IE418: Integer Programming

Jeff Linderoth
Department of Industrial and Systems Engineering Lehigh University

2nd February 2005

Boring Stuff

- Extra Linux Class: 8AM-11AM, Wednesday February 9. Room ???
- Accounts and Passwords
- http://coral.ie.lehigh.edu has user information
- Please use ipxx account when solving your IP problems in COR@L!
- Use yppasswd to change your password
- Homework: Due 2/9. (One week warning)
- Make a copy of your answers before you hand them in
- Even better, use LTTEXto write up your answers!
- A special present for you!

Please don't call on me!

- Name some keys to solving integer programs
- Relaxations
- Formulation
- Formulation so the Relaxation is "good"
- Small 'M's good.
- Big M's baaaaaaaaaaaaaaaaaaaaad.......
- How does branch-and-bound work?

LP-based Branch and Bound Algorithm

(1) To start, derive an lower bound L using a heuristic method (if possible).
(2) Put the original problem on the candidate list.
(3) Select a problem S from the candidate list and solve the LP relaxation to obtain the bound $u(S)$

- If the LP is infeasible \Rightarrow node can be pruned.
- Otherwise, if $u(S) \leq L \Rightarrow$ node can be pruned.
- Otherwise, if $u(S)>L$ and the solution is feasible for the MILP \Rightarrow set $L \leftarrow u(S)$.
- Otherwise, branch. Add the new subproblems to the list.
(4) If the candidate list in nonempty, go to Step 2. Otherwise, the algorithm is completed.

Let's Do An Example

maximize

$$
z=5 x_{1}+4 x_{2}+x_{3}+7 x_{4}
$$

subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 5 \\
x_{3}+x_{4} & \leq 3 \\
x_{1}-x_{3}+x_{4} & \leq 16 \\
10 x_{1}+6 x_{2} & \leq 45 \\
x_{1}, x_{2} & \geq 0 \\
x_{1}, x_{2}, x_{3}, x_{4} & \in \mathbb{Z}
\end{aligned}
$$

Variable Selection

Node Selection

Solving the Example with B\&B

- Your picture(s) here...

The Goal of Branching

- We want to divide the current problem into two or more subproblems that are easier than the original.
- We would like to choose the branching that minimizes the sum of the solution times of all the created subproblems.
- This is the solution of the entire subtree rooted at the node.
- How do we know how long it will take to solve each subproblem?
- Answer: We don't.
- Idea: Try to predict the difficulty of a subproblem.

A Good Branching

- Imagine that when I branch, the value of the linear programming relaxation changes a lot!
- I can prune the node, or should be able to prune it quickly
- So, for a given potential branching, I would like to know the upper bound that would result from processing each subproblem.
- The branching that changes these bounds "the most" is the best branching.

Be Creative!

What are some ideas you have for deciding on a branching variable?

Predicting the Difficulty of a Subproblem

- How can I (quickly?) estimate the upper bounds that would result?
- Partially solve the LP relaxation in each of the subproblems by performing a given number of dual simplex pivots.
- Since we are using dual simplex, this gives us a valid bound. Why?
- This technique is usually called strong branching.
- A cheaper alternative is to use pseudo-costs.

Strong Branching Details

- In the case of strong branching, it may be too expensive to evaluate all possible candidates for branching.
- How do we choose the candidates to evaluate?
- We choose them based on an estimate of their effectiveness that is very cheap to evaluate.
- One method is to choose inequalities whose left hand side is furthest from being an integer
- For 0-1 variables, this means those whose values are closest to 0.5 .
- We might also account for the size of the objective function coefficient.

Strong Branching Details

- The number of candidates to evaluate must be determined empirically.
- Effective branching is more important near the top of the tree.
- We might want to evaluate more candidates near the top of the tree.
- More candidates almost always results in smaller trees, but the expense eventually causes an increase in running time.
- How many dual simplex pivots should we do?

Using Pseudo Costs

- The pseudo-cost of a variable is an estimate of the per-unit change in the objective function from forcing the value of the variable to be rounded up or down. Like a gradient!
- For each variable x_{j}, we maintain an up and a down pseudo-cost, denoted P_{j}^{+}and P_{j}^{-}.
- Let f_{j} be the current (fractional) value of variable x_{j}.
- An estimate of the change in objective function in each of the subproblems resulting from branching on x_{j} is given by

$$
\begin{aligned}
D_{j}^{+} & =P_{j}^{+}\left(1-f_{j}\right) \\
D_{j}^{-} & =P_{j}^{-} f_{j}
\end{aligned}
$$

- The question is how to get the pseudo-costs.

Obtaining and Updating Pseudo Costs

- Typically, the pseudo-costs are obtained from empirical data.
- We observe the actual change that occurs after branching on each one of the variables and use that as the pseudo-cost.
- We can either choose to update the pseudo-cost as the calculation progresses or just use the first pseudo-cost found.
- Several authors have noted that the pseudo-costs tend to remain fairly constant.
- The only remaining question is how to initialize. Possibilities:
- Use the objective function coefficient.
- Use the average of all known pseudo-costs.
- Explicity initialize the pseudocosts using strong branching

What Does "The Most" Mean

- If we are doing typical variable branching, we create two children and have estimates of the amount the bound will change for each child
- How do we combine the two nunbers together to form one measure of goodness for a potential branch?
- Suggest to branch on the variable

$$
j^{*}=\arg \max \left\{\alpha_{1} \min \left\{D_{j}^{+}, D_{j}^{-}\right\}+\alpha_{2} \max \left\{D_{j}^{+}, D_{j}^{-}\right\}\right.
$$

- $\alpha_{2}=0 \Rightarrow$ we want to maximize the minimum degradation on the branch
- $\left(\alpha_{1}, \alpha_{2}\right)=(2,1)$ seems pretty good

Putting it All Together

- Here are the choices we've discussed in branching:
- Should we use strong branching or pseudo-costs?
- Pseudo-costs
- How should we initialize?
- How should we update?
- Strong branching
- How do we choose the list of branching candidates?
- How many pivots to do on each?
- Once we have the bound estimates, how do we choose the final branching?
- Ultimately, we must use empirical evidence and intuition to answer these questions.

Priorities

How Much Do You Know?

You are smarter than integer programming!

- If you have problem specific knowledge, use it to determine which variable to branch ong
- Branch on the important variables first
- First decide which warehouses to open, then decide the vehicle routing
- Branch on earlier (time-based) decisions first.
- There are mechanisms for giving the variables a priority order, so that if two variables are fractional, the one with the high priority is branched on first
- Or, first branch on all these variables before you branch on the next class, etc.

GUB/SOS1 Branching

- $x_{j} \in\{0,1\} \forall j$

$$
\sum_{j=1}^{10000} x_{j}=1
$$

Which branching do you think would be better?

(1) $x_{1}=1 \& x_{1}=0\left(\Rightarrow \sum_{j=2}^{10000}=1\right)$, or
(2) $\sum_{j=1}^{500} x_{j}=1 \& \sum_{j=501}^{10000} x_{j}=1$

- The answer is It depends
- But the answer is almost assuredly (2).
- It is probably even better to look at the (infeasible) LP relaxation and "put $1 / 2$ on each side" (Just don't break it in tho middla)

Jeff Linderoth

Variable Selection
Node Selection

```
IE418 Integer Programming Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS
```


SOS2 Branching

- $\left\{\lambda_{1}, \lambda_{2}, \ldots \lambda_{100}\right\}$ is an SOS2
- Suppose:
- $\lambda_{1}=0.2$
- $\lambda_{6}=0.1$
- $\lambda_{8}=0.3$
- $\lambda_{10}=0.1$
- $\lambda_{17}=0.05$
- $\lambda_{99}=0.25$

The $\$ 64$ Question

How would you branch?

- If $\lambda_{k}>0$, then feasible solutions have
$\lambda_{1}=\cdots=\lambda_{k-1}=0$, or
$\lambda_{k+1}=\cdots=\lambda_{100}=0$

- Plus the (infeasible) point is excluded on both branches

Choices in Branch and Bound Node Selection

- Another important parameter to consider in branch and bound is the strategy for selecting the next subproblem to be processed.
- In choosing a search strategy, we might consider two different goals:
- Minimizing overall solution time.
- Finding a good feasible solution quickly.

```
IE418 Integer Programming

\section*{The Best First Approach}
- One way to minimize overall solution time is to try to minimize the size of the search tree.
- We can achieve this choose the subproblem with the best bound (highest upper bound if we are maximizing).
- A candidate node is said to be critical if its bound exceeds the value of an optimal solution solution to the IP.
- Every critical node will be processed no matter what the search order.
- Best first is guaranteed to examine only critical nodes, thereby minimizing the size of the search tree.

\section*{Drawbacks of Best First}
- Doesn't necessarily find feasible solutions quickly
- Feasible solutions are "more likely" to be found deep in the tree
- Node setup costs
- The linear program being solved may change quite a bit more one iteration to the next
- Memory usage.
- It can require a lot of memory to store the candidate list

\section*{The Depth First Approach}
- The depth first approach is to always choose the deepest node to process next.
- Just dive until you prune, then back up and go the other way
- This avoids most of the problems with best first:
- The number of candidate nodes is minimized (saving memory).
- The node set-up costs are minimized
- LPs change very little from one iteration to the next
- Feasible solutions are usually found quickly
- Unfortunately, if the initial lower bound is not very good, then we may end up processing lots of non-critical nodes.
- We want to avoid this extra expense if possible.

\section*{Estimate-based Strategies: Finding Feasible}

\section*{Solutions}
- Let's focus on a strategy for finding feasible solutions quickly.
- One approach is to try to estimate the value of the optimal solution to each subproblem and pick the best.
- For any subproblem \(S_{i}\), let
- \(s^{i}=\sum_{j} \min \left(f_{j}, 1-f_{j}\right)\) be the sum of the integer infeasibilities,
- \(z_{U}^{i}\) be the upper bound, and
- \(z_{L}\) the global lower bound.
- Also, let \(S_{0}\) be the root subproblem.
- The best projection criterion is \(E_{i}=z_{U}^{i}+\left(\frac{z_{L}-z_{U}^{0}}{s^{0}}\right) s^{i}\)
- The best estimate criterion uses the pseudo-costs to obtain \(E_{i}=z_{U}^{i}+\sum_{j} \min \left(P_{j}^{-} f_{j}, P_{j}^{+}\left(1-f_{j}\right)\right)\)
- You should read (as review, and for more information) N\&W II.4.1, II.4.2
- Introduction to IP software
- Who knows what an MPS file is?```

