IE418: Integer Programming

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University
21st February 2005

Please Don't Call On Me!

Any questions on the homework?

- Problem \#5: Linear Ordering Problem. Some sample code on the course web page.
- Run the code with minto -s.
- How do we convert an optimization problem to a decision problem?
- What is "big O"?
- What does it mean when we say an algorithm is polynomial?
- Do you know of a polynomial algorithm for the knapsack problem?

Computational Complexity

- The ingredients that we need to build a theory of computational complexity for problem classification are the following
- A class \mathcal{C} of problems to which the theory applies
- A (nonempty) subclass $\mathcal{C}_{\mathcal{E}} \subseteq \mathcal{C}$ of "easy" problems
- A (nonempty) subclass $\mathcal{C}_{\mathcal{H}} \subseteq \mathcal{C}$ of "hard" problems
- A relation \triangleleft "not more difficult than" between pairs of problems
- Our goal is just to put some definitions around this machinery
- Thm: $Q \in \mathcal{C}_{\mathcal{E}}, P \triangleleft Q \Rightarrow P \in \mathcal{C}_{\mathcal{E}}$
- Thm: $P \in \mathcal{C}_{\mathcal{H}}, P \triangleleft Q \Rightarrow Q \in \mathcal{C}_{\mathcal{H}}$

Recall the Formal Definitions

- Given a problem P, and algorithm A that solves P, and an instance X of problem P.
- $L(X) \equiv$ The length (in a reasonable encoding) of the instance
- $f_{A}(X) \equiv$ the number of elementary calculations required to run algorithm A on instance X.
- $f_{A}^{*}(l) \equiv \sup _{X}\left\{f_{A}(X): L(X)=l\right\}$ is the running time of algorithm A
- If $f_{A}^{*}(l)=O\left(l^{p}\right)$ for some positive constant integer p, A is polynomial

The problem class $\mathcal{N P}$

- $\mathcal{N P} \neq$ "Non-polynomial"
- $\mathcal{N} \mathcal{P} \equiv$ the class of decision problems that can be solved in polynomial time on a non-deterministic Turing machine.
- What the Heck!!?!?!?!?!!?!?!?!?
- $\mathcal{N P} \approx$ the class of decision problems with the property that for every instance for which the answer is "yes", there is a short certificate
- The certificate is your "proof" that what you are telling me is the truth

$\mathcal{N P}$: Examples

Example: 0-1IP

$\exists x \in \mathbb{B}^{n}$ such that $A x \leq b, c^{T} x \geq K ?$
(1) You say the answer is "Yes". I say "prove it."
(2) You give me the vector x : This is a "short certificate"
(3) The 0-1 vector x can be checked such that $A x \leq b, c^{T} x \geq K$?

$\mathcal{N P}$: Examples

Example: Hamiltonian Circuit

Instance: Graph $G=(V, E)$
Question: Does G contain a Hamiltonian Circuit?

- You say the answer is "Yes". I say "prove it."
- You give me the a set of edges $E^{\prime} \subseteq E$. I check as follows:
(1) Does the degree of each node of $G^{\prime}=\left(V, E^{\prime}\right)=2$? If not, then return no, else go to 2 .
- This takes time $\leq O\left(|V|^{2}\right)$.
(2) Is $G^{\prime}=\left(V, E^{\prime}\right)$ connected. If so, return yes, otherwise return no.
- This takes time $O\left(\left|E^{\prime}\right|\right)$
- The checking algorithm takes $O\left(|V|^{2}+\left|E^{\prime}\right|\right)$ time, so it is polynomial. It returns yes if and only if the set of edges E^{\prime} defines a Hamiltonian Circuit in G, so Hamiltonian Circuit $\in \mathcal{N} \mathcal{P}$.
IE418 Integer Programming
$\mathcal{N} \mathcal{P}$
$\operatorname{co-} \mathcal{N P}$
\mathcal{P}

$\mathcal{N P}$: Examples

Example: Complement of Hamiltonian Circuit

Instance: Graph $G=(V, E)$
Question: Does G not contain a Hamiltonian Circuit?

- You say the answer is "Yes". I say "prove it."
- Equivalently, you say that the answer to Hamiltonian Circuit on G is no.
- You give me... ?
- Careful: Will your answer suffice for all graphs G ?
- What you really are giving would be a characterization of what graphs are not Hamliltonian. G is not Hamiltonian if and only if Your Answer.
- No one knows!

The Class co- $\mathcal{N P}$

- The class of problems for which the "complement" problem to P is $\in \mathcal{N} \mathcal{P}$
- co- $\mathcal{N P} \mathcal{P} \approx$ the class of decision problems with the property that for every instance for which the answer is "no", there is a short certficate

Example: 0-1 IP

$\exists x \in \mathbb{B}^{n}$ such that $A x \leq b, c^{T} x \geq K ?$
© You say "no." I say "prove it."
(2) You give me what? Is this a short (polynomial length) certificate?

Classes and Certificates
IE418 Integer Programming
$\mathcal{N} \mathcal{P}$
$\operatorname{co-} \mathcal{N P}$
\mathcal{P}
co- $\mathcal{N} \mathcal{P}$, More examples

LP

$\exists x \in \mathbb{R}_{+}^{n}$ such that $A x \leq b, c^{T} x \geq K ?$
(1) You say "no." I say "prove it."
(2) You give me What?.
(3) Hint: (x, π) is optimal if and only if
$A x \leq b, x \geq 0, \pi^{T} A \geq c, \pi \geq 0, c^{T} x=b^{T} \pi$
(4) $\pi \in \mathbb{R}^{m}\left|\pi^{T} A \geq c, \pi \geq 0, \pi^{T} b<K \Rightarrow \nexists x \in \mathbb{R}^{n}\right| A x \leq$ $b, x \geq 0, c^{T} x \geq K$
(5) Is π a short certificate?

The Class \mathcal{P}

- \mathcal{P} is the class of problems for which there exists a polynomial algorithm.
- $\mathcal{P} \in \mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$
- It is a (very significant) open question as to whether
 $\mathcal{P}=\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$.
- There are (very few) problems in $\mathcal{N P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$ but not (known) to be in P.
- LP
- PRIMES
- Approximating the shortest and closest vector in a lattice to within a factor of \sqrt{n}

Where are we?

- We have our class(es) of problems $\mathcal{P}, \mathcal{N P}$, co- $\mathcal{N P}$
- We know class of "easy" problems. (Problems in \mathcal{P})
- We need our class of "hard" problems.
- We need our relation "not (significantly) more difficult than" ($\triangleleft)$
- For this we need the concept of problem reductions.

Polynomial Reduction

- If problems $P, Q \in \mathcal{N P}$, and if an instance of P can be converted in polynomial time to an instance of Q, then P is polynomially reducible to Q.
- This is the "not (substantially) more difficult than" relation that we want to use.
- We will write this as $P \triangleleft Q$
- Depending on time, I will show a couple reductions here.
- How could we reduce the assignment problem to a max weighted matching on a bipartite graph?
- How could we reduce the knapsack to a longest path problem?

The "Hard Problems" -Class $\mathcal{N P C}$

- We want to ask the question-What are the hardest problems in $\mathcal{N P}$?
- We'll call this class of problems $\mathcal{N P C}$, " $\mathcal{N P}$-Complete".
- Using the definitions we have made, we would like to say that if $P \in \mathcal{N P C}$, then $Q \in \mathcal{N} \mathcal{P} \Rightarrow Q \triangleleft P$
- If $P \in N P$ and we can convert in polynomial time every other problem $Q \in N P$ to P, then P is in this sense the "hardest" problem in $\mathcal{N P} . P \in \mathcal{N} \mathcal{P C}$
- Is it obvious that such problems exist?
- No! - We'll come to this later...
- Thm: $Q \in \mathcal{P}, P \triangleleft Q \Rightarrow P \in \mathcal{P}$
- Thm: $P \in \mathcal{N P \mathcal { C }}, P \triangleleft Q \Rightarrow Q \in \mathcal{N P C}$

$\mathcal{P}=\mathcal{N} \mathcal{P}$?

- You may be tired of only winning $\$ 1$ at a time by answering my questions in class. Here's you chance to win big bucks.
- We've seen some problems in \mathcal{P}, and we've seen some problems in $\mathcal{N} \mathcal{P}$.
- We know that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$.
- Have we seen any problems in $\mathcal{N P} \backslash \mathcal{P}$?
- Do such problems exist?
- No one knows for sure!
- If you can answer this, you will one million dollars!
- www.claymath.org/Millennium_Prize_Problems/P_vs_NP/
- I will also give you an $A+++++++++++$ in the class if you write my name on the paper. :-)
- Maybe you can even be on TV: http:
//story.news.yahoo.com/news?tmpl=story\&u=/usatoday/ 20050209/ts_usatoday/getoutapieceof paperandapencil

Jeff Linderoth
Review
Classes and Certificates Reductions

IE418 Integer Programming Polynomial Reductions NP-Complete Problems Our first $\mathcal{N P}$-complete proof

The Satisfiability Problem

- This is the first problem to be shown to be $N P$-complete.
- The problem is described by
- a finite set $N=\{1, \ldots, n\}$ (the literals), and
- m pairs of subsets of $N, C_{i}=\left(C_{i}^{+}, C_{i}^{-}\right)$(the clauses).
- An instance is feasible if the set

$$
\left\{x \in \mathbb{B}^{n} \mid \sum_{j \in C_{i}^{+}} x_{j}+\sum_{j \in C_{i}^{-}}\left(1-x_{j}\right) \geq 1 \forall i=1, \ldots, m\right\}
$$

is nonempty.

- This problem is in $\mathcal{N P}$. Why?
- In 1971, Cook defined the class $\mathcal{N P}$ and showed that satisfiability was NP-complete.
- We will not attempt to understand the proof

Proving $\mathcal{N} \mathcal{P}$-completeness

- Once we know that satisfiability is $\mathcal{N} \mathcal{P}$-complete, we can use this to prove other problems are $\mathcal{N} \mathcal{P}$-complete using the "reduction theorem":
- $P \in \mathcal{N} \mathcal{P C}, P \triangleleft Q \Rightarrow Q \in \mathcal{N} \mathcal{P C}$
- Let's prove that Node Packing is NP-Complete.
- Node Packing:
- Given a graph $G=(V, E)$ and an integer k
- Does $\exists U \subseteq V$ such that $|U| \geq k$ and U is a node packing. $(u \in U \Rightarrow v \notin U \forall v \in \delta(u))$

Reduction

Your writing here...

How to Win \$1M

- Here's a hint
- Thm: If $P \cap \mathcal{N} \mathcal{P C} \neq \emptyset \Rightarrow \mathcal{P}=\mathcal{N} \mathcal{P}$
- Proof: Let $Q \in \mathcal{P} \cap \mathcal{N} \mathcal{P C}$ and take $R \in \mathcal{N} \mathcal{P}$.
- $R \triangleleft Q$
- $Q \in \mathcal{P}, R \triangleleft Q \Rightarrow R \in \mathcal{P}$
- $\mathcal{N P} \subseteq \mathcal{P} \Rightarrow \mathcal{P}=\mathcal{N} \mathcal{P}$

QUITE ENOUGH DONE

- To prove $\mathcal{P}=\mathcal{N} \mathcal{P}$, you only need to find a polynomial algorithm for any problem that has shown to be $\mathcal{N} \mathcal{P}$-complete
- How good are you at Minesweeper? :-)

The Line Between \mathcal{P} and $\mathcal{N} \mathcal{P C}$

- The line between these two classes is very thin!
- Consider a 0-1 matrix A an integer k defining the decision problem

$$
\exists\left\{x \in \mathbf{B}^{n} \mid A x \leq e, e^{T} x \geq k\right\} ?
$$

- If we limit the number of nonzero entries in each column to 2 , then this problem is known to be in \mathcal{P} !
- If we allow the number of nonzero entries in each column to be 3 , then this problem is $\mathcal{N} \mathcal{P}$-complete!
- If we allow at most one ' 1 ' per row, the problem is in \mathcal{P}
- If we allow two '1's per row, it is in $\mathcal{N P} \mathcal{C}$
- Shortest Path (with non-negative edge weights) is in \mathcal{P}.
- Longest Path (with non-negative edge weights) is in $\mathcal{N P C}$

$\mathcal{N} \mathcal{P}$-hard Problems

- The class $\mathcal{N} \mathcal{P}$-hard extends $\mathcal{N} \mathcal{P C}$ to include problems that are not in $\mathcal{N P}$
- If $P \in \mathcal{N P \mathcal { C }}$ and $Q \triangleleft P, Q$ is NP-Hard
- Thus, all NP-complete problems are NP-hard.
- If a problem P is in $\mathcal{N P}$ and is $\mathcal{N} \mathcal{P}$-hard, then $P \in \mathcal{N P \mathcal { C }}$
- The primary reason for this definition is so we can classify optimization problems that are not in $\mathcal{N P}$
- It is common for people to refer to optimization problems as being $\mathcal{N} \mathcal{P}$-complete, but this is technically incorrect.

Theory versus Practice

- In practice, it is true that most problem known to be in \mathcal{P} are "easy" to solve.
- This is because most known polynomial time algorithms are of relatively low order.
- It seems very unlikely that $\mathcal{P}=\mathcal{N} \mathcal{P}$
- Although all NP-complete problems are "equivalent" in theory, they are not in practice.
- TSP vs. QAP
- TSP—Solved instances of size ≈ 17000
- QAP—Solved instances of size ≈ 30

