
Review and Miscellany
Node Selection

Modeling Languages

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

7th February 2005

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

Please Don’t Call On Me!

10 Minutes Only!

Any questions on the homework?

What is strong branching?

What are pseudocosts?

Don’t forget—1/9;05, 9AM, Room 444, Introduction to Linux
and Computing in COR@L!

Thursday 2/10—12PM. COR@L Lunchtime Seminar Series.

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

Solving Integer Knapsack by B&B

Integer Knapsack Problem

(IKP) max
x∈Zn

+

{cT x | aT x ≤ b}

To solve the linear programming relaxation of (IKP), you
need only be greedy!

Sort the coefficients from largest cj/aj to smallest cj/aj :
Bang/Buck ratio

Cram ’em in, in that order.

After you branch, be sure to obey all the restrictions in your
cramming.

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

SOS2 Branching

{λ1, λ2, ...λ100} is an
SOS2

Suppose:

λ1 = 0.2
λ6 = 0.1
λ8 = 0.3
λ10 = 0.1
λ17 = 0.05
λ99 = 0.25

The $64 Question

How would you branch?

If λk > 0, then feasible solutions
have λ1 = · · · = λk−1 = 0, or
λk+1 = · · · = λ100 = 0

Pk−1
j=1 λj = 0

Pn
j=k+1 λj = 0

Even better: Let λk > 0, λl > 0
with l ≥ k + 2

Branch on any variable with index
k + 1, . . . l − 1

Then the infeasible point is
excluded on both branches.

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

Why?
Best First
Depth-First
Hybrid Strategies
Best Estimate

Choices in Branch and Bound Node Selection

We’ve talked about one choice in branch and bound: Which
variable.

Another important choice in branch and bound is the strategy
for selecting the next subproblem to be processed.

That said, in general, the branching variable selection method
has a larger impact on solution time than the node selection
method

Node selection is often called search strategy

In choosing a search strategy, we might consider two different
goals:

Minimizing overall solution time.
Finding a good feasible solution quickly.

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

Why?
Best First
Depth-First
Hybrid Strategies
Best Estimate

The Best First Approach

One way to minimize overall solution time is to try to
minimize the size of the search tree.

We can achieve this choose the subproblem with the best
bound (highest upper bound if we are maximizing).

Can you prove this?

A candidate node is said to be critical if its bound exceeds the
value of an optimal solution solution to the IP.
Every critical node will be processed no matter what the
search order
Best first is guaranteed to examine only critical nodes, thereby
minimizing the size of the search tree.

Quite Enough Done

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

Why?
Best First
Depth-First
Hybrid Strategies
Best Estimate

Drawbacks of Best First

1 Doesn’t necessarily find feasible solutions quickly

Feasible solutions are “more likely” to be found deep in the tree

2 Node setup costs are high

The linear program being solved may change quite a bit from
one node evalution to the next

3 Memory usage is high

It can require a lot of memory to store the candidate list, since
the tree can grow “broad”

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

Why?
Best First
Depth-First
Hybrid Strategies
Best Estimate

The Depth First Approach

The depth first approach is to always choose the deepest node to
process next.

Just dive until you prune, then back up and go the other way

This avoids most of the problems with best first:

The number of candidate nodes is minimized (saving memory).
The node set-up costs are minimized

LPs change very little from one iteration to the next

Feasible solutions are usually found quickly

Unfortunately, if the initial lower bound is not very good, then we
may end up processing lots of non-critical nodes.

We want to avoid this extra expense if possible.

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

Why?
Best First
Depth-First
Hybrid Strategies
Best Estimate

Hybrid Strategies

Go depth-first until you find a feasible solution, then do
best-first search

A Key Insight

If you knew the optimal solution value, the best thing to do would
be to go depth first

Go depth-first for a while, then make a best-first move.

What is “for a while”?

Estimate zE as the optimal solution value
Go depth-first until zLP ≤ zE

Then jump to a better node

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

Why?
Best First
Depth-First
Hybrid Strategies
Best Estimate

Estimate-based Strategies

Let’s focus on a strategy for finding feasible solutions quickly.

One approach is to try to estimate the value of the optimal
solution to each subproblem and pick the best.

For any subproblem Si, let

si =
∑

j min(fj , 1− fj) be the sum of the integer
infeasibilities,
zi
U be the upper bound, and

zL the global lower bound.

Also, let S0 be the root subproblem.

The best projection criterion is Ei = zi
U +

(
zL−z0

U

s0

)
si

The best estimate criterion uses the pseudo-costs to obtain

Ei = zi
U +

∑
j min

(
P−

j fj , P
+
j (1− fj)

)
Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

A Simple LP

The WorldLight Company produces two types of light fixtures
(products 1 and 2) that require both metal frame parts and
electrical components.

For each unit of product 1, 1 unit of frame parts and 2 units of
electrical components are required.

For each unit of product 2, 3 units of frame parts and 2 units of
electrical components are required.

The company has 200 units of frame parts and 300 units of
electrical components.

Each unit of product 1 gives a net profit of $1, and each unit of
product 2, up to 60 units, gives a profit of $2.

Any excess over 60 units of product 2 brings no profit, so such an
excess has been rules out explicity.

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

LP Instance

max x1 + 2x2

subject to

x1 + 3x2 ≤ 200

2x1 + 2x2 ≤ 300

x2 ≤ 60

x1, x2 ≥ 0

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Communicating Instances to a Solver

1 Formulate the model

2 Gather all the data

3 Generate the constraint matrix for your instance and data.
(A, b, c, etc)

4 Type the entire constraint matrix into a file using a “standard
format”

5 Pass the file to a solver

6 Get the answer and interpret it in terms of the original model

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Problems with this approach

The constraint matrices can be huge!!!

Maybe write a “matrix generation” program to create the
constraint matrix file.

If you want to modify the model parameters or data, you have
to retype the entire matrix.

The “standard” file format, called MPS Format is...

Old.
So very, very ugly.

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

How Ugly Is It?

NAME

ROWS

N obj

L c1

L c2

L c3

COLUMNS

x1 obj -1 c1 1

x1 c2 2

x2 obj -2 c1 3

x2 c2 2 c3 1

RHS

rhs c1 200 c2 300

rhs c3 60

ENDATA

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Recognize this problem?

It’s your old friend WorldLight!

maximize
x1 + 2x2

subject to

x1 + 3x2 ≤ 200 Frame Part Units

2x1 + 2x2 ≤ 300 Electrical Components

x2 ≤ 60 Rule out production over 60 units

x1 ≥ 0 The immutable laws of physics

x2 ≥ 0 The immutable laws of physics

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

AMPL Concepts

AMPL is an Algebraic
Modeling Language

In many ways, AMPL is
like any other
programming language.

It just has special syntax
that helps us create an
optimization instance
and interact with
optimization solvers.

Model File Data File

AMPL Solution

Solver
(CPLEX/Minos/etc)

Instance Solution

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Modeling and Solving in AMPL

ampl: option solver cplexamp;

ampl: var x1;

ampl: var x2;

ampl: maximize profit: x1 + 2 * x2;

ampl: subject to frame_parts: x1 + 3 * x2 <= 200;

ampl: subject to electrial_components: 2 * x1 + 2 * x2 <= 300;

ampl: subject to x2_prod_limit: x2 <= 60;

ampl: subject to x2_lb: x2 >= 0;

ampl: solve;

CPLEX 7.1.0: optimal solution; objective 175

3 simplex iterations (0 in phase I)

ampl: display x1;

x1 = 125

ampl: display x2;

x2 = 25

ampl: quit;

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Generalizing the Model

Suppose we want to generalize the model to more than two
products

AMPL (and all “real” modeling environments) allow the model
to be separated from the data
This is IMPORTANT!!!

Data

Sets: lists of products, materials, etc
Parameters: numerical inputs such as costs, etc

Model

Variables: The values to be decided upon
Objective Function
Constraints

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Fickle Management

Management now has decided that it wants to build five new
products.

Product 1 Product 2 Product 3 Product 4 Product 5
Frame Parts 1 3 2 3 1
Elec. Comp. 2 2 2 1 3

Profit 1 2 1.4 1.8 1.7
Prod. Limit ∞ 60 80 50 66

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

The Generalized WorldLight Problem

set PROD;
param profit {PROD};
param frame_req {PROD};
param elec_req {PROD};
param max_production {PROD};

var x{PROD} >= 0;

maximize total_profit:
sum {i in PROD} profit[i] * x[i];

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

GWP, Cont.

subject to frame_parts:
sum {i in PROD} frame_req[i] * x[i] <= 200;

subject to electrial_components:
sum {i in PROD} elec_req[i] * x[i] <= 300;

subject to production_limits {i in PROD}:
x[i] <= max_production[i];

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

New World Light Data File

set PROD := p1 p2 p3 p4 p5;

param: profit frame_req elec_req max_production :=
p1 1 2 1 Infinity
p2 3 2 2 60
p3 2 2 1.4 80
p4 3 1 1.8 50
p5 1 3 1.7 66 ;

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Solving the Big WorldLight Problem

ampl: option solver cplexamp;

ampl: model wl.mod;

ampl: data wl-1.dat;

ampl: data wl-1.dat;

ampl: solve;

CPLEX 7.1.0: optimal solution; objective 360

3 simplex iterations (0 in phase I)

ampl: display x;

x [*] :=

p1 0

p2 60

p3 15

p4 50

p5 0 ;

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Important AMPL Notes

The # character starts a comment

Variables are declared using the var keyword.

All statements must end in a semi-colon;

Names must be unique!

A variable and a constraint cannot have the same name

AMPL is case sensitive. Keywords must be in lower case.

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Getting AMPL

AMPL is available in COR@L (/usr/local/bin/ampl)

Student versions at http://www.ampl.com
Limited to 300 variables and 300 constraints.
You will also want to get the AMPL/CPLEX Solver

There are “full fledged” versions of solvers you can use with
AMPL on NEOS.

http://www.mcs.anl.gov/neos

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Fun, Interactive Portion of Class

Let’s solve a TSP!

How to deal with those pesky “subtour eliminations?”

Let’s solve the problem without them first...

The Separaration Problem

Given x̂ ∈ R|E|, does ∃S ⊆ V such that∑
e∈δ(S)

xe < 1?

δ(S) = {e = (i, j) ∈ E | i ∈ S, j 6∈ S}
Does this problem look familiar?

min s− t cut!

Is the problem easier if x ∈ B|E|?
Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Our TSP

Through 10 cities in the United States.

param c : Atlanta Chicago Denver Houston LosAngeles Miami NewYork SanFrancisco Seattle W

ashingtonDC :=

Atlanta 0 587 1212 701 1936 604 748 2139 2182 543

Chicago 587 0 920 940 1745 1188 713 1858 1737 597

Denver 1212 920 0 879 831 1726 1631 949 1021 1494

Houston 701 940 879 0 1372 968 1420 1645 1891 1220

LosAngeles 1936 1745 831 1374 0 2339 2451 347 959 2300

Miami 604 1188 1726 968 2339 0 1092 2594 2734 923

NewYork 748 713 1631 1420 2451 1092 0 2571 2408 205

SanFrancisco 2139 1858 949 1645 347 2594 2571 0 678 2442

Seattle 2182 1737 1021 1891 959 2734 2408 678 0 2329

WashingtonDC 543 597 1494 1220 2300 923 205 2442 2329 0

;

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Mosel

A modeling language (and environment) from Dash
Optimization that uses the Xpress-MP optimizer

On shark

In /usr/local/shark
file:///usr/local/xpress/docs/mosel/mosel ug/
dhtml/moselug.html
Software: /home/jeff/IP-Class

Jeff Linderoth IE418 Integer Programming

Review and Miscellany
Node Selection

Modeling Languages

AMPL
Other Modeling Languages

Next Time

Ugh – Homework #1 Due!

Ugh – Pass out homework #2?

Lots more stuff on IP Software

Don’t forget—

Jeff Linderoth IE418 Integer Programming

