IE 495 - Final Exam

Due Date: May 1, 2003
Do the following problems. You must work alone on this exam. The only reference materials you are allowed to use on the exam are the textbook by Birge and Louveaux, the Stochastic Programming book by Kall and Wallace:
http://www.unizh.ch/ior/Pages/Deutsch/Mitglieder/Kall/bib/ka-wal-94.pdf,
the class notes and materials on the course web page, and references to help you with AMPL syntax. You may use whatever software tools you find necessary (e.g. AMPL, Excel, Maple, NEOS). If you feel you need other reference materials to correctly answer any problem, contact Prof. Linderoth.

Please show your work. You may attach printouts of AMPL files, Maple worksheets, and Excel worksheets, or you may email them to Prof. Linderoth.

1 You Say To-MAY-To, I Say To-MAH-To

Linear Programming ${ }^{1}$

Teresa's Terrific Tomatoes (TTT) is in the business of selling a set P of tomato-related products (e.g salsa, ketchup, tomato paste). In order to create these products, resources from a set R are required (e.g. tomatoes, sugar, labor, spices). To be specific, the parameter $a_{p r}$ is the amount of resource $r \in R$ that is required to produce one unit of product $p \in P$. There is a limit b_{r} on the amount of each resource $r \in R$ that can be used in a production period. The company can pay for extra resources at a cost of $\gamma_{r}, r \in R$.

ттт management is trying to determine the optimal way to meet an estimate of its demand $d_{p t}$ for each of its products $p \in P$ in each planning period t over a horizon T. The regular production costs for each product are $c_{p t}, p \in P, t \in T$. Any surplus production of a product $p \in P$ must be stored at a cost of α_{p} per unit. TTT management also considers unmet demand important, so it imposes a penalty cost of β_{p} for each unit of unmet demand for product $p \in P$. ттт carries no initial inventory of products.

1.1 Problem

Formulate a linear programming model that will tell TTT management how to minimize the combination of production, resource, surplus, and unmet demand costs, subject to their resource constraints.

1.2 Problem

Solve your model in Problem 1.1 given the sets of products

- $P=\{$ Salsa, Ketchup, Tomato-Paste $\}$.
- $R=\{$ Tomatoes, Sugar, Labor, Spices $\}$.
and the instance data in Tables $1-5$.

[^0]| p | r | $a_{p r}$ |
| :---: | :---: | :---: |
| salsa | tomatoes | 0.5 |
| salsa | sugar | 1.0 |
| salsa | labor | 1.0 |
| salsa | spices | 3.0 |
| ketchup | tomatoes | 0.5 |
| ketchup | sugar | 0.5 |
| ketchup | labor | 0.8 |
| ketchup | spices | 1.0 |
| tomato paste | tomatoes | 1.0 |
| tomato paste | sugar | 0 |
| tomato paste | labor | 0.5 |
| tomato paste | spices | 0.25 |

Table 1: Resource Requirements for ттт. ($a_{p r}$)

r	b_{r}	g_{r}
Labor	200	2.0
Tomatoes	250	0.5
Sugar	300	1.0
Spices	100	1.0

Table 2: Resources and Per Unit Additional Resource Costs for tTt. $\left(b_{r}, g_{r}\right)$

p	t	$c_{p t}$
Tomato-Paste	1	1.0
Tomato-Paste	2	1.1
Tomato-Paste	3	1.2
Ketchup	1	1.5
Ketchup	2	1.75
Ketchup	3	2.0
Salsa	1	2.5
Salsa	2	2.75
Salsa	3	3

Table 3: Production Costs for тtт. ($c_{p t}$)

p	α_{p}	β_{p}
Tomato-Paste	0.5	4.0
Ketchup	0.25	6.0
Salsa	0.2	12.0

Table 4: Inventory and Shortage Costs for TTT. $\left(\alpha_{p}, \beta_{p}\right)$

p	t	$d_{p t}$
Tomato-Paste	1	100
Tomato-Paste	2	100
Tomato-Paste	3	200
Ketchup	1	30
Ketchup	2	30
Ketchup	3	40
Salsa	1	5
Salsa	2	5
Salsa	3	20

Table 5: Product Demands for ттт. $\left(d_{p t}\right)$

Stochastic Programming ${ }^{2}$

Suppose now that the product demands are not known for certain until after the production decisions are made. To account for the uncertainty, ттт forecasts a number of demand scenarios $S=\{1,2, \ldots|S|\}$ where $d_{p t s}$ is the demand for product $p \in P$ in time period $t \in T$ under scenario $s \in S$. The probability of a scenario $s \in S$ occurring is ρ_{s}.

1.3 Problem

Referring to your answer to problem 1.1, which of the variables are first-stage variables, and which of the variables are second-stage variables.

1.4 Problem

Formulate a linear programming deterministic equivalent that will tell тTт management how to minimize their expected costs under varying demand scenarios.

1.5 Problem

Solve the instance you created in Problem 1.4 given the demand scenarios and probabilities listed in Table 6. All other instance data is listed in Tables 1-4.

1.6 Problem

Solve the instance you created in Problem 1.5.

1.7 Problem

What is the Expected Value of Perfect Information (EVPI) for the solution to Problem 1.6?

1.8 Problem

What is the Value of the Stochastic Solution (VSS) VSS for the solution to Problem 1.6?

[^1]| s | p | t | $d_{p t s}$ |
| :---: | :---: | :---: | :---: |
| 1 | Tomato-Paste | 1 | 100 |
| 1 | Ketchup | 1 | 30 |
| 1 | Salsa | 1 | 5 |
| 1 | Tomato-Paste | 2 | 100 |
| 1 | Ketchup | 2 | 30 |
| 1 | Salsa | 2 | 5 |
| 1 | Tomato-Paste | 3 | 100 |
| 1 | Ketchup | 3 | 30 |
| 1 | Salsa | 3 | 5 |
| 2 | Tomato-Paste | 1 | 100 |
| 2 | Ketchup | 1 | 30 |
| 2 | Salsa | 1 | 5 |
| 2 | Tomato-Paste | 2 | 100 |
| 2 | Ketchup | 2 | 30 |
| 2 | Salsa | 2 | 5 |
| 2 | Tomato-Paste | 3 | 200 |
| 2 | Ketchup | 3 | 40 |
| 2 | Salsa | 3 | 20 |
| 3 | Tomato-Paste | 1 | 100 |
| 3 | Ketchup | 1 | 30 |
| 3 | Salsa | 1 | 5 |
| 3 | Tomato-Paste | 2 | 200 |
| 3 | Ketchup | 2 | 40 |
| 3 | Salsa | 2 | 20 |
| 3 | Tomato-Paste | 3 | 100 |
| 3 | Ketchup | 3 | 30 |
| 3 | Salsa | 3 | 5 |
| 4 | Tomato-Paste | 1 | 100 |
| 4 | Ketchup | 1 | 30 |
| 4 | Salsa | 1 | 5 |
| 4 | Tomato-Paste | 2 | 200 |
| 4 | Ketchup | 2 | 40 |
| 4 | Salsa | 2 | 20 |
| 4 | Tomato-Paste | 3 | 200 |
| 4 | Ketchup | 3 | 40 |
| 4 | Salsa | 3 | 20 |
| | | | |

s	ρ_{s}
1	0.15
2	0.4
3	0.15
4	0.3

Table 6: Demand Scenarios and Probabilities for ttt Problem 1.5

Probabilistic Constraints

ттт management has now decided that it will no longer explicitly consider the fact that it can purchase extra resources. Instead, they will consider the amount of resource $r \in R$ available (b_{r}) as a random variable $b_{r}(\omega)$. ттт wants to enforce that the probability of exceeding the capacity $b_{r}(\omega)$ is sufficiently small for each resource and planning period.

1.9 Problem

Let $\theta_{r}, r \in R$ be the probability that TTT's production plan exceeds the capacity of resource r in a time period. Modify the model you created as an answer to Problem 1.4 to enforce TTT management's new requirements.

1.10 Problem

Solve the instance you created in Problem 1.9 as a chance-constrained problem, with values of θ_{r} and probability distributions for the demands b_{r} given in Table 7. ${ }^{3}$

r	$b_{r}(\omega)$	θ_{r}
Labor	$\mathcal{N}(200,400)$	0.15
Tomatoes	$\mathcal{N}(250,500)$	0.10
Sugar	$\mathcal{N}(300,500)$	0.10
Spices	$\mathcal{N}(100,100)$	0.02

Table 7: Distribution of Resource Capacity $\left(b_{r}(\omega)\right)$ and Maximum Probability of Exceeding Capacity $\left(\theta_{r}\right)$.

[^2]
2 Shapes

For each of the problems in this section you are to state the shape of the functionconvex, concave, or neither convex nor concave - and prove your statement.

Let $x \in \Re^{n}, \eta \in \Re^{p}$. Consider the function

$$
Q(x, \eta)=\min _{y \in \mathfrak{R}_{+}^{p}}\left\{\eta^{T} y \mid W y=h-T x\right\} .
$$

2.1 Problem

For fixed \hat{x}, what is the shape of $Q(\hat{x}, \eta)$?

2.2 Problem

For fixed $\hat{\eta}$, what is the shape of $Q(x, \hat{\eta})$?

2.3 Problem

What is the shape of the function $Q(x, \eta)$?

3 The Last Stochastic Programming Problem Ever!

In two-stage stochastic LP with recourse, consider the following second stage problem:

$$
Q(x, \omega)=\min _{y}\{y \mid y \geq \omega, y \geq x\}
$$

Assume that $x \geq 0$. Let ω have the probability density:

$$
f(\omega)=\frac{2}{\omega^{3}}, \quad \omega \geq 1
$$

The Distribution Problem

3.1 Problem

Determine a closed form expression for $\mathcal{Q}(x)=\mathbb{E}_{\omega} Q(x, \omega)$.

3.2 Problem

Solve the problem

$$
z^{*}=\min _{x \geq 0}\{x+\mathcal{Q}(x)\} .
$$

SAA

Simulation Knowledge:

A general approach to generating a random variable ω drawn from a continuous probability distribution F is the following:

1. Generate $u \approx \mathcal{U}(0,1)$
2. Return $\omega=F^{-1}(u)$

3.3 Problem

Create a sample average approximation (SAA) to the function $f(x)=x+\mathcal{Q}(x)$ using $N=7$ samples.

3.4 Problem

Let $\hat{f}(x)$ be the SAA you created in Problem 3.3. Solve the problem

$$
T^{*}=\min _{x \geq 0}\{\hat{f}(x)\} .
$$

Let $\chi=\arg \min _{x \geq 0}\{\hat{f}(x)\}$

3.5 Problem

How (in general) is T^{*} related to z^{*} (the optimal objective function value in Problem 3.2).

3.6 Problem

What is $f(\chi)$? How does $f(\chi)$ relate to z^{*} ?

3.7 Problem

Bonus: ${ }^{4}$ Suppose you wish to use sampling to obtain an estimate of an upper bound with an associated confidence interval for $f(\chi)$. Describe how you might do this or explain why you can't.

[^3]
[^0]: ${ }^{1}$ If you miss this, Ralphs is in trouble

[^1]: ${ }^{2}$ If you miss this, I ' m in trouble

[^2]: ${ }^{3} \mathcal{N}\left(\mu, \sigma^{2}\right)$ is the Normal Distribution with mean μ and variance σ^{2}

[^3]: ${ }^{4}$ This is a Trick Question

