U t = maxS is in candidate list at step t u(parent(S))
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Choices in Branch and Bound. Bounding

Lower Bound

This is often called a primal heuristic.
Rounding, Diving, etc.

Often heuristics are problem dependent.
How do you communicate your heuristic to the IP solver?

Can use metaheuristics—Simulated Annealing, Tabu Search,
Genetic Algorithms, etc...

Upper Bound

Tighter is better!
You read about one way to tighten the
relaxation—Preprocessing. You read N&W, I.1, right!?

We will spend a good amount of time speaking of ways to
“tighten” the LP relaxation.
Others include Lagrangian relaxation, duality-based, ...
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Choices in Branch-and-Bound: Branching

If our “relaxed” solution x̂ 6∈ S, we must decide how to
partition the search space into smaller subproblems

Our strategy for doing this is called a Branching Rule
Branching wisely is very important
It is most important at the top of the branch and bound tree

x̂ 6∈ S ⇒ ∃j ∈ N such that fj
def
= x̂j − bx̂jc > 0

So create two problems with additional constraints
1 xj ≤ bx̂jc on one branch
2 xj ≥ dx̂je on other branch
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More Branching Info

In the case of 0-1 IP, this dichotomy reduces to
1 xj = 0 on one branch
2 xj = 1 on other branch

In general IP, branching on a variable involves imposing new
bound constraints in each one of the subproblems.

This is easily handled implicitly in most cases. Why?

This is (by far) the most common method of branching.
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Let’s Do An Example

maximize
z = 5x1 + 4x2 + x3 + 7x4

subject to

x1 + x2 ≤ 5

x3 + x4 ≤ 3

x1 − x3 + x4 ≤ 16

10x1 + 6x2 ≤ 45

x1, x2 ≥ 0

x1, x2, x3, x4 ∈ Z
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A Software Interlude...

In this class, you will do computing.

It will be easiest if you do your computing in COR@L Lab

Computation Optimization Research @ Lehigh
Room 362 Mohler
http://coral.ie.lehigh.edu

For those of you who are Linux Neophytes, I want to schedule
a training session.

I will be passing around a signup sheet...
1 Name
2 Do you want to take training class?
3 What three hour periods in the next 7-10 days can you not do

a traning class?
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More Software Stuff

COR@L has lots of cool IP software like, CPLEX,
XPRESS-MP, COIN-OR, MINTO, symphony, and AMPL

More software “coming soon”.

For the time being, I’ll assume you know AMPL, since I need
to use something to demonstrate branch and bound
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Solving the Example with B&B
Your picture(s) here...
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The Goal of Branching

We want to divide the current problem into two or more
subproblems that are easier than the original.

We would like to choose the branching that minimizes the
sum of the solution times of all the created subproblems.

This is the solution of the entire subtree rooted at the node.

How do we know how long it will take to solve each
subproblem?

Answer: We don’t.
Idea: Try to predict the difficulty of a subproblem.
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A Good Branching

Imagine that when I branch, the value of the linear
programming relaxation changes a lot!

I can prune the node, or should be able to prune it quickly

So, for a given potential branching, I would like to know the
upper bound that would result from processing each
subproblem.

The branching that changes these bounds “the most” is the
best branching.
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Predicting the Difficulty of a Subproblem

How can I (quickly?) estimate the upper bounds that would
result?

Partially solve the LP relaxation in each of the subproblems by
performing a given number of dual simplex pivots.
Since we are using dual simplex, this gives us a valid bound.
Why?

This technique is usually called strong branching.

A cheaper alternative is to use pseudo-costs.
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Strong Branching Details

In the case of strong branching, it may be too expensive to
evaluate all possible candidates for branching.

How do we choose the candidates to evaluate?

We choose them based on an estimate of their effectiveness
that is very cheap to evaluate.
One method is to choose inequalities whose left hand side is
furthest from being an integer
For 0-1 variables, this means those whose values are closest to
0.5.
We might also account for the size of the objective function
coefficient.
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Strong Branching Details

The number of candidates to evaluate must be determined
empirically.

Effective branching is more important near the top of the tree.
We might want to evaluate more candidates near the top of
the tree.
More candidates almost always results in smaller trees, but the
expense eventually causes an increase in running time.

How many dual simplex pivots should we do?
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Using Pseudo Costs

The pseudo-cost of a variable is an estimate of the per-unit change
in the objective function from forcing the value of the variable to be
rounded up or down. Like a gradient!

For each variable xj , we maintain an up and a down pseudo-cost,
denoted P+

j and P−j .

Let fj be the current (fractional) value of variable xj .

An estimate of the change in objective function in each of the
subproblems resulting from branching on xj is given by

D+
j = P+

j (1− fj),

D−
j = P−j fj .

The question is how to get the pseudo-costs.
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Obtaining and Updating Pseudo Costs

Typically, the pseudo-costs are obtained from empirical data.

We observe the actual change that occurs after branching on
each one of the variables and use that as the pseudo-cost.

We can either choose to update the pseudo-cost as the
calculation progresses or just use the first pseudo-cost found.

Several authors have noted that the pseudo-costs tend to
remain fairly constant.

The only remaining question is how to initialize. Possibilities:

Use the objective function coefficient.
Use the average of all known pseudo-costs.
Explicity initialize the pseudocosts using strong branching
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What Does “The Most” Mean

If we are doing typical variable branching, we create two
children and have estimates of the amount the bound will
change for each child

How do we combine the two nunbers together to form one
measure of goodness for a potential branch?

Suggest to branch on the variable

j∗ = arg max{α1 min{D+
j , D−

j }+ α2 max{D+
j , D−

j }.

α2 = 0⇒ we want to maximize the minimum degradation on
the branch

(α1, α2) = (2, 1) seems pretty good
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Putting it All Together

Here are the choices we’ve discussed in branching:

Should we use strong branching or pseudo-costs?
Pseudo-costs

How should we initialize?
How should we update?

Strong branching

How do we choose the list of branching candidates?
How many pivots to do on each?

Once we have the bound estimates, how do we choose the
final branching?

Ultimately, we must use empirical evidence and intuition to
answer these questions.
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Other important branching features

Priority Order

You often want to order the variables, so that important
variables are branched on first.
First decide which warehouses to open, then decide the vehicle
routing
Branch on earlier (time-based) decisions first.

GUB or SOS Branching
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Choices in Branch and Bound Node Selection

Another important parameter to consider in branch and bound
is the strategy for selecting the next subproblem to be
processed.

In choosing a search strategy, we might consider two different
goals:

Minimizing overall solution time.
Finding a good feasible solution quickly.
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The Best First Approach

One way to minimize overall solution time is to try to
minimize the size of the search tree.

We can achieve this choose the subproblem with the best
bound (highest upper bound if we are maximizing).

A candidate node is said to be critical if its bound exceeds the
value of an optimal solution solution to the IP.

Every critical node will be processed no matter what the
search order.

Best first is guaranteed to examine only critical nodes, thereby
minimizing the size of the search tree.
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Drawbacks of Best First

Doesn’t necessarily find feasible solutions quickly

Feasible solutions are “more likely” to be found deep in the tree

Node setup costs

The linear program being solved may change quite a bit more
one iteration to the next

Memory usage.

It can require a lot of memory to store the candidate list
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The Depth First Approach

The depth first approach is to always choose the deepest node to
process next.

Just dive until you prune, then back up and go the other way

This avoids most of the problems with best first:

The number of candidate nodes is minimized (saving memory).
The node set-up costs are minimized

LPs change very little from one iteration to the next

Feasible solutions are usually found quickly

Unfortunately, if the initial lower bound is not very good, then we
may end up processing lots of non-critical nodes.

We want to avoid this extra expense if possible.
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Estimate-based Strategies: Finding Feasible
Solutions

Let’s focus on a strategy for finding feasible solutions quickly.

One approach is to try to estimate the value of the optimal
solution to each subproblem and pick the best.
For any subproblem Si, let

si =
∑

j min(fj , 1− fj) be the sum of the integer
infeasibilities,
zi
U be the upper bound, and

zL the global lower bound.

Also, let S0 be the root subproblem.

The best projection criterion is Ei = zi
U +

(
zL−z0

U

s0

)
si

The best estimate criterion uses the pseudo-costs to obtain

Ei = zi
U +

∑
j min

(
P−

j fj , P
+
j (1− fj)

)
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Next Time

Software for solving IPs

A few more examples of solving

Start working on the homework!

I’ll probably give you more homework to do
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Read Please!

Earthshattering, Groundbreaking, Seminal Papers to read.

(They are on the course web page).

J. T. Linderoth and M. W. P. Savelsbergh, ”A Computational
Study of Branch and Bound Search Strategies for Mixed
Integer Programming,” INFORMS Journal on Computing, 11
(1999) pp. 173-187.
A. Atamtürk and M. W. P. Savelsbergh, ”Integer
Programming Software Systems”, Annals of Operations
Research, forthcoming.
J. T. Linderoth and T. K. Ralphs, “Noncommercial Software for
Mixed-Integer Linear Programming”, Technical Report
04T-023, Department of Industrial and Systems Engineering,
Lehigh University, December, 2004.

If you don’t think I’ll ask questions about these papers on the
mid-term, Just Try Me! :-)
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