
Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

16th February 2005

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Goals

The Goal(s) of Computational Complexity

1 Provide a method of quantifying problem difficulty

2 Compare the relative difficulty of two different problems

3 Rigorously define the meaning of an efficient algorithm

4 State that one algorithm for a problem is “better” than
another

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Goals

Computational Complexity

The ingredients that we need to build a theory of
computational complexity for problem classification are the
following

1 A class C of problems to which the theory applies
2 A (nonempty) subclass CE ⊆ C of “easy” problems
3 A (nonempty) subclass CH ⊆ C of “hard” problems
4 A relation C “not more difficult than” between pairs of

problems

Our goal is just to put some definitions around this machinery

Thm: Q ∈ CE , P C Q ⇒ P ∈ CE
Thm: P ∈ CH, P C Q ⇒ Q ∈ CH

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Decision Problems
Binary Search

Ingredient #1 — Problem Class C

The theory we develop applies only to decision problems

Problems that have a “yes-no” answer.

Opt: max{cT x | x ∈ S}
Decision: ∃x ∈ S such that cT x ≥ k?

Example: The Bin Packing Problem BPP
We are given a set S of items, each with a specified integral
size, and a specified constant C, the size of a bin.
Opt: Determine the smallest number of subsets into which
one can partition S such that the total size of the items in
each subset is at most C
Decision: For a given constant K determine whether S can
be partitioned into K subsets such that that the total size of
the items in each subset is at most C

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Decision Problems
Binary Search

Turning Opt to Decision

Suppose you know that l ≤ z∗ ≤ u, l, z∗, u ∈ Z
z∗ is optimal value to Opt

How can you solve Opt by solving a series of Decision
problems?

for (k=l; k<=u; k++) dec(k)
Requires (at most) u− l + 1 calls to dec(k)

Better to use binary search

1. if(u-l<=1) z = l; exit();
2. k=(l+u)/2; if (dec(k)==false) l=k; else u=k;
goto 1;

Requires at most log(u− l) + 1 calls to dec(k)

The log is important—For reason to be explained later.

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

Measuring the Difficulty of a Problem

We are interested in knowing the difficulty of a problem, not
an instance.

Recall: a problem (or model) is an infinite family of instances
whose objective function and constraints have a specific
structure.

Possible methods of evaluation

1 Empirical

Doesn’t given us any real guarantee about the difficulty of a
given instance

2 Average case running time

Difficult to analyze and depends on specifying a probability
distribution on the instances.

3 Worst case running time

Addresses these problems and is usually easier to analyze.

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

Comparison of Three Approaches
Empirical 1. Depends on programming language, compiler, etc.

2. Time consuming and expensive
3. Often inconclusive

Average-Case 1. Depends on probability distribution
2. Intricate mathematical analysis
3. No information on distribution of outcomes

Worst-Case 1. Influenced by pathological instances
2. A “pessimistic” view of the world

The complexity theory we develop is based on a worst-case
approach.

Complexity theory is built on a basic set assumptions called
the model of computation. Our model of computation is
something called a Turing machine

To deal with this topic in full rigor would require a full
semester course—that I couldn’t probably teach.

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

Ingredients #2 and #3

To define “easy” and “hard”, we need to make a few
definitions so we can define the running time of an algorithm.

The running time of an algorithm depends on size of the
input. (Duh.)

A time complexity function specifies, as a function of the
problem size, the largest1 amount of time needed by an
algorithm to solve any problem instance.

How do we measure problem size?

The length of the amount of information necessary to
represent the problem in a reasonable encoding scheme.
Example: TSP, N, cij

Example: Knapsack: N, aj , cj , b

1Here is our “worst case”
Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

What is Reasonable?

Don’t be stupid (pad the input data with unnecessary
information)

Represent numbers in binary notation.

That’s how computers do it anyway

An integer 2n ≤ x < 2n+1 can be represented by a vector
(δ0, δ1, . . . , δn), where x =

∑n
i=0 δi2

i

It requires a logarithmic number of bits to represent x ∈ Z
Again, we always assume that numbers are rational, so they
can be encoded with two integers.

TSP on n cities with costs cij ∈ Z, maxi,j cij = θ, then
requires ≤ log(n) + n2 log(θ) bits to represent an instance.

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

Running Time—Elementary Operations

for i = 1 · · · p do
for j = 1 · · · q do

cij = aij + bij

How many elementary operations?

How long does an elementary operation take?

This may depend on the encoding!

All “reasonable” encodings would take at most on the order of
log θ time, where θ = maxi,j{aij , bij}

In what follows, assume all elementary operations (addition,
multiplication, comparison, etc.) can be accomplished in
constant time.

Most books (yours too) assume that log θ is negligible

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

Computational Complexity: Big O Notation

Provides a special way to compare relative sizes of functions

Big O notation makes use of approximations that highlight
large scale differences

For purposes of this course, that is all that we can about

Let f and g be real-valued functions that are defined on the
same set of real numbers. Then f is O(g(x)) if and only if
there exist positive constant real numbers c and x0 such that

|f(x)| ≤ c · |g(x)|, for x ≥ x0

Is f(x) = 100x2 + 3x = O(x2)?
Is f(x) = 6x3 = O(x2)?
Is log(x) = O(x)?

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

Big O Notation—Examples

We can prove that any polynomial function is “big O” of the
polynomial that is its highest term

Therefore, find orders for the following functions:

f(x) = 7x5 + 5x3 − x + 4

g(x) = (x−1)(x+1)
4

h(x) =
∑x

i=1 i

x 6= O(log x)

2n 6= O(np) for any constant p

Polynomials are “bigger than” logarithms, Exponentials are
“bigger than” polynomials

The Limit Trick

If limx→∞
f(x)
g(x) = 0, then g(x) 6= O(f(x))

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

Ready for (Somewhat Formal) Definitions

Given a problem P , and algorithm A that solves P , and an
instance X of problem P .

L(X) ≡ The length (in a reasonable encoding) of the instance
fA(X) ≡ the number of elementary calculations required to
run algorithm A on instance X.
f∗A(l) ≡ supX{fA(X) : L(X) = l} is the running time of
algorithm A

If f∗A(l) = O(lp) for some positive constant integer p, A is
polynomial

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

Types of Polynomiality

A is strongly polynomial if f∗A(l) is bounded by a polynomial
function that does not involve the data size (magnitude of
numbers).

A is weakly polynomial if it is polynomial and not strongly
polynomial. The l in O(lp) contains terms involving log θ

An algorithm is said to be an exponential-time algorithm if
f∗A(l) 6= O(lp), for any p

Note: If I can solve dec if polynomial time, then I can also
solve opt in polynomial time

Why?
Also see N&W I.5, Thm: 4.1

I don’t think Polynomiality is a word

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

One Last Type of Polynomiality

A pseudopolynomial algorithm A is one that is polynomial in
the length of the data when encoded in unary.

Unary means that we are using a one-symbol alphabet. (not
binary)

Practically, it means that A is polynomial in the parameters
and the magnitude of the instance data θ—not log θ.

Example: The Integer Knapsack Problem

There is an O(Nb) algorithm for this problem, where N is the
number of items and b is the size of the knapsack.
This is not a polynomial-time algorithm
If b is bounded by a polynomial function of n, then it is

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

Running Time
Problem Size
The Big “Oh”
Polynomiality

Knapsack In More Detail

Knapsack: N, aj , cj , b

For an instance of Knapsack X, what is the length of the input
L(X)?

What are the numbers cj , aj , b? Assume they are rational.

So they can be expressed as the ratio of two integers.
Assume aj ≤ b
θ = maxj∈N cj

L(X) = log N + (2N + 2) log b + 2N log θ

Is Nb = O(L(X))?

∃p ∈ Z such that Nb ≤ ((2N + 1) log b)p?
No!
Note if Nb replaced by N log b, then Yes!

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

NP
co-NP
P

The problem class NP

NP 6= “Non-polynomial”

NP ≡ the class of decision problems that can be solved in
polynomial time on a non-deterministic Turing machine.

What the Heck!!?!?!?!?!?!?!?!?

NP ≈ the class of decision problems with the property that for
every instance for which the answer is “yes”, there is a short
certificate

The certificate is your “proof” that what you are telling me is the
truth

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

NP
co-NP
P

NP : Examples

Example: 0-1IP

∃x ∈ Bn such that Ax ≤ b, cT x ≥ K?

1 You say the answer is “Yes”. I say “prove it.”

2 You give me the vector x: This is a “short certificate”

3 The 0-1 vector x can be checked such that Ax ≤ b, cT x ≥ K?

Example: Optimization

Is the optimal solution z∗ to P such that z∗ ≥ k?

This is not necessarily in NP

Just because the dec ∈ NP does not imply opt ∈ NP

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

NP
co-NP
P

The Class co-NP

The class of problems for which the “complement” problem to
P is ∈ NP
co-NP ≈ the class of decision problems with the property
that for every instance for which the answer is “no”, there is a
short certficate

Example: 0-1IP

6 ∃x ∈ Bn such that Ax ≤ b, cT x ≥ K?

1 You say “no.” I say “prove it.”

2 You give me what? Is this a short (polynomial length)
certificate?

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

NP
co-NP
P

co-NP , More examples

LP

6 ∃x ∈ Rn
+ such that Ax ≤ b, cT x ≥ K?

1 You say “no.” I say “prove it.”

2 You give me What?.

3 Hint: (x, π) is optimal if and only if
Ax ≤ b, x ≥ 0, πT A ≥ c, π ≥ 0, cT x = bT π

4 π ∈ Rm | πT A ≥ c, π ≥ 0, πT b < K ⇒6 existsx ∈ Rn | Ax ≤
b, x ≥ 0, cT x ≥ K

5 Is π a short certificate?

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

NP
co-NP
P

The Class P
P is the class of problems for which there exists a polynomial
algorithm.

P ∈ NP ∩ co-NP

NP co−NP

P

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

NP
co-NP
P

Problems Solvable in Polynomial Time

Shortest path problem with nonnegative weights: O(m2)

Note that the number of operations is independent of the
magnitude of the edge weights Strongly Polynomial

Solving systems of equations: O(n3)

The magnitude of the numbers that occur is bounded by the
largest determinant of any square submatrix of (A, b).
Since det A involves n! < nn terms, this l¡argest number is
bounded by (nθ)n, where θ is the largest entry of (A, b).
This means that the size of their representation is bounded by
a polynomial function of n and log θ.

log((nθ)n) = n log(nθ) : Polynomial in the size of the input

Assignment Problem: O(nm + n2logn), O(
√

nm log(nC))

Jeff Linderoth IE418 Integer Programming

Ingredients of Complexity
Ingredient #1: Problems

Ingredient #2: Easy or Hard
Classes and Certificates

NP
co-NP
P

Recap

We have our class(es) of problems P,NP, co-NP
We know class of “easy” problems. (Problems in P)

We need our last ingredient

The relation “not (significantly) more difficult than” (C)

For this we need the concept of problem reductions.

Next time: Polynomial reductions

The class NPC
A couple sample reductions

The end of computational complexity

Read N&W: I.5.1—I.5.6

Jeff Linderoth IE418 Integer Programming

