
Variable Selection
Node Selection

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

2nd February 2005

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Boring Stuff

Extra Linux Class: 8AM–11AM, Wednesday February 9.
Room ???

Accounts and Passwords

http://coral.ie.lehigh.edu has user information
Please use ipxx account when solving your IP problems in
COR@L!
Use yppasswd to change your password

Homework: Due 2/9. (One week warning)

Make a copy of your answers before you hand them in
Even better, use LATEXto write up your answers!
A special present for you!

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Please don’t call on me!

Name some keys to solving integer programs

Relaxations
Formulation
Formulation so the Relaxation is “good”

Small ’M’s good.

Big M’s baaaaaaaaaaaaaaaaaaaad.......

How does branch-and-bound work?

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

LP-based Branch and Bound Algorithm

1 To start, derive an lower bound L using a heuristic method (if
possible).

2 Put the original problem on the candidate list.

3 Select a problem S from the candidate list and solve the LP
relaxation to obtain the bound u(S)

If the LP is infeasible ⇒ node can be pruned.
Otherwise, if u(S) ≤ L⇒ node can be pruned.
Otherwise, if u(S) > L and the solution is feasible for the
MILP ⇒ set L← u(S).
Otherwise, branch. Add the new subproblems to the list.

4 If the candidate list in nonempty, go to Step 2. Otherwise, the
algorithm is completed.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Let’s Do An Example

maximize
z = 5x1 + 4x2 + x3 + 7x4

subject to

x1 + x2 ≤ 5

x3 + x4 ≤ 3

x1 − x3 + x4 ≤ 16

10x1 + 6x2 ≤ 45

x1, x2 ≥ 0

x1, x2, x3, x4 ∈ Z

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Solving the Example with B&B
Your picture(s) here...

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

The Goal of Branching

We want to divide the current problem into two or more
subproblems that are easier than the original.

We would like to choose the branching that minimizes the
sum of the solution times of all the created subproblems.

This is the solution of the entire subtree rooted at the node.

How do we know how long it will take to solve each
subproblem?

Answer: We don’t.
Idea: Try to predict the difficulty of a subproblem.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

A Good Branching

Imagine that when I branch, the value of the linear
programming relaxation changes a lot!

I can prune the node, or should be able to prune it quickly

So, for a given potential branching, I would like to know the
upper bound that would result from processing each
subproblem.

The branching that changes these bounds “the most” is the
best branching.

Be Creative!

What are some ideas you have for deciding on a branching vari-
able?

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

Predicting the Difficulty of a Subproblem

How can I (quickly?) estimate the upper bounds that would
result?

Partially solve the LP relaxation in each of the subproblems by
performing a given number of dual simplex pivots.
Since we are using dual simplex, this gives us a valid bound.
Why?

This technique is usually called strong branching.

A cheaper alternative is to use pseudo-costs.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

Strong Branching Details

In the case of strong branching, it may be too expensive to
evaluate all possible candidates for branching.

How do we choose the candidates to evaluate?

We choose them based on an estimate of their effectiveness
that is very cheap to evaluate.
One method is to choose inequalities whose left hand side is
furthest from being an integer
For 0-1 variables, this means those whose values are closest to
0.5.
We might also account for the size of the objective function
coefficient.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

Strong Branching Details

The number of candidates to evaluate must be determined
empirically.

Effective branching is more important near the top of the tree.
We might want to evaluate more candidates near the top of
the tree.
More candidates almost always results in smaller trees, but the
expense eventually causes an increase in running time.

How many dual simplex pivots should we do?

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

Using Pseudo Costs

The pseudo-cost of a variable is an estimate of the per-unit
change in the objective function from forcing the value of the
variable to be rounded up or down. Like a gradient!
For each variable xj , we maintain an up and a down
pseudo-cost, denoted P+

j and P−
j .

Let fj be the current (fractional) value of variable xj .
An estimate of the change in objective function in each of the
subproblems resulting from branching on xj is given by

D+
j = P+

j (1− fj),

D−
j = P−

j fj .

The question is how to get the pseudo-costs.
Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

Obtaining and Updating Pseudo Costs

Typically, the pseudo-costs are obtained from empirical data.

We observe the actual change that occurs after branching on
each one of the variables and use that as the pseudo-cost.

We can either choose to update the pseudo-cost as the
calculation progresses or just use the first pseudo-cost found.

Several authors have noted that the pseudo-costs tend to
remain fairly constant.

The only remaining question is how to initialize. Possibilities:

Use the objective function coefficient.
Use the average of all known pseudo-costs.
Explicity initialize the pseudocosts using strong branching

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

What Does “The Most” Mean

If we are doing typical variable branching, we create two
children and have estimates of the amount the bound will
change for each child

How do we combine the two nunbers together to form one
measure of goodness for a potential branch?

Suggest to branch on the variable

j∗ = arg max{α1 min{D+
j , D−

j }+ α2 max{D+
j , D−

j }.

α2 = 0⇒ we want to maximize the minimum degradation on
the branch

(α1, α2) = (2, 1) seems pretty good

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

Putting it All Together

Here are the choices we’ve discussed in branching:

Should we use strong branching or pseudo-costs?
Pseudo-costs

How should we initialize?
How should we update?

Strong branching

How do we choose the list of branching candidates?
How many pivots to do on each?

Once we have the bound estimates, how do we choose the
final branching?

Ultimately, we must use empirical evidence and intuition to
answer these questions.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

Priorities
How Much Do You Know?

You are smarter than integer programming!

If you have problem specific knowledge, use it to determine
which variable to branch ong

Branch on the important variables first
First decide which warehouses to open, then decide the vehicle
routing
Branch on earlier (time-based) decisions first.

There are mechanisms for giving the variables a priority order,
so that if two variables are fractional, the one with the high
priority is branched on first

Or, first branch on all these variables before you branch on the
next class, etc.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

GUB/SOS1 Branching

xj ∈ {0, 1} ∀j

10000∑
j=1

xj = 1

Which branching do you think would be better?

1 x1 = 1 & x1 = 0(⇒
∑10000

j=2 = 1), or

2
∑500

j=1 xj = 1 &
∑10000

j=501 xj = 1

The answer is It depends
But the answer is almost assuredly (2).
It is probably even better to look at the (infeasible) LP
relaxation and “put 1/2 on each side” (Just don’t break it in
the middle).

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Strong Branching
Pseudo Costs
Branching Finale
Priorities and SOS

SOS2 Branching

{λ1, λ2, ...λ100} is an SOS2

Suppose:

λ1 = 0.2
λ6 = 0.1
λ8 = 0.3
λ10 = 0.1
λ17 = 0.05
λ99 = 0.25

The $64 Question

How would you branch?

If λk > 0, then feasible
solutions have
λ1 = · · · = λk−1 = 0, or
λk+1 = · · · = λ100 = 0

Pk−1
j=1 λj = 0

Pn
j=k+1 λj = 0

Plus the (infeasible) point is
excluded on both branches.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Best First
Depth-First
Best Estimate

Choices in Branch and Bound Node Selection

Another important parameter to consider in branch and bound
is the strategy for selecting the next subproblem to be
processed.

In choosing a search strategy, we might consider two different
goals:

Minimizing overall solution time.
Finding a good feasible solution quickly.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Best First
Depth-First
Best Estimate

The Best First Approach

One way to minimize overall solution time is to try to
minimize the size of the search tree.

We can achieve this choose the subproblem with the best
bound (highest upper bound if we are maximizing).

A candidate node is said to be critical if its bound exceeds the
value of an optimal solution solution to the IP.

Every critical node will be processed no matter what the
search order.

Best first is guaranteed to examine only critical nodes, thereby
minimizing the size of the search tree.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Best First
Depth-First
Best Estimate

Drawbacks of Best First

Doesn’t necessarily find feasible solutions quickly

Feasible solutions are “more likely” to be found deep in the tree

Node setup costs

The linear program being solved may change quite a bit more
one iteration to the next

Memory usage.

It can require a lot of memory to store the candidate list

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Best First
Depth-First
Best Estimate

The Depth First Approach

The depth first approach is to always choose the deepest node to
process next.

Just dive until you prune, then back up and go the other way

This avoids most of the problems with best first:

The number of candidate nodes is minimized (saving memory).
The node set-up costs are minimized

LPs change very little from one iteration to the next

Feasible solutions are usually found quickly

Unfortunately, if the initial lower bound is not very good, then we
may end up processing lots of non-critical nodes.

We want to avoid this extra expense if possible.

Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Best First
Depth-First
Best Estimate

Estimate-based Strategies: Finding Feasible
Solutions

Let’s focus on a strategy for finding feasible solutions quickly.

One approach is to try to estimate the value of the optimal
solution to each subproblem and pick the best.
For any subproblem Si, let

si =
∑

j min(fj , 1− fj) be the sum of the integer
infeasibilities,
zi
U be the upper bound, and

zL the global lower bound.

Also, let S0 be the root subproblem.

The best projection criterion is Ei = zi
U +

(
zL−z0

U

s0

)
si

The best estimate criterion uses the pseudo-costs to obtain

Ei = zi
U +

∑
j min

(
P−

j fj , P
+
j (1− fj)

)
Jeff Linderoth IE418 Integer Programming

Variable Selection
Node Selection

Why?
Best First
Depth-First
Best Estimate

Next Time:

You should read (as review, and for more information) N&W
II.4.1, II.4.2

Introduction to IP software

Who knows what an MPS file is?

Jeff Linderoth IE418 Integer Programming

