IE418: Integer Programming

Jeff Linderoth
Department of Industrial and Systems Engineering
Lehigh University

16th February 2005

The Goal(s) of Computational Complexity

(1) Provide a method of quantifying problem difficulty
(2) Compare the relative difficulty of two different problems
(3) Rigorously define the meaning of an efficient algorithm
(9) State that one algorithm for a problem is "better" than another

Computational Complexity

- The ingredients that we need to build a theory of computational complexity for problem classification are the following
(1) A class \mathcal{C} of problems to which the theory applies
(2) A (nonempty) subclass $\mathcal{C}_{\mathcal{E}} \subseteq \mathcal{C}$ of "easy" problems
(3) A (nonempty) subclass $\mathcal{C}_{\mathcal{H}} \subseteq \mathcal{C}$ of "hard" problems
(9) A relation \triangleleft "not more difficult than" between pairs of problems
- Our goal is just to put some definitions around this machinery
- Thm: $Q \in \mathcal{C}_{\mathcal{E}}, P \triangleleft Q \Rightarrow P \in \mathcal{C}_{\mathcal{E}}$
- Thm: $P \in \mathcal{C}_{\mathcal{H}}, P \triangleleft Q \Rightarrow Q \in \mathcal{C}_{\mathcal{H}}$

IE418 Integer Programming
Decision Problems

Ingredient \#1 - Problem Class \mathcal{C}

- The theory we develop applies only to decision problems
- Problems that have a "yes-no" answer.
- Opt: $\max \left\{c^{T} x \mid x \in S\right\}$
- Decision: $\exists x \in S$ such that $c^{T} x \geq k$?
- Example: The Bin Packing Problem BPP
- We are given a set S of items, each with a specified integral size, and a specified constant C, the size of a bin.
- Opt: Determine the smallest number of subsets into which one can partition S such that the total size of the items in each subset is at most C
- Decision: For a given constant K determine whether S can be partitioned into K subsets such that that the total size of the items in each subset is at most C

Turning Opt to Decision

- Suppose you know that $l \leq z^{*} \leq u, l, z^{*}, u \in \mathcal{Z}$
- z^{*} is optimal value to $\mathbf{O p t}$
- How can you solve Opt by solving a series of Decision problems?
- for ($k=1 ; k<=u ; k++$) dec (k)
- Requires (at most) $u-l+1$ calls to $\operatorname{dec}(\mathrm{k})$
- Better to use binary search
- 1. if (u-l<=1) $z=1$; exit();
- 2. $\mathrm{k}=(\mathrm{l}+\mathrm{u}) / 2$; if ($\operatorname{dec}(\mathrm{k})==\mathrm{false}) \mathrm{l}=\mathrm{k}$; else $\mathrm{u}=\mathrm{k}$; goto 1;
- Requires at most $\log (u-l)+1$ calls to $\operatorname{dec}(\mathrm{k})$
- The log is important-For reason to be explained later.

Jeff Linderoth
 Ingredients of Complexity Ingredient \#1: Problems Ingredient \#2: Easy or Hard Classes and Certificates

Measuring the Difficulty of a Problem

- We are interested in knowing the difficulty of a problem, not an instance.
- Recall: a problem (or model) is an infinite family of instances whose objective function and constraints have a specific structure.

Possible methods of evaluation

(1) Empirical

- Doesn't given us any real guarantee about the difficulty of a given instance
(2) Average case running time
- Difficult to analyze and depends on specifying a probability distribution on the instances.
(3) Worst case running time
- Addresses these problems and is usually easier to analyze.

Comparison of Three Approaches

Empirical	1. Depends on programming language, compiler, etc. 2. Time consuming and expensive 3. Often inconclusive
Average-Case	1. Depends on probability distribution 2. Intricate mathematical analysis 3. No information on distribution of outcomes
Worst-Case	1. Influenced by pathological instances 2. A "pessimistic" view of the world

- The complexity theory we develop is based on a worst-case approach.
- Complexity theory is built on a basic set assumptions called the model of computation. Our model of computation is something called a Turing machine
- To deal with this topic in full rigor would require a full semester course-that I couldn't probably teach.

Ingredients \#2 and \#3

- To define "easy" and "hard", we need to make a few definitions so we can define the running time of an algorithm.
- The running time of an algorithm depends on size of the input. (Duh.)
- A time complexity function specifies, as a function of the problem size, the largest ${ }^{1}$ amount of time needed by an algorithm to solve any problem instance.
- How do we measure problem size?
- The length of the amount of information necessary to represent the problem in a reasonable encoding scheme.
- Example: TSP, $N, c_{i j}$
- Example: Knapsack: N, a_{j}, c_{j}, b

What is Reasonable?

- Don't be stupid (pad the input data with unnecessary information)
- Represent numbers in binary notation.
- That's how computers do it anyway
- An integer $2^{n} \leq x<2^{n+1}$ can be represented by a vector $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{n}\right)$, where $x=\sum_{i=0}^{n} \delta_{i} 2^{i}$
- It requires a logarithmic number of bits to represent $x \in \mathbb{Z}$
- Again, we always assume that numbers are rational, so they can be encoded with two integers.
- TSP on n cities with costs $c_{i j} \in \mathbb{Z}, \max _{i, j} c_{i j}=\theta$, then requires $\leq \log (n)+n^{2} \log (\theta)$ bits to represent an instance.

Jeff Linderoth
Ingredients of Complexity
Ingredient \#1: Problems
Ingredient \#2: Easy or Hard
Classes and Certificates

IE418 Integer Programming
Running Time
Problem Size
The Big "Oh'
Polynomiality

Running Time—Elementary Operations

$$
\begin{aligned}
& \text { for } i=1 \cdots p \text { do } \\
& \text { for } j=1 \cdots q \text { do } \\
& \quad c_{i j}=a_{i j}+b_{i j}
\end{aligned}
$$

- How many elementary operations?
- How long does an elementary operation take?
- This may depend on the encoding!
- All "reasonable" encodings would take at most on the order of $\log \theta$ time, where $\theta=\max _{i, j}\left\{a_{i j}, b_{i j}\right\}$
- In what follows, assume all elementary operations (addition, multiplication, comparison, etc.) can be accomplished in constant time.
- Most books (yours too) assume that $\log \theta$ is negligible

Computational Complexity: Big O Notation

- Provides a special way to compare relative sizes of functions
- $\operatorname{Big} O$ notation makes use of approximations that highlight large scale differences
- For purposes of this course, that is all that we can about
- Let f and g be real-valued functions that are defined on the same set of real numbers. Then f is $O(g(x))$ if and only if there exist positive constant real numbers c and x_{0} such that

$$
|f(x)| \leq c \cdot|g(x)|, \text { for } x \geq x_{0}
$$

- Is $f(x)=100 x^{2}+3 x=O\left(x^{2}\right)$?
- Is $f(x)=6 x^{3}=O\left(x^{2}\right)$?
- Is $\log (x)=O(x)$?

Big O Notation-Examples

- We can prove that any polynomial function is "big O " of the polynomial that is its highest term
- Therefore, find orders for the following functions:
- $f(x)=7 x^{5}+5 x^{3}-x+4$
- $g(x)=\frac{(x-1)(x+1)}{x^{4}}$
- $h(x)=\sum_{i=1}^{x} i$
- $x \neq O(\log x)$
- $2^{n} \neq O\left(n^{p}\right)$ for any constant p
- Polynomials are "bigger than" logarithms, Exponentials are "bigger than" polynomials

The Limit Trick

If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$, then $g(x) \neq O(f(x))$

Ready for (Somewhat Formal) Definitions

- Given a problem P, and algorithm A that solves P, and an instance X of problem P.
- $L(X) \equiv$ The length (in a reasonable encoding) of the instance
- $f_{A}(X) \equiv$ the number of elementary calculations required to run algorithm A on instance X.
- $f_{A}^{*}(l) \equiv \sup _{X}\left\{f_{A}(X): L(X)=l\right\}$ is the running time of algorithm A
- If $f_{A}^{*}(l)=O\left(l^{p}\right)$ for some positive constant integer p, A is polynomial

Ingredients of Complexity
Ingredient \#1: Problems Ingredient \#2: Easy or Hard Classes and Certificates

IE418 Integer Programming
Running Time
Problem Size
The Big "Oh"
Polynomiality

Types of Polynomiality

- A is strongly polynomial if $f_{A}^{*}(l)$ is bounded by a polynomial function that does not involve the data size (magnitude of numbers).
- A is weakly polynomial if it is polynomial and not strongly polynomial. The l in $O\left(l^{p}\right)$ contains terms involving $\log \theta$
- An algorithm is said to be an exponential-time algorithm if $f_{A}^{*}(l) \neq O\left(l^{p}\right)$, for any p
- Note: If I can solve dec if polynomial time, then I can also solve opt in polynomial time
- Why?
- Also see N\&W I.5, Thm: 4.1

One Last Type of Polynomiality

- A pseudopolynomial algorithm A is one that is polynomial in the length of the data when encoded in unary.
- Unary means that we are using a one-symbol alphabet. (not binary)
- Practically, it means that A is polynomial in the parameters and the magnitude of the instance data θ-not $\log \theta$.
- Example: The Integer Knapsack Problem
- There is an $O(N b)$ algorithm for this problem, where N is the number of items and b is the size of the knapsack.
- This is not a polynomial-time algorithm
- If b is bounded by a polynomial function of n, then it is

Jeff Linderoth
Ingredients of Complexity
Ingredient \#1: Problems Ingredient \#2: Easy or Hard Classes and Certificates

IE418 Integer Programming
Running Time
Problem Size
The Big "Oh"
Polynomiality

Knapsack In More Detail

- Knapsack: N, a_{j}, c_{j}, b
- For an instance of Knapsack X, what is the length of the input $L(X)$?
- What are the numbers c_{j}, a_{j}, b ? Assume they are rational.
- So they can be expressed as the ratio of two integers.
- Assume $a_{j} \leq b$
- $\theta=\max _{j \in N} c_{j}$
- $L(X)=\log N+(2 N+2) \log b+2 N \log \theta$
- Is $N b=O(L(X))$?
- $\exists p \in \mathbb{Z}$ such that $N b \leq((2 N+1) \log b)^{p}$?
- No!
- Note if $N b$ replaced by $N \log b$, then Yes!

The problem class $\mathcal{N P}$

- $\mathcal{N P} \neq$ "Non-polynomial"
- $\mathcal{N} \mathcal{P} \equiv$ the class of decision problems that can be solved in polynomial time on a non-deterministic Turing machine.
- What the Heck!!?!?!?!??!?!?!?!?
- $\mathcal{N P} \approx$ the class of decision problems with the property that for every instance for which the answer is "yes", there is a short certificate
- The certificate is your "proof" that what you are telling me is the truth

$\mathcal{N} \mathcal{P}$: Examples

Example: 0-1IP

$\exists x \in \mathbb{B}^{n}$ such that $A x \leq b, c^{T} x \geq K ?$
(1) You say the answer is "Yes". I say "prove it."
(2) You give me the vector x : This is a "short certificate"
(3) The 0-1 vector x can be checked such that $A x \leq b, c^{T} x \geq K$?

Example: Optimization

Is the optimal solution z^{*} to P such that $z^{*} \geq k$?

- This is not necessarily in NP
- Just because the dec $\in \mathcal{N} \mathcal{P}$ does not imply opt $\in \mathcal{N} \mathcal{P}$

The Class co- $\mathcal{N P}$

- The class of problems for which the "complement" problem to P is $\in \mathcal{N} \mathcal{P}$
- co- $\mathcal{N P} \approx$ the class of decision problems with the property that for every instance for which the answer is "no", there is a short certficate

Example: 0-1IP

$\nexists x \in \mathbb{B}^{n}$ such that $A x \leq b, c^{T} x \geq K ?$
(1) You say "no." I say "prove it."
(2) You give me what? Is this a short (polynomial length) certificate?

Jeff Linderoth
Ingredients of Complexity Ingredient \#1: Problems
Ingredient \#2: Easy or Hard Classes and Certificates

IE418 Integer Programming

```
\mathcal{NP}
co-\mathcal{NP}
```

\mathcal{P}

co- $\mathcal{N} \mathcal{P}$, More examples

LP

$\nexists x \in \mathbb{R}_{+}^{n}$ such that $A x \leq b, c^{T} x \geq K ?$
(1) You say "no." I say "prove it."
(2) You give me What?.
(3) Hint: (x, π) is optimal if and only if
$A x \leq b, x \geq 0, \pi^{T} A \geq c, \pi \geq 0, c^{T} x=b^{T} \pi$
(4) $\pi \in \mathbb{R}^{m} \mid \pi^{T} A \geq c, \pi \geq 0, \pi^{T} b<K \Rightarrow$ exists $x \in \mathbb{R}^{n} \mid A x \leq$ $b, x \geq 0, c^{T} x \geq K$
(5) Is π a short certificate?

The Class \mathcal{P}

- \mathcal{P} is the class of problems for which there exists a polynomial algorithm.
- $\mathcal{P} \in \mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

Jeff Linderoth
Ingredients of Complexity
Ingredient \#1: Problems
Ingredient \#2: Easy or Hard Classes and Certificates

IE418 Integer Programming
\mathcal{N}
$\mathrm{CO}-\mathcal{N} \mathcal{P}$
\mathcal{P}

Problems Solvable in Polynomial Time

- Shortest path problem with nonnegative weights: $O\left(m^{2}\right)$
- Note that the number of operations is independent of the magnitude of the edge weights Strongly Polynomial
- Solving systems of equations: $O\left(n^{3}\right)$
- The magnitude of the numbers that occur is bounded by the largest determinant of any square submatrix of (A, b).
- Since det A involves $n!<n^{n}$ terms, this liargest number is bounded by $(n \theta)^{n}$, where θ is the largest entry of (A, b).
- This means that the size of their representation is bounded by a polynomial function of n and $\log \theta$.
- $\log \left((n \theta)^{n}\right)=n \log (n \theta)$: Polynomial in the size of the input
- Assignment Problem: $O\left(n m+n^{2} \log n\right), O(\sqrt{n} m \log (n C))$

Recap

- We have our class(es) of problems $\mathcal{P}, \mathcal{N} \mathcal{P}$, co- $\mathcal{N} \mathcal{P}$
- We know class of "easy" problems. (Problems in \mathcal{P})
- We need our last ingredient
- The relation "not (significantly) more difficult than" (\triangleleft)
- For this we need the concept of problem reductions.
- Next time: Polynomial reductions
- The class $\mathcal{N P C}$
- A couple sample reductions
- The end of computational complexity
- Read N\&W: I.5.1-I.5.6

