Review Classes and Certificates Reductions

IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering Lehigh University

21st February 2005

Please Don't Call On Me!

Any questions on the homework?

- Problem #5: Linear Ordering Problem. Some sample code on the course web page.
- Run the code with minto -s.
- How do we convert an optimization problem to a decision problem?
- What is "big O"?
- What does it mean when we say an algorithm is *polynomial*?
- Do you know of a polynomial algorithm for the knapsack problem?

Computational Complexity

- The ingredients that we need to build a theory of computational complexity for problem classification are the following
 - A class ${\mathcal C}$ of problems to which the theory applies
 - A (nonempty) subclass $C_{\mathcal{E}} \subseteq C$ of "easy" problems
 - A (nonempty) subclass $\mathcal{C}_{\mathcal{H}} \subseteq \mathcal{C}$ of "hard" problems
 - A relation < "not more difficult than" between pairs of problems
- Our goal is just to put some definitions around this machinery
 - Thm: $Q \in \mathcal{C}_{\mathcal{E}}, P \lhd Q \Rightarrow P \in \mathcal{C}_{\mathcal{E}}$
 - Thm: $P \in \mathcal{C}_{\mathcal{H}}, P \lhd Q \Rightarrow Q \in \mathcal{C}_{\mathcal{H}}$

Jeff Linderoth	IE418 Integer Programming
Review Classes and Certificates Reductions	

Recall the Formal Definitions

- Given a problem *P*, and algorithm *A* that solves *P*, and an instance *X* of problem *P*.
 - $L(X) \equiv$ The length (in a reasonable encoding) of the instance
 - *f*_A(*X*) ≡ the number of elementary calculations required to run algorithm *A* on instance *X*.
 - f^{*}_A(l) ≡ sup_X{f_A(X) : L(X) = l} is the running time of algorithm A
- If $f_A^*(l) = O(l^p)$ for some positive constant integer p, A is **polynomial**

The problem class \mathcal{NP}

- $\mathcal{NP} \neq$ "Non-polynomial"
- $\mathcal{NP} \equiv$ the class of decision problems that can be solved in polynomial time on a non-deterministic Turing machine.
- What the Heck!!?!?!?!?!?!?!?!?
- $\mathcal{NP} \approx$ the class of decision problems with the property that for every instance for which the answer is "yes", there is a short certificate
- The certificate is your "proof" that what you are telling me is the truth

Jeff Linderoth	IE418 Integer Programming
Review	\mathcal{NP}
Classes and Certificates	co- \mathcal{NP}
Reductions	\mathcal{P}

\mathcal{NP} : Examples

Example: 0-1IP

- $\exists x \in \mathbb{B}^n$ such that $Ax \leq b, c^T x \geq K$?
 - You say the answer is "Yes". I say "prove it."
 - **2** You give me the vector x: This is a "short certificate"
 - **③** The 0-1 vector x can be checked such that $Ax \leq b, c^T x \geq K$?

\mathcal{NP} : Examples

\mathcal{NP} : Examples

Example: Complement of Hamiltonian Circuit

Instance: Graph G = (V, E)**Question:** Does *G* not contain a Hamiltonian Circuit?

- You say the answer is "Yes". I say "prove it."
- Equivalently, you say that the answer to Hamiltonian Circuit on G is **no**.
- You give me... ?
 - Careful: Will your answer suffice for *all* graphs G?
 - What you really are giving would be a *characterization* of what graphs are *not* Hamliltonian. *G* is *not* Hamiltonian if and only if Your Answer.

 $\mathcal{NP} \ \mathsf{co}\mathcal{NP} \ \mathcal{P} \ \mathcal{P}$

The Class co- \mathcal{NP}

- The class of problems for which the "complement" problem to $P \mbox{ is } \in \mathcal{NP}$
- co- $\mathcal{NP} \approx$ the class of decision problems with the property that for every instance for which the answer is "no", there is a short certficate

Example: 0-1 IP

 $\exists x \in \mathbb{B}^n$ such that $Ax \leq b, c^T x \geq K$?

- You say "no." I say "prove it."
- You give me what? Is this a short (polynomial length) certificate?

Jeff Linderoth	IE418 Integer Programming
Review Classes and Certificates Reductions	\mathcal{NP} co- \mathcal{NP} \mathcal{P}

co- \mathcal{NP} , More examples

 $egin{array}{c} \mathcal{N} \ \mathcal{P} \ \mathsf{co} \mathcal{N} \ \mathcal{N} \ \mathcal{P} \ \mathcal{P} \end{array}$

The Class ${\cal P}$

- \mathcal{P} is the class of problems for which there exists a polynomial algorithm.
- $\mathcal{P} \in \mathcal{NP} \cap \text{co-}\mathcal{NP}$

Jeff Linderoth	IE418 Integer Programming
Review	Polynomial Reductions
Classes and Certificates	NP-Complete Problems
Reductions	Our first \mathcal{NP} -complete proof

Where are we?

- $\bullet~$ We have our class(es) of problems $\mathcal{P},\mathcal{NP},\text{co-}\mathcal{NP}$
- We know class of "easy" problems. (Problems in \mathcal{P})
- We need our class of "hard" problems.
- We need our relation "not (significantly) more difficult than" (⊲)
 - For this we need the concept of problem reductions.

Polynomial Reductions NP-Complete Problems Our first \mathcal{NP} -complete proof

Polynomial Reduction

- If problems $P, Q \in \mathcal{NP}$, and if an instance of P can be converted in polynomial time to an instance of Q, then P is polynomially reducible to Q.
 - This is the "not (substantially) more difficult than" relation that we want to use.
 - We will write this as $P \lhd Q$
- Depending on time, I will show a couple reductions here.
 - How could we reduce the assignment problem to a max weighted matching on a bipartite graph?
 - How could we reduce the knapsack to a longest path problem?

leff Linderoth	IF418 Integer Programming
Review Classes and Certificates	Polynomial Reductions NP-Complete Problems
Reductions	Our first \mathcal{NP} -complete proof

The "Hard Problems"—Class \mathcal{NPC}

- We want to ask the question—What are the hardest problems in $\mathcal{NP}?$
 - We'll call this class of problems \mathcal{NPC} , " \mathcal{NP} -Complete".
- Using the definitions we have made, we would like to say that if $P \in \mathcal{NPC}$, then $Q \in \mathcal{NP} \Rightarrow Q \lhd P$
 - If P ∈ NP and we can convert in polynomial time every other problem Q ∈ NP to P, then P is in this sense the "hardest" problem in NP. P ∈ NPC
- Is it obvious that such problems exist?
 - No! We'll come to this later...
- Thm: $Q \in \mathcal{P}, P \lhd Q \Rightarrow P \in \mathcal{P}$
- Thm: $P \in \mathcal{NPC}, P \lhd Q \Rightarrow Q \in \mathcal{NPC}$

Polynomial Reductions NP-Complete Problems Our first *NP*-complete proof

$\mathcal{P} = \mathcal{N}\mathcal{P}$?

- You may be tired of only winning \$1 at a time by answering my questions in class. Here's you chance to win *big* bucks.
 - We've seen some problems in \mathcal{P} , and we've seen some problems in \mathcal{NP} .
 - We know that $\mathcal{P} \subseteq \mathcal{NP}$.
 - Have we seen any problems in $\mathcal{NP} \setminus \mathcal{P}$?
 - Do such problems exist?
 - No one knows for sure!
- If you can answer this, you will one million dollars!
- www.claymath.org/Millennium_Prize_Problems/P_vs_NP/
- I will also give you an A+++++++++ in the class if you write my name on the paper. :-)
- Maybe you can even be on TV: http: //story.news.yahoo.com/news?tmpl=story&u=/usatoday/ 20050209/ts_usatoday/getoutapieceofpaperandapencil

Jeff Linderoth	IE418 Integer Programming
Review Classes and Certificates Reductions	Polynomial Reductions NP-Complete Problems Our first \mathcal{NP} -complete proof

The Satisfiability Problem

- This is the first problem to be shown to be NP-complete.
- The problem is described by
 - a finite set $N = \{1, \ldots, n\}$ (the *literals*), and
 - m pairs of subsets of N, $C_i = (C_i^+, C_i^-)$ (the *clauses*).
- An instance is feasible if the set

$$\left\{x \in \mathbb{B}^n \mid \sum_{j \in C_i^+} x_j + \sum_{j \in C_i^-} (1 - x_j) \ge 1 \ \forall i = 1, \dots, m\right\}$$

is nonempty.

- This problem is in \mathcal{NP} . Why?
- In 1971, Cook defined the class \mathcal{NP} and showed that satisfiability was NP-complete.

• We will not attempt to understand the proof

Polynomial Reductions NP-Complete Problems Our first \mathcal{NP} -complete proof

Proving $\mathcal{NP}\text{-}\mathsf{completeness}$

- Once we know that satisfiability is NP-complete, we can use this to prove other problems are NP-complete using the "reduction theorem":
 - $P \in \mathcal{NPC}, P \lhd Q \Rightarrow Q \in \mathcal{NPC}$
- Let's prove that **Node Packing** is NP-Complete.
- Node Packing:
 - Given a graph G = (V, E) and an integer k
 - Does ∃ U ⊆ V such that |U| ≥ k and U is a node packing. (u ∈ U ⇒ v ∉ U ∀v ∈ δ(u))

Jeff Linderoth	IE418 Integer Programming
Review	Polynomial Reductions
Classes and Certificates	NP-Complete Problems
Reductions	Our first \mathcal{NP} -complete proof

Reduction

Your writing here...

Polynomial Reductions NP-Complete Problems Our first *NP*-complete proof

How to Win \$1M

- Here's a hint
- Thm: If $P \cap \mathcal{NPC} \neq \emptyset \Rightarrow \mathcal{P} = \mathcal{NP}$
 - Proof: Let $Q \in \mathcal{P} \cap \mathcal{NPC}$ and take $R \in \mathcal{NP}$.
 - $R \lhd Q$
 - $Q \in \mathcal{P}, R \lhd Q \Rightarrow R \in \mathcal{P}$
 - $\mathcal{NP} \subseteq \mathcal{P} \Rightarrow \mathcal{P} = \mathcal{NP}$

- QUITE ENOUGH DONE
- To prove $\mathcal{P} = \mathcal{NP}$, you only need to find a polynomial algorithm for any problem that has shown to be \mathcal{NP} -complete
 - How good are you at Minesweeper? :-)

Jeff Linderoth	IE418 Integer Programming
Review Classes and Certificates Reductions	Polynomial Reductions NP-Complete Problems Our first \mathcal{NP} -complete proof

The Line Between $\mathcal P$ and \mathcal{NPC}

- The line between these two classes is very thin!
- Consider a 0-1 matrix ${\cal A}$ an integer k defining the decision problem

$$\exists \{x \in \mathbf{B}^n \mid Ax \le e, e^T x \ge k\}?$$

- If we limit the number of nonzero entries in each column to 2, then this problem is known to be in \mathcal{P} !
- If we allow the number of nonzero entries in each column to be 3, then this problem is NP-complete!
- $\bullet\,$ If we allow at most one '1' per row, the problem is in ${\cal P}\,$
- If we allow two '1's per row, it is in \mathcal{NPC}
- Shortest Path (with non-negative edge weights) is in \mathcal{P} .
- Longest Path (with non-negative edge weights) is in \mathcal{NPC}

Polynomial Reductions NP-Complete Problems Our first *NP*-complete proof

\mathcal{NP} -hard Problems

- The class $\mathcal{NP}\text{-hard}$ extends \mathcal{NPC} to include problems that are not in \mathcal{NP}
- If $P \in \mathcal{NPC}$ and $Q \lhd P$, Q is *NP-Hard*
- Thus, all NP-complete problems are NP-hard.
- If a problem P is in \mathcal{NP} and is \mathcal{NP} -hard, then $P \in \mathcal{NPC}$
- $\bullet\,$ The primary reason for this definition is so we can classify optimization problems that are not in \mathcal{NP}
- It is common for people to refer to optimization problems as being \mathcal{NP} -complete, but this is technically incorrect.

Jeff Linderoth	IE418 Integer Programming
Review	Polynomial Reductions
Classes and Certificates	NP-Complete Problems
Reductions	Our first \mathcal{NP} -complete proof

Theory versus Practice

- In practice, it is true that most problem known to be in ${\cal P}$ are "easy" to solve.
- This is because most known polynomial time algorithms are of relatively low order.
- It seems very unlikely that $\mathcal{P}=\mathcal{NP}$
- Although all NP-complete problems are "equivalent" in theory, they are not in practice.
- TSP vs. QAP
 - TSP—Solved instances of size pprox 17000
 - QAP—Solved instances of size ≈ 30

